Structure and commutativity of rings with constraints on nilpotent elements. II

Hazar Abu-Khuzam* Adil Yaqub†

*University Of California
†University Of California

Copyright ©1979 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
STRUCTURE AND COMMUTATIVITY OF RINGS WITH CONSTRAINTS ON NILPOTENT ELEMENTS. II

HAZAR ABU-KHUZAM and ADIL YAQUB

The purpose of this note is to generalize the principal theorem of the previous paper [1] as follows:

Theorem. Let R be an associative ring and let N be the set of all nilpotent elements of R. Suppose n is a fixed positive integer. Suppose, further, that (i) N is commutative, (ii) for every x in R, there exists an element x' in the subring $\langle x \rangle$ generated by x such that $x^n = x^{n+1}x'$ with some positive integer $m = m(x)$, (iii) $x - y \in N$ implies that $x^n - y^n$ is in the center Z of R.

(a) If $na = 0$, $a \in N$ imply $a = 0$, then R is a subdirect sum of nil commutative rings and local commutative rings.

(b) If n is a prime, then R is a subdirect sum of nil commutative rings and local commutative rings.

In preparation for the proof, we establish the following lemmas.

Lemma 1. Hypothesis (iii) implies that $ab^n = b^n a$ for all $a \in N$ and all $b \in R$, and necessarily all idempotents of R are in Z.

Proof. Since $(a + b) - b \in N$, by (iii) we have $c = (a+b)^n - b^n \in Z$. Hence $b^n (a + b) = \{(a + b)^n - c\} (a + b) = (a + b) \{(a + b)^n - c\} = (a + b) b^n$, which simplifies to $b^n a = ab^n$. As is well known, every idempotent commuting with all nilpotents is central.

Lemma 2. Hypotheses (i), (ii), (iii) imply the following:

(a) N is a commutative nil ideal.

(b) If e is an idempotent and a is in N, then $nea \in Z$.

(c) If φ is a homomorphism of R onto R^*, then $\varphi(N)$ coincides with the set of all nilpotent elements of R^*.

Proof. (a) and (c) have been proved in Lemma 2 [1]. We shall prove (b). Since N is a commutative nil ideal, it can be easily seen that $a^k \in Z$ for all $k > 1$. By (iii), $(e + a)^n - e^n$ is in Z. Hence, $a^n + na^{n-1}e + \cdots + nae \in Z$, since e is central by Lemma 1. This implies that $nae \in Z$.

165
Corollary 1. If R satisfies the hypotheses (i), (ii), (iii), then any subring of R and any homomorphic image of R satisfy (i), (ii), (iii).

Now, we are ready to prove our theorem.

Proof of Theorem. Careful scrutiny of the proof of Theorem 2 [1] shows that it suffices to prove that if φ is a homomorphism of R onto a local ring R^* with (nil) radical N^* such that $R^*/N^* = GF(r)$, where $r=p^s$, p prime, $s \geq 1$, then every element a^* in N^* is central.

(a) By (ii) and Lemma 1, we can easily see that there exists a central idempotent e of R such that $\varphi(e) = 1$. Let b^* be an arbitrary element of R^*. Then, by Lemma 2, $a^* = \varphi(a)$ with some $a \in N$, and $b^* = \varphi(b)$ with some $b \in R$. Since $ne \in Z$ (Lemma 2 (b)), therefore $ne[a, b] = 0$. By hypothesis, it follows then $e[a, b] = 0$, and therefore $[a^*, b^*] = 0$.

(b) Obviously, R^* is of characteristic p^s for some positive integer p. By Lemma 2 (b) and Corollary 1, na^* is central. If $n \neq p$, then it is easy to see that a^* is central. On the other hand, if $n=p$ then Lemma 1 enables us to proceed as in the latter part of the proof of Theorem 2 [1].

The following example was pointed out to us by Prof. H. G. Moore. Let $R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{pmatrix} \mid a, b, c \in GF(4) \right\}$. It is readily verified that R is not commutative and satisfies all the hypotheses of Theorem (a) except the hypothesis that $na = 0$, $a \in N$ imply $a = 0$ ($n = 6$). Next, we consider the ring R constructed in Remark [1]. Then R is not commutative, and satisfies all the hypotheses of Theorem (b) except the hypothesis that n is prime ($n=6$).

In conclusion, we would like to express our gratitude and indebtedness to Prof. H. Tominaga for his helpful suggestions and valuable comments.

REFERENCE

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, SANTA BARBARA
SANTA BARBARA, CALIFORNIA 93106, U.S.A.

(Received March 9, 1979)