Dual-bimodules and Finitely Cogenerated Modules

Yoshiki Kurata* Kazutoshi Koike†

*Kanagawa University †Ube College

DUAL-BIMODULES AND FINITELY COGENERATED MODULES

In memory of Professor Hisao Tominaga

YOSHIKI KURATA and KAZUTOSHI KOIKE

Let R and S be rings with identity and RQ_S an (R, S)-bimodule. We shall call Q a left dual-bimodule provided that $\ell_R r_Q(A) = A$ for every left ideal A of R and $r_Q \ell_R(Q') = Q'$ for every S-submodule Q' of Q (see [5]).

In this note, first we shall show that a left dual-bimodule RQ_S defines a duality between the finitely generated left ideals of R and the finitely cogenerated factor modules of Q_S. Then, as an application of this duality, we shall give necessary and sufficient conditions for R to be left semihereditary or left coherent.

For notations and definitions we shall follow [1] and [5].

1. Let R and S be rings with identity and RQ_S an (R, S)-bimodule. Suppose that Q_S is quasi-injective and the natural homomorphism $\lambda: R \rightarrow \text{End}(Q_S)$ is an isomorphism. Then by [7, Theorem 2.1], for each S-module N_S, there is a bijection between the finitely generated submodules of the Q-dual $R N^*$ of N and the finitely closed submodules of N_S given by

$$L \rightarrow r_N(L)$$

with the inverse $K \rightarrow \ell_{N^*}(K)$. Here, a submodule K of N_S is said to be finitely closed (with respect to Q_S) if there exists an integer $m > 0$ such that

$$0 \rightarrow N/K \rightarrow Q^m$$

is exact, or equivalently, there exist f_1, f_2, \ldots, f_m in N^* such that

$$\bigcap_{j=1}^m \text{Ker} f_j = K.$$

In case Q_S is finitely cogenerated, K finitely closed means that N/K is finitely cogenerated Q-torsionless.

Using this theorem, Miller and Turnidge pointed out that, under the same assumption as above, R is left Noetherian (right perfect) if and only if Q_S has DCC (ACC) on finitely closed submodules.
If, in particular, RQ_S is a left dual-bimodule with Q_S quasi-injective and λ surjective, then the bijection yields one between the finitely generated left ideals of R and the finitely closed submodules of Q_S given by

$$A \rightarrow r_Q(A)$$

with the inverse $Q' \rightarrow \ell_R(Q')$. Hence, in this case, R is left Noetherian (right perfect) if and only if Q_S has DCC (ACC) on the submodules $r_Q(A)$ of Q_S with A a finitely generated left ideal of R and R is regular if and only if every submodule of Q_S of the above form is a direct summand of Q_S (cf. [4, Proposition 4.2 and Theorem 4.3]). On the other hand, since the mapping $Ra \rightarrow r_Q(a)$ is a bijection between the principal left ideals of R and the submodules $r_Q(a)$ of Q_S with a in R, it follows that R is right perfect if and only if Q_S has ACC on the submodules $r_Q(a)$ of Q_S with a in R and that R is regular if and only if every submodule of Q_S of the last form is a direct summand of Q_S (cf. [4, Theorem 3.1 and Proposition 4.1]).

2. For an (R, S)-bimodule RQ_S, as was shown in [5, Theorem 3.3], if Q_S is quasi-injective and λ is surjective, then the pair (H', H'') of functors

$$H' = \text{Hom}_R(-, Q) : \text{RM} \rightarrow \text{NS},$$

$$H'' = \text{Hom}_S(-, Q) : \text{NS} \rightarrow \text{RM}$$

defines a duality between the full subcategory RM of R-mod of finitely generated Q-torsionless R-modules and the full subcategory NS of mod-S whose objects are all the S-modules N_S such that

$$0 \rightarrow N \rightarrow Q^n \rightarrow Q^I$$

is exact for some integer $n > 0$ and a set I. Assume further that Q_S is finitely cogenerated, then by [5, Proposition 3.4]

$$\text{RM} = \{RM \mid M \text{ is finitely generated and } Q\text{-reflexive}\}$$

and

$$\text{NS} = \{N_S \mid N \text{ is finitely cogenerated and } Q\text{-reflexive}\}.$$

If, in addition, Q_S is a self-cogenerator, then by [6, Proposition 4]

$$\text{NS} = \{N_S \mid 0 \rightarrow N \rightarrow Q^n \text{ is exact for some } n > 0\}.$$
Using the bijection in Section 1, we shall now show that (H', H'') defines a duality between more restricted subcategories of \mathcal{R}_M and \mathcal{N}_S.

Theorem 1. Let $\mathcal{R}_Q S$ be a left dual-bimodule with $Q S$ quasi-injective and λ surjective. Then (H', H'') defines a duality between the finitely generated left ideals of R and the finitely cogenerated factor modules of $Q S$.

Proof. Let A be a finitely generated left ideal of R. Then A belongs to \mathcal{R}_M and A^* is isomorphic to a finitely cogenerated factor module $Q / r_Q(A)$ of $Q S$ by [5, Lemma 1.13]. On the other hand, for each finitely cogenerated factor module Q / Q' of $Q S$, Q' is finitely closed and hence $\ell_R(Q')$ is finitely generated and is Q-reflexive. Again by [5, Lemma 1.13], $Q / Q' \cong \ell_R(Q')^*$.

Thus, Q / Q' is in \mathcal{N}_S and $(Q / Q')^*$ is isomorphic to $\ell_R(Q')$.

Corollary 2. Let $\mathcal{R}_Q S$ be a left dual-bimodule with $Q S$ quasi-injective and λ surjective. If R is left Noetherian, then (H', H'') defines a duality between the left ideals of R and the factor modules of $Q S$.

In contrast with Corollary 2, (H', H'') always defines a duality between the factor modules of R and the submodules of $Q S$ under the same assumption of Corollary 2. Indeed, for each left ideal A of R, R / A is Q-reflexive by [5, Theorem 3.2] and $(R / A)^* \cong r_Q(A)$. On the other hand, for each submodule Q' of $Q S$, $Q' = r_Q(\ell_R(Q')) \cong (R / \ell_R(Q'))^*$. Hence, Q' is Q-reflexive by [1, Proposition 20.14] and $Q'^* \cong R / \ell_R(Q')$.

If $\mathcal{R}_Q S$ is a dual-bimodule with both \mathcal{R}_Q and $Q S$ injective, then using [1, Exercise 23.7] (H', H'') defines a duality between the left R-modules of finite length and the right S-modules of finite length by [5, Theorem 2.1]. However, we have

Theorem 3. Let $\mathcal{R}_Q S$ be a left dual-bimodule with $Q S$ quasi-injective and λ surjective. Then (H', H'') defines a duality between the Q-torsionless left R-modules of finite length and the Q-torsionless right S-modules of finite length.

Proof. Let \mathcal{R}_M be a Q-torsionless R-module of finite length and let $M = M_0 > M_1 > \cdots > M_n = 0$ be a composition series of M. Then

$$0 = r_M(M_0) \leq r_M(M_1) \leq \cdots \leq r_M(M_n) = M^*$$

is a series of S-submodules of M^*, where $r_{M^*}(M_i) = \{ f: M \to Q | M_i \leq \text{Ker} f \}$ (see [1, p.281]). For each i, each element of $r_{M^*}(M_{i+1})$ induces an R-homomorphism from M_i/M_{i+1} to Q and hence $r_{M^*}(M_{i+1})/r_{M^*}(M_i)$ can be seen as an S-submodule of $(M_i/M_{i+1})^*$. Since M_i/M_{i+1} is simple, $(M_i/M_{i+1})^*$ is isomorphic to a simple submodule of Q_S, as is seen from the proof of [5, Theorem 2.1]. Hence, $r_{M^*}(M_{i+1})/r_{M^*}(M_i)$ is zero or simple. Thus, M_S^* is a module of finite length and $c(M^*) \leq c(M)$, where $c(-)$ denotes the composition length. Furthermore, by [1, Proposition 20.14], M_S^* is Q-torsionless.

Using [1, Exercise 16.18], for a Q-torsionless S-module N_S of finite length, $R N^*$ is a Q-torsionless R-module of finite length and $c(N^*) \leq c(N)$ holds.

Clearly each Q-torsionless R-module $R M$ of finite length is Q-reflexive and we have $c(M) = c(M^*)$. On the other hand, each Q-torsionless S-module N_S of finite length is finitely cogenerated. Hence it is Q-reflexive. Thus we have $c(N) = c(N^*)$.

Corollary 4. Let $R Q_S$ be a left dual-bimodule with Q_S quasi-injective and λ surjective. Then (H', H'') defines a duality between the simple left R-modules and the Q-torsionless simple right S-modules.

In case $R Q_S$ is a dual-bimodule, however, (H', H'') defines a duality between the simple left R-modules and the simple right S-modules, as is seen from [5, Theorem 2.1].

3. It is shown by [5, Proposition 1.12] that for a left dual-bimodule $R Q_S$, R is semisimple if and only if Q_S is semisimple. On the other hand, we have

Theorem 5. Let $R Q_S$ be a left dual-bimodule with λ surjective. Then R is simple Artinian if and only if $Q_S \cong Q_n^1$ for some integer $n > 0$ and some simple right S-module Q_1.

Proof. Suppose that R is simple Artinian. Then Q_S is semisimple and is finitely generated by [5, Proposition 1.8]. Let Q_1 be a simple submodule of Q_S. Then $\ell_R(R Q_1)$ is a proper ideal of R and hence it must be zero by assumption. Therefore, $R Q_1 = r_Q \ell_R(R Q_1) = Q$. However, $R Q_1 = \sum_{a \in R} a Q_1$ and each $a Q_1$ is either zero or isomorphic to Q_1. Thus we have $Q \cong Q_n^1$ for some integer $n > 0$.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol37/iss1/9
Conversely, suppose that \(Q_S \cong Q_1^n \) for some integer \(n > 0 \) and some simple right \(S \)-module \(Q_1 \). Then since \(R \cong \lambda \text{End}(Q_S) \), \(R \) is isomorphic to the ring of all \(n \times n \) matrices over the division ring \(\text{End}(Q_1) \). Thus, \(R \) is simple Artinian.

Now, using Theorem 1, we shall give a necessary and sufficient condition for \(R \) to be left semihereditary (cf. [2, Corollary 2.4] and [8, Proposition 2.1]).

Theorem 6. Let \(RQ_S \) be a left dual-bimodule with \(Q_S \) quasi-injective and \(\lambda \) surjective. Then the following conditions are equivalent:

1. \(R \) is left semihereditary.
2. Every finitely cogenerated factor module of \(Q_S \) is \(Q \)-injective.
3. For every finitely generated left ideal \(A \) of \(R \), \(A^* \) is \(Q \)-injective.

Proof. Let \(A \) be a finitely generated left ideal of \(R \) and let \(R^n \to A \to 0 \) be exact for some integer \(n > 0 \). Then the sequence

\[
0 \to A^* \to Q^n
\]

is also exact. Since \(A \) is \(Q \)-reflexive and \(R \cong \lambda \text{End}(Q_S) \), \(A \) is projective if and only if \((*)\) is split exact and this is so if and only if \(A^* \) is \(Q \)-injective. Thus, (1) and (3) are equivalent. By Theorem 1, (2) and (3) are also equivalent.

Theorem 7. For a dual ring \(R \) the following conditions are equivalent:

1. \(R \) is left semihereditary.
2. \(R \) is semisimple.

Proof. (1) \(\Rightarrow\) (2). Suppose that \(R \) is left semihereditary. Since \(R/\text{rad}(R) \) is semisimple by [5, Theorem 1.10], \(0 \to R/\text{rad}(R) \to \text{soc}(R)^n \) is split exact for some integer \(n > 0 \). By [5, Proposition 1.8] \(\text{soc}(R) \) is projective. Hence, \(R/\text{rad}(R) \) is also projective. Thus, \(\text{rad}(R) \) must be a direct summand of \(R \), from which it follows that \(\text{rad}(R) = 0 \) and \(R \) is semisimple. (2) \(\Rightarrow\) (1) is trivial.

As is easily seen, a ring \(R \) is left coherent if and only if for every integer \(n > 0 \) and every \(R \)-homomorphism \(f: R^n \to R \) there exist an integer \(m > 0 \) and an \(R \)-homomorphism \(g: R^m \to R^n \) such that

\[
R^m \xrightarrow{g} R^n \xrightarrow{f} R
\]
is exact. For a left dual-bimodule RQ_S, using Q_S instead of R, a similar characterization for R to be left coherent can be obtained (cf. [2, Theorem 2.6 and Corollary 2.7]).

Theorem 8. For a left dual-bimodule RQ_S with Q_S quasi-injective and λ surjective, the following conditions are equivalent:

1. R is left coherent.
2. For every finitely cogenerated factor module Q/Q' of Q_S, there exist integers $n, m > 0$ such that

 \[0 \rightarrow Q/Q' \rightarrow Q^n \rightarrow Q^m \]

 is exact.
3. For every finitely generated left ideal A of R, there exist integers $n, m > 0$ such that

 \[0 \rightarrow A^* \rightarrow Q^n \rightarrow Q^m \]

 is exact.
4. For every integer $n > 0$ and every S-homomorphism $f: Q \rightarrow Q^n$ there exist an integer $m > 0$ and an S-homomorphism $g: Q^n \rightarrow Q^m$ such that

 \[Q \xrightarrow{f} Q^n \xrightarrow{g} Q^m \]

 is exact.

Proof. It is easy to see that (1), (2) and (3) are equivalent.

(1) \Rightarrow (4). Assume (1) and let $f: Q \rightarrow Q^n$ be an S-homomorphism. Then $0 \rightarrow Q/K \xrightarrow{f} Q^n$ is exact, where $K = \text{Ker} f$ and \bar{f} is the homomorphism induced by f. Hence Q/K is finitely cogenerated Q-reflexive. By Theorem 1, $(Q/K)^*$ is a finitely generated left ideal of R and $R^n \rightarrow (Q/K)^* \rightarrow 0$ is exact. Since R is left coherent, there exists an integer $m > 0$ such that $R^n \rightarrow R^m \rightarrow (Q/K)^* \rightarrow 0$ is exact. Thus, $0 \rightarrow Q/K \xrightarrow{f} Q^n \xrightarrow{g} Q^m$ is exact for some S-homomorphism g, which shows that

\[Q \xrightarrow{f} Q^n \xrightarrow{g} Q^m \]

is exact.

(4) \Rightarrow (2). Assume (4) and let Q/Q' be any finitely cogenerated factor module of Q_S. Then Q' is finitely closed and hence there exists an integer $n > 0$ such that $0 \rightarrow Q/Q' \xrightarrow{\bar{f}} Q^n$ is exact for some S-homomorphism f. Let $\pi: Q \rightarrow Q/Q'$ be the canonical epimorphism. Then by (4) there exist
an integer \(m > 0 \) and an \(S \)-homomorphism \(g \) such that \(Q^{\oplus m} \xrightarrow{f} Q^n \xrightarrow{g} Q^m \) is exact and thus so is \(0 \to Q/Q' \xrightarrow{f} Q^n \xrightarrow{g} Q^m \).

It is to be noted that if \(R \) is a dual ring with \(RR \) injective, then the bimodule \(RR \) defines a Morita duality by [1, Exercise 24.10] and [6, Corollary 6]. However, this is not the case for a left dual-bimodule in general. For example, let \(R = Q = \mathbb{Z}/(p) \), \(p \) a prime number, and \(S = \mathbb{Z} \). Then the bimodule \(QR \) is a left dual-bimodule with \(QS \) quasi-injective and \(\lambda \) surjective, but does not define any Morita duality.

For this left dual-bimodule, \(R \) is left Noetherian, right perfect and is also regular. Furthermore, it is left semihereditary and left coherent, too.

References

Y. KURATA and K. KOIKE

Y. Kurata
Department of Information Science
Kanagawa University
Tsuchiya, Hiratsuka-shi 259-12, Japan

K. Koike
Department of Computer Science
Ube College
Bunkyocho, Ube-shi 755, Japan

(Received May 20, 1994)