Ko-Group of $\text{PSp}(2^{4n})$

Haruo Minami*

*Nara University
KO-GROUP OF $PSp(2^{4n})$

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

HARUO MINAMI

Let $Sp(n)$ be the symplectic group of degree n and $PSp(n)$ be the projective group associated with $Sp(n)$, that is, $PSp(n) = Sp(n)/C$ where C denotes the center of $Sp(n)$ which is generated by the scalar matrix with all diagonal entries -1.

Our purpose here is to compute the real K-group $KO^*(PSp(2^{4n}))$. As for the complex K-group, $K^*(PSp(\ell))$ has been determined in [7,9] for any $\ell \geq 1$. But we begin with the calculation of $K^*(PSp(2^{4n}))$ by our method for convenience of calculation. The way getting these groups is quite parallel to that of [12]. As it turns out that there is a $\mathbb{Z}/2$-map from S^{8n+3} to $Sp(2^{4n})$ where the generator of $\mathbb{Z}/2$ acts on S^{8n+3} as antipodal involution and on $Sp(2^{4n})$ as the generator of C respectively, the multiplicative structures of the K-groups of $PSp(2^{4n})$ can be reduced to those of the K-groups of P^{8n+3} and $Sp(2^{4n})$ just as in the case of $SO(8\ell)$ [12] by making use of this $\mathbb{Z}/2$-map and applying a device to the equivariant K-theories associated with $\mathbb{Z}/2$.

This paper is arranged as follows. Section 1 consists of preparations for the subsequent sections. Sections 2 and 3 deal with the computation of $K^*(PSp(2^{4n}))$ and $KO^*(PSp(2^{4n}))$ respectively.

1. Let Γ denote the multiplicative group generated by -1 and H denote the canonical non-trivial 1-dimensional real representation of Γ.

We write nH for the direct sum of n copies of H. And by $B(pH \oplus R^q)$ and $S(pH \oplus R^q)$ we denote the unit ball and the unit sphere in $pH \oplus R^q$ centered at the origin o, and let $\Sigma^{n,q} = B(pH \oplus R^q)/S(pH \oplus R^q)$ with the collapsed $S(pH \oplus R^q)$ as base point. Here R denotes the field of real numbers. Also, for later use we fix the notations C and H for the fields of complex numbers and quaternions as usual.

Let $\Delta^+: Spin(8n + 4) \to U(2^{4n+1})$ be one of the half-spin representations of $Spin(8n + 4)$. It is known [10], §13 that Δ^+ is the restriction of a quaternionic representation of $Spin(8n + 4)$, denoted by

$$\bar{\Delta}^+: Spin(8n + 4) \to Sp(2^{4n})$$
below. Assume that the generator of Γ acts on $\text{Spin}(8n + 4)$ and $\text{Sp}(2^{4n})$ as the elements -1 and $-I$ of these groups respectively where I is the unit matrix, and thus consider these two groups as Γ-spaces. Then Δ^+ becomes a Γ-map obviously. Moreover we know [6] that $\text{Spin}(8n + 4)$ contains $S^{8n+4,0}$ as an invariant subspace. This follows from the fact that $\text{Spin}(8n + 4)$ is a subgroup of the Clifford algebra C_{8n+3} multiplicatively generated by the elements of the unit sphere S^{8n+3} ([10], §11). Therefore we have the following result similar to [6],(1.14).

(1.1) There exists a Γ-map $\iota: S^{8n+4,0} \to \text{Sp}(2^{4n})$, so that we have a homeomorphism

$$(S^{8n+4,0} \times \text{Sp}(2^{4n}))/\Gamma \approx P^{8n+3} \times \text{Sp}(2^{4n}).$$

In fact, this homeomorphism is induced by the assignment $(x,g) \mapsto (\pi(x),\iota(x)^{-1}g)$ for $x \in S^{8n+4,0}$ and $g \in \text{Sp}(2^{4n})$, where $P^{8n+3} = S^{8n+4,0}/\Gamma$, the real projective space of dimension $8n + 3$, and π is the canonical projection from $S^{8n+4,0}$ to P^{8n+3}.

A Real (Γ^\cdot)-vector bundle is a complex (Γ^\cdot)-vector bundle together with a conjugate (equivariant) involutive automorphism and a quaternionic (Γ^\cdot)-vector bundle is a complex (Γ^\cdot)-vector bundle together with a conjugate (equivariant) anti-involutive automorphism. It is clear by definition that the external tensor product $E \hat{\otimes}_C F$ of two quaternionic (Γ^\cdot)-vector bundles E and F admits an obvious Real structure.

Let KR and KSp denote the Real and quaternionic K-theories and let KR_{Γ} and KSp_{Γ} denote the equivariant ones associated with Γ. But $KR(X) \cong KO(X)$ and $KR_{\Gamma}(X) \cong KO_{\Gamma}(X)$ canonically if X has a trivial Real structure. Since all spaces of this note are such ones, we identify these isomorphisms throughout this paper. Then the above external tensor product $x \hat{\otimes}_C y$ defines uniquely an element $x \wedge_C y$ of either $KO(X \wedge Y)$ or $KO_{\Gamma}(X \wedge Y)$ according as $x \in \overline{KSp}(X)$, $y \in \overline{KSp}(Y)$ or $x \in \overline{KSp}_{\Gamma}(X)$, $y \in \overline{KSp}_{\Gamma}(Y)$.

Considering $S^{0,3}$ to be the unit quaternions $Sp(1)$ yields a generator of $\overline{KSp}(\Sigma^{0,4})$ in a canonical way. We write α for this element. Then

$$\overline{KSp}(\Sigma^{0,4}) = Z \cdot \alpha$$

and also α satisfies

(1.2) $\quad \alpha \otimes_C H = \eta_4, \; \alpha \wedge_C \alpha = \eta_8 \; \text{and} \; s(\alpha) = \mu^2$
where \(\eta_4, \eta_8 \) and \(\mu \) denote the canonical generators of \(\overline{KO}(\Sigma^{0,4}) \), \(\overline{KO}(\Sigma^{0,8}) \) and \(\overline{K}(\Sigma^{0,2}) \), (the last two generators are called the Bott class), and \(s \) denotes the natural complexification \(KS \to K \).

From [3,11,14] we now recall the equivariant Thom isomorphism theorems. Consider the isomorphism \(S^{8n+4,0} \times H^{2^{4n}} \cong S^{8n+4,0} \times H^{2^{4n}} \otimes_R H \) of \(\Gamma \)-quaternionic vector bundles over \(S^{8n+4,0} \) given by the assignment \((x,v) \mapsto (x,\iota(x)v) \) for \(x \in S^{8n+4,0} \), \(v \in H^{2^{4n}} \) where \(\iota \) is as in (1.1). Then, in a canonical manner, this isomorphism yields a generator \(\tau_H \) of \(\overline{KSp}_{\Gamma}(\Sigma^{8n+4,0}) \) such that its restriction to \(o \in B((8n+4)H) \) is \(2^{4n}(H - H \otimes_R H) \in KSp_{\Gamma}(o) (= RS_{\Gamma}(\Gamma), \) the quaternionic representation ring of \(\Gamma \)).

Set

\[
\sigma = s(\tau_H) \in \overline{K}\Gamma_{s}(\Sigma^{8n+4,0}) \quad \text{and} \quad \omega = \sigma \wedge \alpha \in \overline{KO}_{s}(\Sigma^{8n+4,4}).
\]

Then their restrictions to \(o \) and \(\Sigma^{0,4} \) are \(2^{4n+1}(1 - L) \in K_{s}(o) = R(\Gamma) \) and \(2^{4n}(1 - H) \eta_4 \in \overline{KO}_{s}(\Sigma^{0,4}) = RO(\Gamma) \cdot \eta_4 \) respectively where \(L = C \otimes_R H \), and multiplications by \(\sigma \) and \(\omega \) give isomorphisms \(\overline{K}_{s}(X) \cong \overline{K}_{s}(\Sigma^{8n+4,0} \wedge X) \) and \(\overline{KO}_{s}(X) \cong \overline{KO}_{s}(\Sigma^{8n+4,4} \wedge X) \) for any \(\Gamma \)-space \(X \) with base-point respectively. Here \(R(\Gamma) \) and \(RO(\Gamma) \) are the complex and real representation rings of \(\Gamma \) and \(R \cdot g \) denotes an \(R \)-module generated by a single element \(g \) for a ring \(R \).

By \(h \) we denote the \(K \)- or \(KO \)-functor. For \(X = + \) (a point), \(Sp(2^{4n}) \) we consider the exact sequence of the pair \(B((8n+4)H) \times X, S((8n+4)H) \times X) \) in \(h_{s} \)-theory. In general if \(\Gamma \) acts on \(X \) freely then there is a natural isomorphism \(h_{s}^{*(X)}(X/\Gamma) \cong h^{*(X/\Gamma)} \). Combining this with (1.1) and (1.3) gives rise to the following exact sequences.

\[
\begin{align*}
(1.4a) \quad & \cdots \xrightarrow{\delta} h_{s}^{*(+)}(X) \xrightarrow{J} h_{s}^{*(+)}(X) \xrightarrow{I} h^{*(P^{8n+3})} \xrightarrow{\delta} \cdots, \\
(1.4b) \quad & \cdots \xrightarrow{\delta} h^{*(PG)(X)} \xrightarrow{J} h^{*(PG)(X)} \xrightarrow{I} h^{*(P^{8n+3} \times G)} \xrightarrow{\delta} \cdots
\end{align*}
\]

where \(G = Sp(2^{4n}) \) and there holds the equality \(\delta(xI(y)) = \delta(x)y \) in either case.

We write \(G \) for \(Sp(2^{4n}) \) for simplicity in the subsequent sections.

2. By the same symbol \(\sigma \) we denote the reduced bundles of the canonical line bundles \((S^{8n+4,0} \times H)/\Gamma \to P^{8n+3} \) and \((G \times H)/\Gamma \to PG\). And we write \(\sigma = c(\sigma) \) where \(c \) denotes the complexification \(KO \to K \). Since
$H^2 = 1$ in $RO(\Gamma)$ there hold obviously

$$\sigma^2 + 2\sigma = 0 \quad \text{and} \quad \sigma^2 + 2\sigma = 0.$$

Let $\nu = p^*(\eta_8^{n+1}) \in \tilde{KO}^{-5}(P^{8n+3})$ and $\nu = p^*(\mu^{4n+2}) \in \tilde{K}^{-1}(S^{8n+3})$ where p is the map $P^{8n+3} \to S^{8n+3}$ obtained by collapsing the outside of a top dimensional cell in P^{8n+3} to a point. Then the equalities

$$c(\nu) = \mu^2 \nu \quad \text{and} \quad r(\nu) = \eta_4 \nu$$

follow from the relations $c(\eta_4) = 2 \mu^2$ and $\eta_4^2 = 4$.

We consider the complex and real K-theories the $Z/2$-and $Z/8$-graded cohomology theories with the coefficient rings $K^*(+) = Z[\mu]/(\mu^2 - 1)$ and $KO^*(+) = Z[\eta_1, \eta_4, \eta_8]/(2\eta_1, \eta_3^2, \eta_1 \eta_4, \eta_4^2 - 4, \eta_8 - 1)$ respectively where $\eta_1 \in KO^{-1}(+)$ and the others are as in Section 1. But the complex K-theory is viewed as $Z/8$-graded, so that $K^*(+) = Z[\mu]/(\mu^4 - 1)$, when we discuss the relation between these two kinds of K-theories.

Here we calculate $K^*(P^{8n+3})$ and $KO^*(P^{8n+3})$ whose additive structures are given in [2,5]. Consider the exact sequence of (1.4a). First note that $h^*_f(+) \cong h^*(+) [t]/(t^2 - 1)$ because of $\Gamma \cong Z/2$ where $t = L$ or H according as $h = K$ or KO. From inspecting the definitions of the maps it follows that

$$\delta(\nu) = 1 + L, \quad J(1) = 2^{4n+1}(1 - L) \quad \text{and} \quad I(L) = \sigma + 1 \quad \text{for} \ h = K,$$

$$\delta(\nu) = 1 + H, \quad J(1) = 2^{4n} \eta_4(1 - H) \quad \text{and} \quad I(H) = \tilde{\sigma} + 1 \quad \text{for} \ h = KO.$$

Moreover we have a unique element ζ of $KO^{-6}(P^{8n+3})$ satisfying $\delta(\zeta) = \eta_1$.

Using this and the equality $\delta(xI(y)) = \delta(x)y$ we obtain by the exactness of (1.4a) the following.

With the notation as above

$$\tilde{K}(P^{8n+3}) = Z/2^{4n+1} \cdot \sigma, \quad \tilde{K}^{-1}(P^{8n+3}) = Z \cdot \nu$$

where the ring structure is given by

$$\sigma^2 + 2\sigma = 0, \quad \nu^2 = 0,$$
KO-GROUP OF $\text{PSp}(2^{4n})$

$$\tilde{K}\tilde{O}(p^{8n+3}) = \mathbb{Z}/2^{4n+2} \cdot \tilde{\sigma},$$
$$\tilde{K}\tilde{O}^{-1}(p^{8n+3}) = \mathbb{Z}/2 \cdot \eta_1 \tilde{\sigma} \oplus \mathbb{Z} \cdot \eta_4 \tilde{\nu},$$
$$\tilde{K}\tilde{O}^{-2}(p^{8n+3}) = \mathbb{Z}/2 \cdot \eta_1^2 \tilde{\sigma},$$
$$\tilde{K}\tilde{O}^{-3}(p^{8n+3}) = 0,$$
$$\tilde{K}\tilde{O}^{-4}(p^{8n+3}) = \mathbb{Z}/2^{4n} \cdot \eta_4 \tilde{\sigma},$$
$$\tilde{K}\tilde{O}^{-5}(p^{8n+3}) = \mathbb{Z} \cdot \tilde{\nu},$$
$$\tilde{K}\tilde{O}^{-6}(p^{8n+3}) = \mathbb{Z}/2 \cdot \eta_1 \tilde{\nu} \oplus \mathbb{Z}/2 \cdot \zeta,$$
$$\tilde{K}\tilde{O}^{-7}(p^{8n+3}) = \mathbb{Z}/2 \cdot \eta_1^2 \tilde{\nu} \oplus \mathbb{Z}/2 \cdot \eta_4 \zeta.$$

(2.2b)

where the ring structure is given by

$$\tilde{\sigma}^2 + 2\tilde{\sigma} = 0, \quad \tilde{\nu}^2 = 0, \quad \zeta^2 = 0, \quad \eta_4 \zeta = 0,$$
$$\eta_1 \zeta = \eta_1 \tilde{\nu}, \quad \eta_1^2 \zeta = 2^{4n+1} \tilde{\sigma}.$$

Now we are ready for computing the K-groups of PG.

Let ρ be the canonical, non-trivial, 2^{4n}-dimensional complex representation of G and $\lambda^i \rho$ be the i-th exterior power of ρ. Since the restriction of $\lambda^i \rho$ to the center of G is trivial clearly, it factors through the canonical projection $\pi: \rightarrow PG$. So we view $\lambda^i \rho$ also as a representation of PG below. Moreover, as is well known, an element of $K^{-1}(PG)$ is represented as the homotopy class of a map from PG to the infinite dimensional unitary group U. Hence we see that $\lambda^i \rho$ yields naturally an element $\beta(\lambda^i \rho)$ of $K^{-1}(PG)$, which is called the β-construction of $\lambda^i \rho$ [8]. Because $\dim \mathbb{C} \lambda^i \rho = \binom{2^{4n+1}}{2i+1}$ and $2^{4n+1} \parallel \binom{2^{4n+1}}{2i+1}$, $d_{2i+1} = \frac{\binom{2^{4n+1}}{2i+1}}{2^{4n+1}}$ is odd. Let $\ell \rho$ denote the direct sum of ℓ copies of ρ. The map $PG \rightarrow U \left(\binom{2^{4n+1}}{2i+1} \right)$ given by the assignment $\pi(g) \mapsto (d_{2i+1} \rho(g))\lambda^{2i+1} \rho(g)$ defines a similar element $\beta(d_{2i+1} \rho + \lambda^{2i+1} \rho)$ of $K^{-1}(PG)$.

We describe explicitly the image of $\beta(\rho) \in K^{-1}(G)$ by the transfer map $\pi_*: K^{-1}(G) \rightarrow K^{-1}_\Gamma(G) = K^{-1}(PG)$. Let us view $E = G \times (\mathbb{C}^{2^{4n+1}} \oplus C^{2^{4n+1}})$ as a product Γ-vector bundle over G provided with the Γ-action given by $(g, u, v) \mapsto (-g, v, u)$ for $g \in G, u, v \in \mathbb{C}^{2^{4n+1}}$. Then the assignment $(g, u, v) \mapsto (g, \rho(g)u, -\rho(g)v)$ gives an equivariant bundle automorphism of E. In a canonical way this gives rise to an element of $K^{-1}_\Gamma(G)$ which is just $\pi_*(\beta(\rho))$ and is written $\beta(\rho, \Gamma)$ below.

Then we have

Theorem 2.3 ([7,9]). With the notation as above
\[K^*(PSp(2^{4n})) = Z[\sigma]/(2^{4n+1}\sigma, \sigma^2 + 2\sigma) \]
\[\otimes \Lambda(\beta(d_{2i-1}\rho + \lambda^{2i-1}\rho), \beta(\lambda^{2j}\rho), \beta(\rho, \Gamma)) \]
\[(2 \leq i \leq 2^{4n-1}, 1 \leq j \leq 2^{4n-1}))/I \]

as a ring where \(I \) is the ideal generated by
\[\sigma\beta(\rho, \Gamma). \]

Proof. We observe the exact sequence of (1.4b). According to [8]
\[K^*(G) = \Lambda(\beta(\rho), \beta(\lambda^2\rho), \cdots, \beta(\lambda^{2n}\rho)). \]

Since \(K^*(G) \) is torsion-free we have the Künneth isomorphism
\[K^*(P^{8n+3} \times G) \cong K^*(P^{8n+3}) \otimes K^*(G). \]

Then we get similarly to (2.1) the following.

(2.4) \[\delta(\nu \times 1) = \sigma + 2, \quad J(1) = -2^{4n+1}\sigma \quad \text{and} \quad I(\sigma) = \sigma + 1. \]

Now \(2^{4n+1}\sigma = 0 \) follows because of \(\rho(-1) = -I \). Hence (1.4b) becomes a short exact sequence
\[0 \rightarrow K^*(PG) \overset{I}{\rightarrow} K^*(P^{8n+3} \times G) \rightarrow \delta K^*(PG) \rightarrow 0 \]
provided with \(\delta(xI(y)) = \delta(x)y \). Further by inspecting definition we have
\[I(\beta(\lambda^{2i}\rho)) = 1 \times \beta(\lambda^{2i}\rho), \]
\[I(\beta(d_{2i-1}\rho + \lambda^{2i-1}\rho)) = (\sigma + 1) \times d_{2i-1}\beta(\rho) + 1 \times \beta(\lambda^{2i-1}\rho) + d_{2i-1}\nu \times 1, \]
\[I(\beta(\rho, \Gamma)) = (\sigma + 2) \times \beta(\rho) + \nu \times 1, \]
\[\delta(1 \times \beta(\rho)) = -1. \]

Let \(R \) denote the ring on the right-hand side of the equality of the theorem. Using the last formula of (2.4) and the first three formulas of (2.5), the injectivity of \(I \) shows that \(R \) is a subring of \(K^*(PG) \).

To prove the theorem it therefore suffices to verify that \(\text{Im} \delta = R \) since \(\delta \) is surjective. The images of generators of \(K^*(P^{8n+3} \times G) \) as a
module by δ can be calculated by using (2.5) together with the equality $\delta(xI(y)) = \delta(x)y$. For example, we have
\[
\begin{align*}
\delta(1 \times \beta(\lambda^{2i-1}\rho)) &= -d_{2i-1}(\sigma + 1), \\
\delta(\nu \times 1) &= -(\sigma + 2), \\
\delta(\nu \times \beta(\rho)) &= \beta(\rho, \Gamma), \\
\delta(1 \times \beta(\rho)\beta(\lambda^{2i-1}\rho)) &= -\beta(d_{2i-1}\rho + \lambda^{2i-1}\rho) - d_{2i-1}\beta(\rho, \Gamma).
\end{align*}
\]
Thus by repeating such a computation inductively we get $\text{Im} \delta = R$, which completes our proof.

3. In this section we compute $KO^*(PG)$. First we consider the exact sequence (1.4b) for KO-theory. The complex representation ρ of G is, of course, the complexification of the 2^{4n}-dimensional quaternionic representation, for which we write $\bar{\rho}$. Clearly $\bar{\rho}$ yields an isomorphism $G \times H^{2^{4n}} \otimes_R H \cong G \times H^{2^{4n}}$ of Γ-quaternionic vector bundles over G. Now we have $J(1) = 2^{4n-1}\eta_4\bar{\rho}$ similarly to the 2nd formula of (2.1) and also $\alpha \otimes_C H = \eta_4$ by (1.2). Hence we see that $J(1) = 0$, so that (1.4b) becomes a short exact sequence
\[(3.1) \quad 0 \rightarrow KO^*(PG) \overset{1}{\rightarrow} KO^*(P^{8n+3} \times G) \overset{\delta}{\rightarrow} KO^*(PG) \rightarrow 0\]
provided with $\delta(xI(y)) = \delta(x)y$.

Using this exact sequence we proceed as the same way as for $K^*(PG)$.

Let $\lambda_C^{2i}\bar{\rho}$ be the exterior power $\bar{\rho} \wedge_C \cdots \wedge_C \bar{\rho}$ of $\bar{\rho}$ over C. Then in general $\lambda_C^{2i}\bar{\rho}$ is quaternionic. But if k is even then it has a natural Real structure. So we consider $\lambda_C^{2i}\bar{\rho}$ to be real. By the β-construction we have
\[
\beta(\lambda_C^{2i-1}\bar{\rho}) \in \overline{KO}^{-1}(G) \quad \text{and} \quad \beta(\lambda_C^{2i}\bar{\rho}) \in \overline{KO}^{-1}(G)
\]
and we set
\[
\bar{\beta}(\lambda_C^{2i-1}\bar{\rho}) = \alpha \wedge_C \beta(\lambda_C^{2i-1}\bar{\rho}) \in \overline{KO}^{-1}(\Sigma^{0,4} \wedge G) = \overline{KO}^{-5}(G).
\]
Then, according to [15], Theorem 5.6,
\[(3.2) \quad KO^*(G) = \Lambda KO^*(+)\langle \bar{\beta}(\lambda_C^{2i-1}\bar{\rho}), \beta(\lambda_C^{2i}\bar{\rho}) \rangle \quad (1 \leq i \leq 2^{4n-1})
\]
as a $KO^*(+)$-module. Further by [4], §6 and [13], Corollary 2.3 we see that its generators satisfy the relations
\[(3.3) \quad \bar{\beta}(\lambda_C^{2i-1}\bar{\rho})^2 = \eta_1\beta(\lambda_C^{4i-2}\bar{\rho}), \quad \beta(\lambda_C^{2i}\bar{\rho})^2 = \eta_1\beta(\lambda_C^{4i}\bar{\rho}).
\]
Here we note that $\lambda_C^{k} \tilde{\rho} = \lambda_C^{2^{k+1}-k} \tilde{\rho}$ for $1 \leq k \leq 2^{4n}$. Of course this equality holds for $\lambda_C^{2^{k}} \tilde{\rho}$ viewed as a representation of PG.

Because $KO^*(G)$ is torsion-free, there holds the Künneth isomorphism $KO^*(P^{8n+3} \times G) \cong KO^*(P^{8n+3}) \otimes_{KO^*(+)} KO^*(G)$. Therefore by using (2.2b), (3.2) and (3.3), the multiplicative structure of $KO^*(P^{8n+3} \times G)$ centered in the sequence (3.1) can be described explicitly.

In order to state our theorem we provide generators of $KO^*(PG)$. Similarly to the complex case we have

$$\beta(d_{2i-1} \tilde{\rho} + \lambda_C^{2i-1} \tilde{\rho}), \quad \beta(\tilde{\rho}, \Gamma) \in \overline{KSp}^{-1}(PG) \quad \text{and}$$

$$\beta(\lambda_C^{2i} \tilde{\rho}) \in \overline{KO}^{-1}(PG)$$

and so we set

$$\tilde{\beta}(d_{2i-1} \tilde{\rho} + \lambda_C^{2i-1} \tilde{\rho}) = \alpha \wedge_C \beta(d_{2i-1} \tilde{\rho} + \lambda_C^{2i-1} \tilde{\rho}),$$

$$\tilde{\beta}(\tilde{\rho}, \Gamma) = \alpha \wedge_C \beta(\tilde{\rho}, \Gamma) \in \overline{KO}^{-5}(PG).$$

Moreover we see that

(3.4) There exists an element $\tilde{\zeta} \in KO^{-6}(PG)$ such that

$$I(\tilde{\zeta}) = \eta_1 \times \tilde{\beta}(\tilde{\rho}) + \zeta \times 1.$$

This is shown below.

Then we obtain the following.

Theorem 3.5. With the notation as above

$$KO^*(PSp(2^{4n})) = \mathbb{Z}[(\tilde{\sigma})/(\tilde{\sigma}^2 + 2\tilde{\sigma}) \otimes E \otimes \Lambda_{Z/2}(\tilde{\zeta})]/I$$

as a ring where E is a $KO^*(+)$-module

$$\Lambda_{KO^*(+)}(\tilde{\beta}(d_{2i-1} \tilde{\rho} + \lambda_C^{2i-1}), \beta(\lambda_C^{2i} \tilde{\rho}), \tilde{\beta}(\tilde{\rho}, \Gamma))$$

$$\quad (2 \leq i \leq 2^{4n-1}, 1 \leq j \leq 2^{4n-1})$$

with the relations

$$\tilde{\beta}(d_{2i-1} \tilde{\rho} + \lambda_C^{2i-1} \tilde{\rho})^2 = \eta_1(\beta(\lambda_C^{2i} \tilde{\rho}) + \beta(\lambda_C^{4i-2} \tilde{\rho})),$$

$$\beta(\lambda_C^{2i} \tilde{\rho})^2 = \eta_1 \beta(\lambda_C^{4i} \tilde{\rho}),$$

$$\tilde{\beta}(\tilde{\rho}, \Gamma)^2 = 0$$
and \(I\) is the ideal generated by
\[
2^{4n}\bar{\sigma}\eta_4, \quad \bar{\sigma}\bar{\beta}(\bar{\rho}, \Gamma), \quad \eta_4\bar{n}, \quad \bar{\sigma}\bar{\zeta} - \eta_1\beta(\bar{\rho}, \Gamma), \quad \eta_1^2\bar{\zeta} - 2^{4n+1}\bar{\sigma}
\]
(the \(\otimes\)'s are omitted).

Proof. Observe (3.1). By looking at the definitions of the maps and elements we have

(i) \(I(\bar{\sigma}) = \bar{\sigma} \times 1,\)
(ii) \(I(\beta(\lambda^2_2\bar{\rho})) = 1 \times \beta(\lambda^2_2\bar{\rho}),\)
(iii) \(I(\bar{\beta}(d_{2i-1}\bar{\rho} + \lambda^{2i-1}_C\bar{\rho})) = (\bar{\sigma} + 1) \times d_{2i-1}\bar{\beta}(\bar{\rho}) + 1 \times \bar{\beta}(\lambda^{2i-1}_C\bar{\rho}) + d_{2i-1}\bar{\nu} \times 1,\)
(iv) \(I(\bar{\beta}(\bar{\rho}, \Gamma)) = (\bar{\sigma} + 2) \times \bar{\beta}(\bar{\rho}) + \bar{\nu} \times 1,\)
(v) \(I(1 \times \bar{\beta}(\bar{\rho})) = -1,\)
(vi) \(\delta(\bar{\nu} \times 1) = (\bar{\sigma} + 2) \times 1,\)
(vii) \(\delta(\zeta \times 1) = \eta_1.\)

(3.4) is immediate from (v) and (vii). Let \(\bar{R}\) denote the ring on the right-hand side of the equality of Theorem 3.5. Then using (i)–(iv) and (3.4) we see that \(\bar{R} \subset KO^*(PG)\) because of the injectivity of \(I\), and by using (v)–(vii) and the equality \(\delta(xI(y)) = \delta(x)y\) in addition we can verify that \(\bar{R}\) fills \(KO^*(PG)\) because of the surjectivity of \(\delta\). This completes the proof of the theorem.

REFERENCES

DEPARTMENT OF MATHEMATICS
NARA UNIVERSITY OF EDUCATION
TAKABATAKE-CHO, NARA-SHI 630, JAPAN

(Received July 14, 1994)