Theory of connections and a theorem of E. Cartan on holonomy groups I

Tominosuke Otsuki

*Okayama University

Copyright ©1954 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
THEORY OF CONNECTIONS AND A THEOREM OF E. CARTAN ON HOLOMONY GROUPS I

TOMINOSUKE ŌTSUKI

E. Cartan [1] proved locally a fundamental theorem on holonomy groups of spaces with generalized connections as follows:

Theorem. Let H be the holonomy group of a space with a connection of structure group G, then the space is equivalent to a space with a connection of structure group H.

The proof of E. Cartan holds good for the space whose underlying manifold is an n-cell. In this paper, we shall investigate the theorem in the large by means of fibre bundles. For fibre bundles, we shall utilize the notations in [2]. In §§2-5, we will give an elementary explanation on the relation between the concept of infinitesimal connections in fibre bundles introduced by C. Ehresmann [3] and the classical one of E. Cartan [1].

§1. We consider a fibre bundle $\mathcal{B} = \{B, p, X, Y, G\}$. For the purpose of differential geometry the following assumptions will be made:

1) The bundle space B, the base space X, the fibre Y are connected, differentiable2 manifolds;

2) the group G of the bundle is a Lie group which acts differentiably and effectively on Y;

3) the projection p of B onto X is differentiable.

We assume that a differentiable family of tangent subspaces to B which are transversal to the fibres is given. For any curve \mathcal{C} of class $C^r (r \geq 2)$ in X from x_0 to x_1, and any point $b_0 \in p^{-1}(x_0)$, we have an uniquely determined curve ζ in B from b_0 to a point $b_1 \in p^{-1}(x_1)$ such that $p(\zeta) = \mathcal{C}$ and at any point $b \in \zeta$, ζ is tangent to the tangent subspace at b of the family. Then, corresponding b_1 to b_0, we get a homeomorphism

$$\rho(\mathcal{C}) : p^{-1}(x_1) = Y_{x_1} \rightarrow p^{-1}(x_0) = Y_{x_0}.$$

Furthermore, we assume that $\rho(\mathcal{C})$ is a bundle mapping. Then, according to C. Ehresmann [3], we will say an infinitesimal connection

1) Numbers enclosed in brackets refer to the bibliography.

2) In the following, we suppose that all the manifolds B, X, Y, \ldots are of class $C^r (r \geq 2)$ and the differentiabilities of mappings are of suitable orders respectively.
\mathcal{I} is given in \mathcal{B}. Then the group G is called the **structure group** of the connection.

Let us put

$$Q_{x_0, x_1} = \text{the set of curves of class } D^r \text{ in } X \text{ from } x_0 \text{ to } x_1,$$

and

$$Q = \bigcup_{x_0, x_1 \in X} Q_{x_0, x_1}.$$

The above-mentioned $\rho(\mathcal{C})$ can be also defined for any curve of class D^r by combining the homeomorphisms corresponding to subarcs of class C^r. Then, by the definition, we have

$$\rho(\mathcal{C}_1 \mathcal{C}_2) = \rho(\mathcal{C}_1) \rho(\mathcal{C}_2), \quad \mathcal{C}_1 \in Q_{x_0, x_1}, \quad \mathcal{C}_2 \in Q_{x_1, x_2}.$$ \hspace{1cm} (1)

Let $Q_x = Q_{x, x}, \chi_x = \rho \mid Q_x$, then by (1) the transformation $\chi_x : Q_x \to \chi_x(Q_x) = \phi_x$ is a homomorphism of the group Q_x of closed paths at x and a group of bundle mappings of Y_x on itself. Let ξ be any admissible map at $x \in X$, then $H_x = \xi^{-1} \phi_x \xi$ is a subgroup of G. \hspace{1cm} (2)

We call H_x the **holonomy group** at x of the bundle \mathcal{B} with the infinitesimal connection \mathcal{I}.

Let be given another fibre bundle $\mathcal{B}' = \{B', p', X, Y, G\}$ with an infinitesimal connection \mathcal{I}' as \mathcal{B}. Let $\rho', \chi', \phi', H_x'$ be the maps and the groups defined for \mathcal{B}' as analogous to ρ, χ, ϕ, H_x.

If for a point $x \in X$, we can take two admissible mappings $\xi : Y \to Y_x, \xi' : Y \to Y'_x$ such that $\xi^{-1} \chi_x(\xi) \xi = \xi'^{-1} \chi'_x(\xi') \xi'$ for any $\xi \in Q_x$, which we denote simply by $\xi^{-1} \chi_x \xi = \xi'^{-1} \chi'_x \xi'$, we denote this by $\chi_x \simeq \chi'_x$.

We shall prove the following lemma.

Lemma 1. **Fibre bundles** $\mathcal{B}, \mathcal{B}'$ **with infinitesimal connections**, the same base space, fibre and group are equivalent in G (G-equivalent) as fibre bundles if $\chi_x \simeq \chi'_x$ at a point $x_0 \in X$.

Proof. By the assumption of this theorem, let us put

$$\xi^{-1} \chi_{x_0} \xi = \xi'^{-1} \chi'_{x_0} \xi', \hspace{1cm} (2)$$

where ξ, ξ' are admissible mappings of $\mathcal{B}, \mathcal{B}'$ at x_0.

1) A curve in X is said to be of class $D^r, r > 0$, if it is defined by a continuous mapping of a closed interval into X, and if the interval can be divided into a finite set of subintervals on the closure of each of which the mapping is of class C^r.

2) $\xi^{-1} \phi \xi$ is an abstract subgroup of G and may not be a closed subgroup of G.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/iss1/2
For any point $x \in X$, let \mathcal{C} be a curve of $\mathcal{Q}_{\alpha, \varepsilon}$ and define $\hat{h}_x : Y_x \to Y'_x$ by

\begin{equation}
\hat{h}_x = \rho'(\mathcal{C}^{-1})\xi' \xi^{-1} \rho(\mathcal{C}).
\end{equation}

If \mathcal{C}_1 is another curve of $\mathcal{Q}_{\alpha, \varepsilon}$ and $h_{1, x}$ is the corresponding mapping, then we have by (1), (2)

\begin{align*}
\hat{h}_x^{-1}h_{1, x} &= [\rho(\mathcal{C}^{-1})\xi \xi'^{-1} \rho'(\mathcal{C})][\rho'(\mathcal{C}^{-1})\xi' \xi^{-1} \rho(\mathcal{C})] \\
&= [\rho(\mathcal{C}^{-1})\xi][\xi^{-1}\rho'(\mathcal{C})\xi']\xi'^{-1} \rho(\mathcal{C})] \\
&= [\rho(\mathcal{C}^{-1})\xi][\xi'^{-1}x_x(\mathcal{C} \xi^{-1})\xi][\xi'^{-1} \rho(\mathcal{C})] \\
&= \rho(\mathcal{C}^{-1})\rho(\mathcal{C}^{-1})\rho(\mathcal{C}) = 1,
\end{align*}

that is $h_x = h_{1, x}$.

Then, we define an one-to-one transformation $h : B \to B'$ by $h | Y_x = h_x$. For a fixed point $x_1 \in X$, let U be a coordinate neighborhood of x_1 which is simply covered by a differentiable family of curves issuing from x_1. For $x \in U$, let \mathcal{C}_x be the curve from x_1 to x of the family. Then, since Γ is differentiable, $\rho(\mathcal{C}_x)(b), b \in \Gamma^{-1}(x)$, is a differentiable mapping of $\Gamma^{-1}(U)$ onto Y_x, and $\rho(\mathcal{C}_x^{-1})(b), b \in Y_x$, is a differentiable homeomorphism of $Y_x \times U$ onto $\Gamma^{-1}(U)$. $\rho'(\mathcal{C}_x)$ has the same property as $\rho(\mathcal{C}_x)$. Let \mathcal{C}_1 be a curve of $\mathcal{Q}_{\alpha, \varepsilon}$, then we have

\begin{equation}
\hat{h}_x = \rho'(\mathcal{C}_1^{-1}\mathcal{C}_x^{-1})\xi' \xi \rho(\mathcal{C}_x) = \rho'(\mathcal{C}_1^{-1})h_x \rho(\mathcal{C}_x).
\end{equation}

This relation shows that h is continuous at x_1, furthermore, h is a differentiable homeomorphism.

Let $\{U_a\}$ be a system of admissible coordinate neighborhoods as above which is a covering of X and

\begin{align*}
\phi_a : U_a \times Y &\longrightarrow \Gamma^{-1}(U_a), \\
\phi'_a : U_a \times Y &\longrightarrow \Gamma^{-1}(U_a)
\end{align*}

be the coordinate functions of \mathcal{B} and \mathcal{B}' respectively. Define

\begin{align*}
\rho_a : \Gamma^{-1}(U_a) &\longrightarrow Y, \\
\rho'_a : \Gamma^{-1}(U_a) &\longrightarrow Y
\end{align*}

by $\rho_a | Y_x = \phi_a | Y_x^{-1}, \rho'_a | Y'_x = \phi'_a | Y'_x^{-1}$. If $U_a \cap U_b \neq \emptyset$, let
be the coordinate transformations of \mathcal{B}, \mathcal{B}' respectively.

These mappings have the property as

\begin{equation}
\begin{align*}
\Phi_{\alpha\beta}(x) \Phi_{\beta\gamma}(x) &= \Phi_{\alpha\gamma}(x), \\
\Phi_{\alpha\beta}'(x) \Phi_{\beta\gamma}'(x) &= \Phi_{\alpha\gamma}'(x), \\
x \in U_\alpha \cap U_\beta \cap U_\gamma.
\end{align*}
\end{equation}

If the point $x_i \in U_\alpha \cap U_\gamma$, $\mathcal{E}_s \subset U_\alpha \cap U_\gamma$, then we have

\[\overline{E}_{\gamma \beta}(x_i) = \Phi_{\gamma \beta}(x) \Phi_{\gamma \alpha}(x_i) \Phi_{\alpha \beta}(x), \]

\[x \in U_\alpha \cap U_\beta \cap U_\gamma \cap U_\delta. \]

Therefore, h is a differentiable bundle mapping. \mathcal{B}, \mathcal{B}' are equivalent in G.

\section*{§2.}

Let $\mathcal{B} = \{B, \beta, X, Y, G\}$ be a fibre bundle with an infinitesimal connection $\tilde{\tau}$ as in §1, then we can give an infinitesimal connection $\tilde{\tau}$ for the associated principal bundle1 $\tilde{\mathcal{B}} = \{\tilde{B}, \tilde{\beta}, X, G, G\}$ of \mathcal{B} such that for any point $x \in X$ and any curve $\mathcal{E} \in \mathcal{B}$ such that for any point $x_0 = x_1$, $x \in X$ and any curve $\mathcal{E} \in \mathcal{B}$ such that for any point $x_0 = x_1$, $x_1 \in \mathcal{B}$, $\mathcal{E} = G$, since $\rho(\mathcal{E})$ is a bundle mapping. Denoting the right translation corresponding to $g \in G$ by $r(g)$, we get from (6)

\begin{equation}
\begin{align*}
(\tilde{\rho}(\mathcal{E}) r(g))(\xi_{x_1}) &= \tilde{\rho}(\mathcal{E}) (\xi_{x_1} g) \\
&= \rho(\mathcal{E}) (\xi_{x_1} g) \\
&= (\rho(\mathcal{E}) \xi_{x_1}) g \\
&= r(g)(\tilde{\rho}(\mathcal{E}) (\xi_{x_1})).
\end{align*}
\end{equation}

1 See [2], §8.
hence

\[\tilde{\rho}(\mathcal{C}) r(g) = r(g) \tilde{\rho}(\mathcal{C}). \]

This shows that \(\mathcal{F} \) is invariant under right translations.

Conversely, if we have a differentiable family of tangent subspaces to \(\mathcal{B} \) which are transversal to the fibres and are invariant under right translations, there exists an infinitesimal connection \(\Gamma \) in \(\mathcal{B} \) such that (6) holds good.

By virtue of the above argument, in the following, we may consider only principal fibre bundles.

Let \(\mathcal{B} = \{ B, \rho, X, G, G \} \) be a differentiable principal fibre bundle as in §1 and let \(\Gamma \) be a differentiable family of tangent subspaces \(\Gamma_b \subset T_b(B), \ b \in B \), which are transversal to the fibres \(G_{\rho(b)} \) and are invariant under right translations, that is

\[\begin{aligned}
 \rho_*(\Gamma_b) &= T_{\rho(b)}(X), \\
 r(g)_* \Gamma_b &= \Gamma_{\rho(g)(b)},
\end{aligned} \]

\[b \in B, \ g \in G \]

where \(\rho_*, r(g)_* \) denote the differential mappings of \(\rho, r(g) \).

The decomposition of \(T_b(B) \) into the direct sum

\[T_b(B) = \Gamma_b + T_b(G_{\rho(b)}) \]

define the projection \(\mu_b : T_b(B) \to T_b(G_{\rho(b)}) \). Let \(\mu \) be the mapping \(T(B) \to T(B) \) by \(\mu(v) = \mu_b(v) \) for any \(v \in T_b(B) \). Let \(\epsilon_* \) be the imbedding mapping of \(G_\ast \) into \(B \), then, by the definition of \(\mu_b \), we get

\[\mu \epsilon_* \ast = \epsilon_* \ast. \]

For any \(v \in T_b(B), \ g \in G \), by (8) and the relation

\[r(g)_*(v) = r(g)_*(v - \mu_b(v)) = r(g)_*(v - \mu_b(v)) + r(g)_* \mu_b(v) \]

we get

\[r(g)_* \mu_b = \mu_{r(g)(b)} r(g)_* \]

or

1) For a differentiable manifold \(X \), we denote the tangent space at \(x \in X \) by \(T_x(X) \) and the bundle space of the tangent bundle of \(X \) by \(T(X) \).

2) Let \(X, Y \) be any differentiable manifolds and let \(f \) be a differentiable mapping \(X \to Y \). Then we denote by \(f_* : T(X) \to T(Y) \) the differential mapping of \(f \). If \(f : X \to Y, \ h : Y \to Z, \) then \((fh)_* = f_* h_* \). See [4] or [5].
\[r(g)_* \mu = \mu r(g)_*. \]

We denote by the same notation \(b \) the mapping of \(G \) onto \(G \) that \(b(e) = b \) and define a linear transformation \(\pi_b : T_b(B) \to T_b(G) \) by
\[\pi_b = (b_*)^{-1}\mu_b \]
where \(e \) denotes the identity element of \(G \). Thus, we obtain a set of linear differential forms on \(B \) with values in the Lie algebra \(L(G) \cong T_e(G) \) (as vector space). \(^1\)

Since \(r(g)(b) = bg = bl(g), \quad br(g) = r(g)b \), where \(l(g) : G \to G \) denotes the left translation corresponding to \(g \), for any \(v \in T_b(B) \), we get by (10), (11)
\[
(r(g)^* \pi)(b) = \pi(r(g)_* bv) = \pi_{v_0}(r(g)_* b)v
= ((bg)_*)^{-1}\mu_{v_0}r(g)_* bv
= ((bg)_*)^{-1}r(g)_* \mu_b v
= ((bl(g))_*)^{-1}r(g)_* \mu_b v
= l(g^{-1})_* r(g)_* r(g)_{-1}b_{-1}r(g)_* \mu_b v
= l(g^{-1})_* r(g)_* b_{-1}v
= l(g^{-1})_* r(g)_* \pi(b).
\]

Putting \(ad(g) = (l(g)r(g^{-1}))_* \) which is the differential mapping of the adjoint mapping \(A(g) : G \to G \) by \(A(g)(y) = gyg^{-1}, \ y \in G \), the above relation is written as
\[(12) \quad r(g)^* \pi = ad(g^{-1}) \pi. \]

For \(v \in T_b(G), \ b \in \mathcal{P}^{-1}(x) \), we have
\[
(t_* b)^* \pi(v) = \pi((t_* b)_* b)
= (bg)_*^{-1}\mu_{v_0}(t_* b)_* b
= l(g^{-1})_* b_{-1}b_{-1}v = l(g^{-1})_*(v).
\]

If we define
\[(13) \quad (t_* b)^* \pi = \omega, \]

1) We denote by \(T^*(X, L(G)) \) the bundle space of the fibre bundle over \(X \) whose fibre at \(x \in X \) is \(\mathcal{L}(T_x(X); L(G)) \). Let \(f \) be a differentiable mapping \(X \to Y \), then we denote by \(f^* : T^*(Y, L(G)) \to T^*(X, L(G)) \) the dual mapping of \(f_* \). It \(f : X \to Y \), \(h : Y \to Z \), then \((hf)^* = f^* h^* \).

2) By the natural isomorphism \(l(g)_* : T_e(G) \to T_e(G), \ T_e(G) \cong T_e(G) \).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/iss1/2
the above relation is written as
\[\omega(v) = l(g^{-1})_* v, \quad v \in T_g(G), \quad g \in G. \]

From this relation, we obtain
\[
\begin{align*}
(14) \quad \begin{cases} \quad l(g)^* \omega = \omega, & g \in G, \\
\quad \omega(v) = v, & v \in T_g(B). \end{cases}
\end{align*}
\]

This shows that the \(L(G) \)-valued linear differential form \(\omega \) on \(G \) is independent of \(b \in B \).

Conversely, we can define a differentiable family of tangent subspaces satisfying (8) from a \(L(G) \)-valued linear differential from \(\pi \) on \(B \) satisfying (12), (13).

\section*{§3.} Now, let \(\iota_a \) be the imbedding mapping \(p^{-1}(U_a) \to B \) and define a mapping \(\rho_a : U_a \to U_a \times G \) by
\[\rho_a(x) = x \times e, \quad x \in U_a. \]

Define a \(L(G) \)-valued linear differential form \(\theta_a \) on \(U_a \) by
\[\theta_a = (\iota_a \phi_a \rho_a)^* \pi. \]

Since \(b = \tau(p_a(b)) \iota_a \phi_a \rho_a(b) \), \(b \in p^{-1}(U_a) \), for any \(v \in T_b(B) \), we have
\[v = (\tau(g) \iota_a \phi_a \rho_a p)_* v + (\iota_a \phi_a(x, e))_* p_a^* v, \quad x = p(b), \quad g = p_a(b). \]

Hence, we get by (12), (13), (14), (15)
\[
\begin{align*}
\pi_b &= p^* \rho_a^* \phi_a^* \iota_a^* \tau(g)^* \pi_b + p_a^* \phi(x, e)^* \iota_a^* \pi_b \\
&= p^* (\iota_a \phi_a \rho_a)^* (\text{ad} (g^{-1}) \pi_b) + p_a^* \phi(x, g)^* \iota_a^* \pi_b \\
&= \text{ad} (g^{-1}) p^* \theta_a, + p_a^* \pi_b \\
&= \text{ad} (g^{-1}) p^* \theta_a, + p_a^* \omega_p,
\end{align*}
\]

that is
\[
\begin{align*}
(16) \quad \pi_b &= \text{ad} (g^{-1}) p^* \theta_a, + p_a^* \omega_p, \quad p(b) = x, \quad p_a(b) = g.
\end{align*}
\]

If \(b \in p^{-1}(U_a \cap U_b) \), then \(p_b(b) = g_{ba}(p(b))p_a(b) \). Hence, at \(b \), we have the relation
\[
\begin{align*}
\pi_b &= (l(g_{ba}(p(b)))_* p_a^* + \tau(p_a(b))_* g_{ba}^* p_a^* \pi_a, \\
p_b^* \omega &= p_a^* l(g_{ba}(p(b)))^* \omega + p_a^* g_{ba}^* \tau(p_a(b))^* \omega \\
&= p_a^* \omega + p_a^* g_{ba}^* (\text{ad} (p_a(b)^{-1}) \omega).
\end{align*}
\]
By the relations above and the equation
\[\text{ad}(p_\alpha(b^{-1})) \theta_{\beta,\alpha} + p_\alpha^* \omega_{\beta,\alpha} = \text{ad}(p_\beta(b^{-1})) \theta_{\beta,\alpha} + p_\beta^* \omega_{\beta,\alpha}, \]
we get
\[\theta_{\alpha,\alpha} = p_\alpha^* \{ \text{ad}(g_{\beta,\alpha}(x^{-1})) \theta_{\beta,\alpha} + g_{\beta,\alpha}^* \omega_{\beta,\alpha}(x) \}, \]
from which we obtain
\[\theta_{\alpha,\alpha} = \text{ad}(g_{\beta,\alpha}(x^{-1})) \theta_{\beta,\alpha} + g_{\beta,\alpha}^* \omega_{\beta,\alpha}(x), \quad (17) \]
or simply
\[\theta_{\alpha} = \text{ad}(g_{\beta,\alpha}^{-1}) \theta_{\beta} + g_{\beta,\alpha}^* \omega, \quad (17') \]
since \(p \) is onto.

Conversely, on each \(U_\alpha \), let be given a system of \(L(G) \)-valued linear differential forms \(\theta_\alpha \) satisfying (17), then we can obtain a \(L(G) \)-valued linear differential form \(\pi \) satisfying (12), (13) by (16).

Thus we see that an infinitesimal connection \(\Gamma \) as in §1 is given in \(\mathcal{B} \) is equivalent to that on each coordinate neighborhood \(U_\alpha \), a \(L(G) \)-valued linear differential form satisfying (17') is given. The components of \(\theta_\alpha \) are the parameters of the connection in the classical sense and (17') is the transformation equation of the parameters for coordinate transformations.

§4. In \(U_1 \), let be given a differentiable family of curves \(\mathcal{S}(x, x) \in U_1 \) which covers simply over \(U_1 \) except \(x_1 \). Then, \(\rho(\mathcal{S}(x, x)) : G_\pi \to G_{\pi_1} \) define a differentiable mapping
\[F : p^{-1}(U_1) \to G_{\pi_1} \quad \text{by} \quad F(b) = \rho(\mathcal{S}(x, p(b)) \, b). \]
Since \(F | G_\pi \) is a bundle mapping, we can define a differentiable mapping \(\gamma : U_1 \to G \) by
\[\gamma(x, g) = f(x, g). \quad (18) \]

Let \(\tau_1 : U_1 \times G \to U_1 \), \(\tau_2 : U_1 \times G \to G \) be the natural projections, then for any \(v \in T_{\pi_1}(U_1 \times G) \), we get by (14), (16)
\[f_\pi v = (\pi \tau_1)_* v + \pi \tau_2_*, \]
\[(\pi_1 F \phi_1)_* v = p_1^* \mu_{\phi_1} \phi_1_*, \quad b_1^{-1} \mu_{\phi_1} \phi_1_* v = \pi_1 (\phi_1_* v) \]

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/iss1/2
THEORY OF CONNECTIONS AND A THEOREM OF E. CARTAN ETC. I

\[\gamma(x) = e, \quad p_i(b_i) = e, \quad \tau_1 = p_i \phi_i, \quad \tau_2 = p_i \phi_i. \]

Hence, from (18) and the above relation we obtain

\[\gamma_*(\tau_1 \times v) = \theta_1(\tau_1 \times v)\]

or

\[\gamma^* \omega = \theta_1, \pi_1.\]

This equation will imply the following result which is in connection with the development of a curve in \(X\) on a tangent space to \(X\) at a point of the curve, in the classical differential geometry.

For any curve \(\mathcal{C}\) of class \(C^1\) from \(x_0\) to \(x_1: x = \psi(t), 0 \leq t \leq 1,\)

let \(\mathcal{C} \subset U_{\lambda}, \lambda = 1, 2, \ldots, m,\) be the subarc of \(\mathcal{C}\) corresponding to the interval \(t_{\lambda-1} \leq t \leq t_{\lambda}, 0 = t_0 < t_1 < \ldots < t_m = 1.\) Then, we can determine mappings

\[\gamma_\lambda: [t_{\lambda-1}, t_\lambda] \rightarrow G,\]

so that

\[\begin{align*}
\gamma_\lambda^* \omega &= \psi_\lambda^* \theta_{\alpha_\lambda}^* \\
\gamma_\lambda(t_{\lambda-1}) &= \gamma_{\lambda-1}(t_{\lambda-1}) g_{\alpha_{\lambda-1} a_\lambda}^\lambda(\psi(t_{\lambda-1}))
\end{align*}\]

where \(\psi_\lambda = \psi | [t_{\lambda-1}, t_\lambda].\) This is to integrate some system of ordinary differential equations in each coordinate neighborhood under certain conditions. If we extend each solution \(\gamma_\lambda(t)\) for \([t_{\lambda-1}, t_\lambda]\) to both sides of the interval, then in \(U_{\alpha_{\lambda-1}} \cap U_{\alpha_\lambda}\), by means of (17') we have

\[\gamma_\lambda(t) = \gamma_{\lambda-1}(t) g_{\alpha_{\lambda-1} a_\lambda}^\lambda(\psi(t)).\]

We define an element of \(G\) by

\[k_{a_0 a_m}(\mathcal{C}) = \gamma_1(0)^{-1} \gamma_m(1),\]

and for any curve \(\mathcal{C} \in \mathcal{D}_{a_0, a_m},\) we define likewise \(k_{a_0 a_m}(\mathcal{C}).\) Since \(\omega\) is left-invariant, \(k_{a_0 a_m}(\mathcal{C})\) is independent of the choice of the initial point \(\gamma_1(0).\) Furthermore, we get easily the relation
(22) \[k_{a_1a_2}(\xi', \xi) = k_{a_1a_2}(\xi) k_{a_2a_3}(\xi), \]

\[\xi' \in \mathcal{O}_{x_1}, x_1 \in U_{a_1}, \xi \in \mathcal{O}_{x_2}, x_2 \in U_{a_2}, \]

By means of (19), between \(\rho \) and \(k \), there exists the following relation

(23) \[\rho(\xi) \cdot \phi_{a_1a_2} = \phi_{a_1a_2} \cdot k_{a_1a_2}(\xi), \]

\[\xi \in \mathcal{O}_{x_1}, x_1 \in U_1, x_2 \in U_2. \]

§5. Now, in each coordinate neighborhood \(U_a \), we take a differentiable mapping \(f_a : U_a \to G \) and define a \(L(G) \)-valued linear differential form by

(24) \[\dot{\theta}_a = \text{ad}(f_a)\theta_a + (f_a^{-1})^*\omega, \]

then we get

(25) \[\dot{\hat{\theta}}_\beta = \text{ad}(f_\beta g_{\alpha\beta} f_\beta^{-1}) \dot{\theta}_a + (f_\beta g_{\alpha\beta} f_\beta^{-1})^*\omega, \]

where we put \(f_a^{-1}(x) = (f_a(x))^{-1} \). If we take, in each neighborhood \(U_a \), a coordinate function

(26) \[\hat{g}_{\alpha\beta}(x) = \phi_{x, a} f_a(x)^{-1}, \]

then we get the coordinate transformation of the bundle

Then, the fibre bundle \(\hat{\mathcal{B}} = \{ B, p, X, Y, G, \hat{\theta}_a \} \) with the infinitesimal connection \(\{ \hat{\theta}_a \} \) is \(G \)-equivalent to the fibre bundle \(\mathcal{B} = \{ B, p, X, Y, G, \phi_a \} \) with the infinitesimal connection \(\{ \theta_a \} \), that is, \(\{ \theta_a \} \) is obtained from \(\{ \hat{\theta}_a \} \) by transformations of frames. In both \(\mathcal{B} \) and \(\hat{\mathcal{B}} \), \(B \) has the same family of tangent subspaces to \(B \) which are transversal to the fibres. For \(\hat{k} \) in \(\hat{\mathcal{B}} \) and \(k \) in \(\mathcal{B} \), from (23), (25) we get easily the relation

(27) \[\hat{k}_{\alpha\beta} = f_a k_{a\beta} f_\beta^{-1}. \]

Now, we take a coordinate neighborhood \(U \) such that if \(U \ni x = (x^1, \ldots, x^n) \), then \(U \ni (tx^1, \ldots, tx^n), 0 \leq t \leq 1 \). Let \(\theta \) be the \(L(G) \)-valued linear differential form in \(U \). Let \(o \) be the origin of the coordinate system and \(\hat{o} x \) be the image of the segment joining \(o \) and \(x \) in the coordinates. Define a mapping \(f : U \to G \) by
The mapping \(f \) is differentiable. For any point \(x \in U \), we define the mapping \(a_s : 0 \leq t \leq 1 \rightarrow U \) by \(a_s(t) = (tx') \). Then, we have by (20), (28), (24)

\[
\begin{align*}
 a_s^* f^* \omega &= a_s^* \theta, \\
 a_s^* \theta &= a_s^* (\text{ad}(f^{-1}) \hat{\theta} + f^* \omega).
\end{align*}
\]

Hence we obtain

\[a_s^* \hat{\theta} = 0. \tag{29} \]

Now, let \(X \) be an \(n \)-cell. \(U = X \) be an coordinate neighborhood as above. Then, we get from (29)

\[\hat{k}(\bar{o}x) = e. \]

Hence, by (23), (27), for any \(\mathcal{C} \in \Omega_{s_1} \), we have

\[
\begin{align*}
 \hat{\phi}_{u,0}^{-1} \zeta_0 (\bar{o}x \mathcal{C} \bar{o}x_1^{-1}) \hat{\phi}_{u,0} &= \hat{k}(\bar{o}x \mathcal{C} \bar{o}x_1^{-1}) = \hat{k}(\mathcal{C}) \\
 &= k(\bar{o}x \mathcal{C} \bar{o}x_1^{-1}) \in H_n
\end{align*}
\]

since \(f(\omega) = e \). From this and (19), \(\hat{\theta} \) is a \(L(H_0) \)-valued linear differential form. In other words, if \(X \) is an \(n \)-cell, we can take a \(L(H) \)-valued linear differential form \(\theta \) by a suitable transformation of coordinate functions (that is, by a suitable choice of frames).

\section{Lemma 2.}

Let \(X, Y, G \) be differentiable manifolds, a Lie group as stated in Section 1. For a point \(x_0 \in X \), let be given a transformation \(\gamma_0 : \Omega_{x_0} \rightarrow G \) with the properties as follows:

i) \(\gamma_0(\mathcal{C}_1 \mathcal{C}_2) = \gamma_0(\mathcal{C}_1) \gamma_0(\mathcal{C}_2), \mathcal{C}_1, \mathcal{C}_2 \in \Omega_{x_0} \);

ii) \(\gamma_0(D \mathcal{P}) = \gamma_0(D \mathcal{P} \mathcal{P}^{-1} \mathcal{P}), D, \mathcal{P} \in \Omega, \mathcal{P} \in \Omega_{x_0} \);

iii) \(\gamma_0 \) is differentiable.

Then there exists a fibre bundle \(B = \{ B, p, X, Y, G \} \) with an infinitesimal connection \(\Gamma \) such that \(\chi_{x_0} \simeq \chi_0 \).

In the lemma, the differentiability of \(\chi_0 \) is in the sense as follows. For any points \(x_1, x \in X \), let \(\mathcal{D}(x_1, x), \mathcal{D}(x, x'), \mathcal{D}(x_2, x') \) be differentiable families of curves, \(x \in \) a coordinate neighborhood \(U, \)

\[\chi_0 \simeq \chi_0 \]
$x' \in a \text{ coordinate neighborhood } V$, then

$$x_0(\mathcal{E}_1 \mathcal{B}(x_1, x) \mathcal{B}(x, x') \mathcal{B}(x_2, x')^{-1} \mathcal{E}_2^{-1}) \in G,$$

is differentiable with respect to x, x'.

Proof. Let $\{U_a\}$ be a covering system of coordinate neighborhoods such that if $U_a \ni x = (x^1, \ldots, x^n)$, then $U \ni (tx^1, \ldots, tx^n)$, $0 < t < 1$. Let x_a be the point whose coordinates in U_a are $(0, \ldots, 0)$, and for $x \in U_a$, let $x_a(x)$ be the curve which is the locus of points whose coordinates are (tx^1, \ldots, tx^n), $0 < t < 1$, in U_a. For each point x_a, we take a fixed curve $x_a \in \mathcal{L}_{x_0, x_a}$.

In $U_a \cap U_\beta \neq \emptyset$, define $g_{fa} : U_a \cap U_\beta \to G$ by

$$g_{fa}(x) = x_0(\mathcal{E}_1 \mathcal{E}_2 (x_\beta, x) \mathcal{E}(x_a, x)^{-1} \mathcal{E}_a^{-1}), \quad x \in U_a \cap U_\beta.$$

By iii), g_{fa} is differentiable. For any point $x \in U_a \cap U_\beta \cap U_\gamma$, we get by i), ii)

$$g_{fa}(x)g_{fa}(x) = x_0(\mathcal{E}_1 \mathcal{E}_2 (x_\beta, x) \mathcal{E}(x_\gamma, x)^{-1} \mathcal{E}_\gamma^{-1} \mathcal{E}_\beta^{-1} \mathcal{E}_a^{-1}) = x_0(\mathcal{E}_1 \mathcal{E}_2 (x_\gamma, x) \mathcal{E}(x_a, x)^{-1} \mathcal{E}_\gamma^{-1} \mathcal{E}_\beta^{-1} \mathcal{E}_a^{-1}) = x_0(\mathcal{E}_1 \mathcal{E}_2 (x_\gamma, x) \mathcal{E}(x_a, x)^{-1} \mathcal{E}_\gamma^{-1} \mathcal{E}_\beta^{-1} \mathcal{E}_a^{-1}) = g_{fa}(x),$$

that is

$$g_{fa}(x)g_{fa}(x) = g_{fa}(x).$$

Hence, there exists a fibre bundle $\mathcal{B} = \{B, p, X, Y, G\}$ with fibre Y, group of bundle G whose coordinate transformations are $g_{fa}(x)$ with respect to the covering $\{U_a\}$.

In the next place, for any curve $\mathcal{B}(x, x') \subset U_a$, $\mathcal{B}(x, x') \in \mathcal{L}_{x, x'}$, define g_a by

$$g_a(\mathcal{B}(x, x')) = x_0(\mathcal{E}_a \mathcal{E}(x_a, x) \mathcal{B}(x, x') \mathcal{E}(x_a, x')^{-1} \mathcal{E}_a^{-1})$$

and define $\rho(\mathcal{B}(x, x')) : Y_{x'} \to Y_x$ by

$$\rho(\mathcal{B}(x, x')) = \phi_{a, x}g_a(\mathcal{B}(x, x')) \phi_{a, x'}^{-1}.$$
THEORY OF CONNECTIONS AND A THEOREM OF E. CARTAN ETC. I

\[\phi_{\beta', \gamma} \mathcal{D}(x, x') \hat{p}_{\beta', \gamma} = \phi_{\alpha, \beta} \mathcal{D}(x, x') \hat{p}_{\alpha, \beta} \]

\[= \phi_{\alpha, \beta} x_0(\mathcal{C}_\alpha \mathcal{C}(x_\alpha, x) \mathcal{D}(x_\beta, x') \mathcal{C}(x_\beta, x')^{-1} \mathcal{C}_\beta^{-1}) \]

\[x_0(\mathcal{C}_\alpha \mathcal{C}(x_\alpha, x) \mathcal{D}(x_\beta, x') \mathcal{C}(x_\beta, x')^{-1} \mathcal{C}_\beta^{-1}) \]

\[= \phi_{\alpha, \beta} x_0(\mathcal{C}_\alpha \mathcal{C}(x_\alpha, x) \mathcal{D}(x_\beta, x') \mathcal{C}(x_\beta, x')^{-1} \mathcal{C}_\beta^{-1}) \hat{p}_{\alpha, \beta} \]

This shows that \(\rho(\mathcal{D}(x, x')) \) is independent of \(U_a \supset \mathcal{D}(x, x') \).

Now, we will show that \(\rho(\mathcal{D}(x, x')) \) commutes with right translations of \(\mathcal{B} \).

Let \(\mathcal{B} = \{ \mathcal{B}, \mathcal{P}, X, G, G \} \) be the associated principal fibre bundle of \(\mathcal{B} \) and by means of (32), define \(\bar{\rho}(\mathcal{D}(x, x')) : G \rightarrow G \) by

\[\bar{\rho}(\mathcal{D}(x, x'))(\phi_{\alpha, x} g) = \phi_{\alpha, x} \mathcal{D}(x, x') \hat{p}_{\alpha, x} \phi_{\alpha, x} g \]

\[= \phi_{\alpha, x} \mathcal{D}(x, x') \hat{p}_{\alpha, x} g \in G. \]

This shows that

\[\bar{\rho}(\mathcal{D}(x, x')) \Gamma(g_0) = \Gamma(g_0) \bar{\rho}(\mathcal{D}(x, x')) \]

If \(\mathcal{D}(x, x') \) is a differentiable family of curves, then \(\mathcal{D}(x, x') \) is differentiable with respect to \(x, x' \) by iii). Hence, we can obtain an infinitesimal connection \(\Gamma \) in \(\mathcal{B} \) such that the holonomy map \(\rho \) with respect to \(\Gamma \) coincides with the transformation as above for \(\mathcal{D}(x, x') \subset U_a \).

It follows that for \(\mathcal{C} \in \mathcal{D}_x \) such that

\[\mathcal{C} = \mathcal{D}_0 \mathcal{D}_1 \cdots \mathcal{D}_m, \quad \mathcal{D}_\lambda \subset U_{a_\lambda}, \quad \lambda = 0, 1, \ldots, m, \]

\[\rho(\mathcal{C}) = \rho(\mathcal{D}_0) \rho(\mathcal{D}_1) \cdots \rho(\mathcal{D}_m). \]

Lastly, we will prove \(x_\alpha \approx x_{\alpha'} \). For any points \(x, x' \in X \), let \(\mathcal{D} \in \mathcal{D}_{x, x'} \) and

\[\mathcal{D} = \mathcal{D}_1 \mathcal{D}_2 \cdots \mathcal{D}_m, \quad \mathcal{D}_\alpha \subset U_{a_\alpha}, \quad \mathcal{D}_\alpha \in \mathcal{D}_{x_{\alpha-1} x_\alpha}, \quad x = x_0, x' = x_m. \]

By (32), we get

\[\rho(\mathcal{D}_a) = \phi_{\alpha, \beta} (\mathcal{D}_a) \hat{p}_{\alpha, \beta} \]

\[\rho(\mathcal{D}_a) \rho(\mathcal{D}_a + 1) = \phi_{\alpha, \beta} (\mathcal{D}_a) \mathcal{D}_a, (x_\alpha) \mathcal{D}_a (x_{\alpha+1}) \hat{p}_{\alpha+1, \beta} \]

and

Produced by The Berkeley Electronic Press, 1954
TOMINOSUKE ŌTSUKI

\[
\rho(D_1) \rho(D_2) \cdots \rho(D_m) = \phi_{1, \ast_0} g_1(D_1) g_2(D_2) \cdots g_m(D_m) p_{m, \ast_m}.
\]

By i), ii), (30), (31), we get

\[
g_1(D_1) g_2(D_2) g_3(D_3) g_m(D_m) = x_0(\xi_1(x_1, x_0) D_1 \xi(x_1, x_1^{-1} \xi_1) x_0(\xi_2(x_2, x_1) D_2 \xi(x_2, x_2^{-1} \xi_2)) \cdots x_0(\xi_m(x_m, x_m) D_m \xi(x_m, x_m^{-1} \xi_m))
\]

Accordingly, we get the relation

\[
(35) \quad \rho(D_1) \rho(D_2) \cdots \rho(D_m) = \rho(D) = \phi_{1, \ast_0} x_0(\xi(x_1, x) D \xi(x_m, x^{-1} \xi_m)) p_{m, \ast_m}.
\]

Especially, if we put \(x = x' = x_0, x_0 \in U_1 \), then

\[
x_0(\xi) = \phi_{1, \ast_0} x_0(\xi) p_{1, \ast_0},
\]

that is

\[
x_{\ast_0} \approx x_0.
\]

Q.E.D.

§7. Lemma 3. Let \(\mathcal{B} = \{B, p, X, Y, G\} \) be a differentiable fibre bundle with an infinitesimal connection \(\Gamma \) whose structure group is \(G \) and let \(H \) be the holonomy group of \(\Gamma \) at \(x_0 \in X \). Then \(\mathcal{B} \) with \(\Gamma \) is \(G \)-equivalent to another fibre bundle \(\mathcal{B}' = \{B', p', X, Y, H\} \) with an infinitesimal connection \(\Gamma' \) whose structure group is \(G \).

Proof. We will use the same notations as before. Using Lemme 2, we can obtain a differentiable fibre bundle \(\mathcal{B}' = \{B', p', X, Y, H\} \) with an infinitesimal connection \(\Gamma'' \) whose structure group is \(H \), and whose holonomy map \(x_0'' \approx x_0 \) of \(\Gamma \). By means of Lemma 1, \(\mathcal{B} \) and \(\mathcal{B}' \) is \(G \)-equivalent as fibre bundles. Let \(h : B \to B' \) be the differentiable bundle mapping satisfying the condition \(p' h = p \). Then, we can obtain a differentiable family \(\Gamma' \) of tangent subspaces to \(B' \) by \(\Gamma' = h_\ast \Gamma \). Since \(h \) is a bundle mapping, \(\Gamma' \) define an infinitesimal connection in \(\mathcal{B}' \). For any points \(x, x' \in X \) and any curve \(\xi \in \mathcal{O}_{x, x'} \), the mapping \(p'((\xi)) : Y'_{x'} \to Y'_{x} \) is clearly given by \(p'((\xi)) = h p((\xi)) h^{-1} \), where \(Y'_{x} \) denotes the fibre of \(\mathcal{B}' \) at \(x \) and \(p' \) is the map defined for
THEORY OF CONNECTIONS AND A THEOREM OF E. CARTAN ETC. 1

the fibre bundle with the infinitesimal connection Γ' as in \mathfrak{B} (see §1). Thus, \mathfrak{H} with the infinitesimal connection Γ' is G-equivalent to \mathfrak{H}' with the infinitesimal connection Γ' whose structure group is G. Q.E.D.

Now, we shall deal with the theorem of E. Cartan stated in Introduction. Let $\mathfrak{B} = \{B, \rho, X, Y, G\}$ be a differentiable fibre bundle with an infinitesimal connection Γ whose structure group is G. Let $\{U_a\}$ be a system of coordinate neighborhoods which is an open covering of X, and let θ_a be the $L(G)$-valued linear differential form in U_a derived from Γ as in §§2-4. For each U_a, let x_a be the origin of the coordinate neighborhood. Then $H_a = H_{x_a} = k_{x_a}(\Omega_{\tau_a}, x_a)$ is the holonomy group of Γ at x_a. For any curve $\gamma \in \Omega_{\tau_a, x_a}$, we have by means of (22) the relation

\begin{equation}
H_a = k_{x_a}(\gamma) H_{\rho} k_{x_a}(\gamma)^{-1}.
\end{equation}

This shows that H_a are homologous each other. Let K be the minimal invariant subgroup of G which contains H_a. We may suppose that each U_a is a coordinate neighborhood as U in §5. Let \mathfrak{B}_a be the portion of \mathfrak{B} over U_a and Γ_a be the subfamily of Γ on $B \cap \rho^{-1}(U_a)$, then the holonomy group of Γ_a at x_a is clearly a subgroup of H_a. Hence, by virtue of the consideration in §5, for each U_a, we can obtain a mapping $f_a : U_a \rightarrow G$ such that $\hat{\theta}_a = \text{Ad}(f_a) \theta_a + (f_a)^{-1} \omega$ is a $L(H_a)$-valued linear differential form and $f_a(x_a) = e.$ If $U_a \cap U_b = \phi$, we have

\begin{equation}
\hat{\theta}_{ab} = \text{Ad}(\hat{g}_{ab}) \hat{\theta}_a + (\hat{g}_{ab})^{*} \omega,
\end{equation}

where

\begin{equation}
\hat{g}_{ab}(x) = f_a(x) g_{ab}(x) f_b(x)^{-1}, \quad x \in U_a \cap U_b.
\end{equation}

Now, it may be suppose that $g_{ab} : U_a \cap U_b \rightarrow H$, by means of Lemma 3, and that if $U_a \cap U_b \neq \phi$, then $U_a \cap U_b$ is connected. Then, the above relations imply that \hat{g}_{ab} can be written as

\begin{equation}
\hat{g}_{ab}(x) = \lambda_{ab} h_{ab}(x), \quad h_{ab}(x) \in K, \lambda_{ab} \in G, \quad x \in U_a \cap U_b.
\end{equation}

For each U_a, define a mapping $h_a : U_a \rightarrow G$ by $h_a(x) = \tau_x f_a(x)$, where τ_x is a fixed element of G, and define a $L(G)$-valued linear differential form from $\hat{\theta}_a$ by

\begin{equation}
\hat{\theta}_a = \text{Ad}(h_a) \theta_a + (h_a^{-1})^{*} \omega.
\end{equation}
Since $h_a^{-1} = r(r_a^{-1})f_a^{-1}$, we have
\[
\tilde{\theta}_a = \text{ad}(r_a) \text{ad}(f_a) \theta_a + (f_a^{-1})^* r(r_a^{-1})^* \omega
= \text{ad}(r_a) \text{ad}(f_a) \theta_a + (f_a^{-1})^* (\text{ad}(r_a) \omega)
= \text{ad}(r_a) \{ \text{ad}(f_a) \theta_a + (f_a^{-1})^* \omega \}
= \text{ad}(r_a) \tilde{\theta}_a.
\]

Hence, $\tilde{\theta}_a$ is a $L(K)$-valued linear differential form. By this change of coordinate functions, the coordinate transformation g_{ab} on $U_a \cap U_b$ is replaced by
\[
\tilde{g}_{ab}(x) = h_a(x) g_{ab}(x) h_b(x)^{-1}
= r_a \tilde{g}_{ab}(x) r_b^{-1}
= r_a^{-1} \lambda_{ab} h_a(x) r_b^{-1}
= r_a^{-1} \lambda_{ab} \tau_{b^{-1}}(r_b h_a(x) r_{b^{-1}}).
\]

Accordingly, if we can choose $\{r_a\}$ so that
\begin{equation}
(38) \quad r_a \lambda_{ab} r_{b^{-1}} \in K, \quad \text{as} \quad U_a \cap U_b = \phi,
\end{equation}
then \tilde{g}_{ab} maps $U_a \cap U_b$ into K.

On the other hand, if $U_a \cap U_b \cap U_\gamma = \phi$, we have
\[
e = \tilde{g}_{ab}(x) \tilde{g}_{b\gamma}(x) \tilde{g}_{\gamma a}(x)
= \lambda_{ab} h_a(x) \lambda_{b\gamma} h_{b\gamma}(x) \lambda_{\gamma a} h_\gamma(x)
= \lambda_{ab} \lambda_{b\gamma} \tau_{b^{-1}}(r_b h_a(x) r_{b^{-1}})^{-1} h_{b\gamma}(x) \lambda_{\gamma a} h_\gamma(x),
\]
from which we obtain the relation
\begin{equation}
(39) \quad \lambda_{ab} \lambda_{b\gamma} \lambda_{\gamma a} \in K, \quad \text{as} \quad U_a \cap U_b \cap U_\gamma = \phi,
\end{equation}
since K is an invariant subgroup of G.

Since X is differentiable manifold, there exists a differentiable simplicial triangulation of X. Let A_α, $\alpha = 1, 2, \ldots$, be the vertices of this complex \mathfrak{R} and let U_α be the open set defined by the star of A_α of \mathfrak{R}. Then, the system $\{U_\alpha\}$ has all the properties above-mentioned. Thus, the above problem is written as follows:

For each oriented 1-simplex $A_\alpha A_\beta$ of \mathfrak{R}, let be given an element $\lambda_{ab} \in G$ such that
\[
\lambda_{ab} \lambda_{b\gamma} \lambda_{\gamma a} \in K, \quad \text{for any 2-simplex } A_\alpha A_\beta A_\gamma \text{ of } \mathfrak{R}.
\]
THEORY OF CONNECTIONS AND A THEOREM OF E. CARTAN ETC. I

Then, can we choose \(\tau_a \in G, \alpha = 1, 2, \ldots \), so that

\[
\tau_a \lambda_{a \beta} \tau_{\beta}^{-1} \in K, \quad \text{for each } A_a A_\beta \in \mathfrak{g}.
\]

If \(X \) is simply connected, we can easily prove that there exists a system of \(\{ \theta_a \} \), \(\{ \mathfrak{g}_{a\beta} \} \), we can obtain a fibre bundle \(\mathfrak{B} = \{ \mathfrak{B}, \tilde{p}, X, Y, K \} \) with an infinitesimal connection \(\tilde{\Gamma} \) whose structure group is \(K \), the \(L(K) \)-valued linear differential form on \(U_a \) is \(\tilde{\theta}_a \) and the coordinate transformations are \(\mathfrak{g}_{a\beta} \). \(\mathfrak{B} \) with \(\tilde{\Gamma} \) is clearly \(G \)-equivalent to \(\mathfrak{B} \) with \(\Gamma \). For the holonomy groups of \(\tilde{\Gamma} \), we have by (27)

\[
\tilde{H}_{a} = h_a(x_a) H_j a h_a(x_a)^{-1} = \tau_a H_j a \tau_a^{-1}.
\]

Since we can put \(\tau = e \), we have \(\tilde{H} = H \). Accordingly, by virtue of Lemma 3, \(\mathfrak{B} \) with \(\tilde{\Gamma} \) is \(K \)-equivalent to a fibre bundle \(\mathfrak{B}' = \{ \mathfrak{B}', \tilde{p}', X, Y, H \} \) with an infinitesimal connection \(\Gamma' \) whose structure group is \(K \).

Thus, we obtained a following theorem.

Theorem 1. Let \(\mathfrak{B} = \{ B, p, X, Y, G \} \) be a differentiable fibre bundle with an infinitesimal connection \(\Gamma \) whose structure group is \(G \). Let \(H \) be the holonomy group of \(\Gamma \) at a point \(x_a \in X \), and \(K \) be the minimal invariant subgroup of \(G \) which contains \(H \). Then \(\mathfrak{B} \) with \(\Gamma \) is \(G \)-equivalent to another fibre bundle \(\mathfrak{B}' = \{ B', p', X, Y, H \} \) with an infinitesimal connection \(\Gamma' \) whose structure group \(L \), where

i) if \(X \) is an \(n \)-cell, then \(L = H \);

ii) if \(X \) is simply connected, then \(L = K \);

iii) otherwise, \(L = G \).

From this theorem, we see that the theorem of E. Cartan on holonomy groups holds good, in the large, at least in the following cases:

i) \(X \) is an \(n \)-cell.

ii) \(X \) is simply connected and \(H \) is an invariant subgroup of \(G \).

Bibliography

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received June 30, 1954)