On generating elements of Galois extensions of division rings

Takesi Nagahara*
ON GENERATING ELEMENTS
OF GALOIS EXTENSIONS OF DIVISION RINGS

TAKASI NAGAHARA

In his paper [2], F. Kasch proved the next theorem: If a division ring K is Galois and finite over a division subring L and the center of $V_K(L)$ is separable over the center of K then $K = L[k, uku^{-1}]$ with some $k, u \in K$.

Afterwards he obtained also the following theorem [3, Satz 14]: If a division ring K is Galois and finite over a division subring L, then $K = L[k, h]$ with some $k, h \in K$. Moreover, if either $V_K(L) = C$ or $V_K(L) \subset L$, then $K = L[k]$ with some $k \in K$, where C is the center of K.

The purpose of this note is to give an ultimate sharpening of the above theorems: Let K be a division ring which is Galois and finite over a division subring L, D be an intermediate subring of K/L, and \mathfrak{A} be the totality of L-inner automorphisms in K. If $\{x\} \mathfrak{A} \setminus D$ is finite for each $x \in D$, then $D = L[k, uku^{-1}]$ with some $k, u \in D$. In particular, $K = L[k, uku^{-1}]$ with some $k, u \in K$ ($\S 3$). And in this connection, we shall prove also that a division ring K has a single generating element over a division subring L of K under somewhat weaker assumption than those in the latter half of [3, Satz 14] ($\S 2$).

In this note, we wish to make use of the same notations and terminologies as in [4] 3.

1. Preliminaries.

Throughout this note, K will be a division ring, L be a division subring of K, and D be an intermediate division subring of K/L. Moreover, C will be the center of K, Z be that of L, and H will mean $V_K(V_K(L))$. If K is finite over L, then the total group of K/H is the totality of L-inner automorphisms of K. And clearly $Z = L \cap V_K(L), V_K(H) = V_{V_K(L)}(V_K(L))$.

1) The author wishes to express his best thanks to Prof. M. Maruyama and Mr. Tominaga for their kind encouragements and advices.

2) In general, for any subset S in K, $L(S)$ signify the subring of K generated by S over L, which was denoted by $L(S)$ in the previous papers [4], [5].

3) See [4, § 1].
Lemma 1. Let R be a proper division subring of K, and a be an element in K such that $b\neq ba$ for some b in $K \setminus R$.

(1) There exist at most two c's in $C \cap R$ with $(b+c) a (b+c)^{-1} \in R$.

(2) If a is in R then there exists at most one c in $V_0(a)$ with $(b+c) a (b+c)^{-1} \in R$.

Proof. At first we remark that if c', c'' are different elements in $V_0(a)$ then $(b+c') a (b+c')^{-1} \neq (b+c'') a (b+c'')^{-1}$. For, if not, $(b+c') a (b+c')^{-1} = (b+c') a (b+c')^{-1} = a'$ imply that $(c'+c'') a = a' (c'+c'')$, whence $a = a'$. But $(b+c') a (b+c')^{-1} = a$ leads to a contradiction $ba = ab$.

(1) Now we suppose $(b+c_1) a (b+c_1)^{-1} = a_1 \in R$ with different c_i's in $C \cap R (i = 1, 2, 3)$. Then $ba + c_1 a = a_1 b + a_1 c_1$, $ba + c_2 a = a_2 b + a_2 c_2$, and $ba + c_3 a = a_3 b + a_3 c_3$, whence $(c_1 - c_3) a = (a_1 - a_3) b + (a_1 c_1 - a_3 c_3).$ Hence we have $a = (c_1 - c_3)^{-1} (a_1 - a_3) b + (a_1 c_1 - a_3 c_3)$. Hence we have $a_1 = (a_1 - a_3) b + (a_1 c_1 - a_3 c_3)$ and $(c_1 - c_3) a = (a_1 - a_3) b + (a_1 c_1 - a_3 c_3).$ Hence we have $a = (c_1 - c_3)^{-1} (a_1 - a_3) b + (a_1 c_1 - a_3 c_3)$.

and so $0 = ((c_1 - c_3)^{-1} (a_1 - a_3) - (c_1 - c_3)^{-1} (a_1 - a_3)) b - ((c_1 - c_3)^{-1} (a_1 c_1 - a_3 c_3) - (c_1 - c_3)^{-1} (a_1 c_1 - a_3 c_3))$. Since b is not in R, we must have:

(i) $(c_1 - c_3)^{-1} (a_1 - a_3) - (c_1 - c_3)^{-1} (a_1 - a_3) = 0$

(ii) $(c_1 - c_3)^{-1} (a_1 c_1 - a_3 c_3) - (c_1 - c_3)^{-1} (a_1 c_1 - a_3 c_3) = 0$

From (i) $\times (c_1 - c_3)$ $a_2 = (c_1 - c_3)^{-1} (c_1 - c_3) a_2$, whence $a_2 = a_3$. But this is a contradiction by the remark at the beginning.

(2) Suppose that $(b+c_1) a (b+c_1)^{-1} = a_1 \in R$ and $(b+c_2) a (b+c_2)^{-1} = a_2 \in R$ with some different c_1, c_2 in $V_0(a)$. Then $ba - a_1 b = a_1 c_1 - c_1 a$, $ba - a_2 b = a_2 c_2 - c_2 a$, whence we obtain $b = (a_2 - a_1)\{a_1 c_1 - c_1 a - (a_2 c_2 - c_2 a)\} \in R$, being contradictory.

Lemma 2. If $|K: L| < \infty$ and there exists only a finite number of intermediate subrings of $K/L[k']$ for some k' then $K = L[k', k']$ with some h'. If moreover K is really non-commutative then $K = L[k, ukw^{-1}]$ with some k, $u \in K$.

Proof. We may, and shall, consider only the case where $L[k'] \neq K$ and $L[k']$ is infinite. Choose such an element h' that $[L[h', k'] : L[k']]$ is as great as possible. Then we have $L[h', k'] = K$. For, if not, there exists some $x \in K \setminus L[h', k']$. And the infiniteness of $L[k']$ and our assumption that there exists only a finite number of intermediate subrings of $K/L[k']$ imply that there holds $L[h' + y_1 x, k'] = L[h' + y_1 x, k']$ for some different $y_1, y_2 \in L[k']$. Then we readily see $L[h' + y_1 x, k'] = L[h', k', x]$, being contrary to the maximality of $[L[h', k'] : L[k']]$.

Now we shall prove the second part (under the assumption that $L[k']$
is a proper infinite subring of K.) At first we shall show that there exist some h, k such that $K = L[h, k]$, $L[k] = L[k']$ and $hk \neq kh$. Obviously it suffices to consider the case where $h'k' = k'h'$. We distinguish here three cases: (I) $L \not\subseteq V_k(k')$. For any $l \in L \setminus V_k(k')$, set $h = h' + l$, $k = k'$. (II) $L \subseteq V_k(h')$. For any $l' \in L \setminus V_k(h')$, set $h = h'$, $k = k' + l'$. (III) $L \subseteq V_k(h', k')$. There exist some $l_1, l_2 \in L$ such that $l_1, l_2 \neq l_2 l_1$. Set $h = h' + l_1, k = k' + l_2$.

Next we note that $V_{\ell(k)}(k)$ is infinite. For, if it is finite, so is $V_{\ell(k)}(L[k]) / [k]$. And so $[L[k] : V_{\ell(k)}(k)] = [V_{\ell(k)}(L[k]) : [k] : V_{\ell(k)}(L[k])] < \infty$, whence $L[k] (= L[k'])$ is finite, being contradictory. We can find therefore such $v \in V_{\ell(k)}(k)$ that $(h + v) k (h + v)^{-1}$ is not contained in any proper subring of K over $L[k]$, by using repeatedly Lemma 1 (2). This completes our proof.

In the rest of this note, K will be Galois and finite over L, and \mathfrak{G}, \mathfrak{F} will mean the total group of K/L, the totality of all L-inner automorphisms contained in \mathfrak{G} respectively. Then K is Galois over H and the total group of K/H coincides with \mathfrak{F}.

Lemma 3. (1) $L \subseteq V_k(L) = L \times_k V_k(L)$.

(2) $V_\sigma(H) = C$ implies $K = H \times_C V_k(L)$.

(3) $D \cap C[Z] = Z \times_{x(e)} (D \cap C)$, $[V_k(L) : Z \cap C] < \infty$.

Proof. (1) is true without any assumption, and (2) is a direct consequence of [1, Theorem 7.3F]. Now we shall prove (3). As $\mathfrak{G}(x)$ (the restriction of \mathfrak{G} on $C[Z]$) is the Galois group of C/Z and \mathfrak{G} is the Galois group of $C/Z \cap C$, σ_c is identity if and only if $\sigma_c(x)$ is the identity, where σ is an arbitrary automorphism in \mathfrak{G}. We obtain therefore $[C : C \cap Z] = \text{order of } \mathfrak{G}_v \text{, order of } \mathfrak{G}_v(x) = [C : Z]$, whence $C[Z] = Z \times_{x(e)} C$. Let $\{z_1, z_2, \ldots, z_n\}$ be a $Z \cap C$-basis of Z and $d = \sum z_i c_i$ an arbitrary element of $D \cap C[Z]$ where c_i's are in C, then $\sum z_i \in D$ and $d = \sum z_i c_i^\sigma$ for each $\sigma \in \mathfrak{G}(K/D)$. Since C is normal, we obtain $c_i = c_i^\sigma$, that is, c_i's are contained in D, and so $D \cap C[Z] = Z \times_{x(e)} (D \cap C)$. The latter part is easy.

Lemma 4. If $K \supseteq D_1 \supseteq D_2 \supseteq L$, then $[D_1 : V_{\nu_1}(Z)] \supseteq [D_2 : V_{\nu_2}(Z)]$.

Proof. Clearly there holds $[D_1 : V_{\nu_1}(Z)] = [V_{\nu_1}(D_1) : Z] : V_{\nu_1}(D_1)$ and $[D_2 : V_{\nu_2}(Z)] = [V_{\nu_2}(D_2) : Z] : V_{\nu_2}(D_2)$. Now we shall prove $[V_{\nu_1}(D_1) : Z] : V_{\nu_1}(D_1) \supseteq [V_{\nu_2}(D_2) : Z] : V_{\nu_2}(D_2)$. Let S be a (finite
independent) $V_{P_2}(D_2)$-basis of $V_{P_2}(D_2) [Z]$ contained in Z. Then, if S is not linearly independent over $V_{K}(D_2)$ there exists a minimal subset $T = \{ z_1, \ldots, z_t \}$ of S which is not linearly independent over $V_{K}(D_2)$. Hence there holds that $a = z_i + \sum_{i=2}^t z_i d_i = 0$, where $d_i \in V_{K}(D_2)$ ($i = 2, \ldots, t$). Clearly, there is some d_j ($2 \leq j \leq t$) which does not belong to $V_{P_2}(D_2)$ and so, there exists some automorphism σ in $\mathfrak{G} (K/D_2)$ such that $d_j^\sigma \neq d_j$ (if $d_j^\tau = d_j$ for all τ in $\mathfrak{G} (K/D_2)$ then $d_j \in V_{K}(D_2) \cap D_2 = V_{P_2}(D_2)$). We can easily see that $d_j^\sigma \in V_{K}(D_2)$ ($i = 2, \ldots, t$). From $\sigma a - a = 0$, it follows that $\{ z_1, \ldots, z_t \}$ is a proper subset of T which is not linearly independent over $V_{K}(D_2)$ but this contradicts the choice of the subset T. Therefore, S is linearly independent over $V_{K}(D_2)$. Since $V_{P_2}(D_1) \subset V_{K}(D_1) \subset V_{K}(D_2)$, S is linearly independent over $V_{P_2}(D_1)$. As $S \subset V_{P_2}(D_1) [Z]$, we obtain $[V_{P_2}(D_1) [Z] : V_{P_2}(D_1)] \supseteq [V_{P_2}(D_2) [Z] : V_{P_2}(D_1)]$.

2. Generating elements of K over L.

Lemma 5. If $V_{P_2}(H) = C$ and $L \supseteq Z$, then $K = L[k]$ with some $k \in K$.

Proof. We may, and shall, assume that Z is infinite (For, in case Z is finite, \mathfrak{G} is outer and so, our assertion is true without any restriction ([5], [7])). As $V_{K}(L)$ is Galois and finite over Z, we obtain $V_{K}(L) = Z [v_1, v_2]$ with some v_i's in $V_{K}(L)$ by [3, Satz 14]. Further, noting that H is outer Galois over $L[C]$, there exists a normal basis $\{ h^\tau : \tau \in \mathfrak{G} (H/L[C]) \} \subset H = L [C, h]$ of H over $L[C]$, and so $H = L [C, h]$. As $\sum_{\tau \in \mathfrak{G} (H/L[C])} h^\tau$ is contained in $L[C]$, we may assume that $\sum_{\tau \in \mathfrak{G} (H/L[C])} h^\tau = 1$. Since $L \supseteq Z$, there exist some d_1, d_2 in L such that $d_1, d_2 \neq d_2, d_2$. Then, 1, d_1, d_2 are $V_{K}(L)$-independent. Now we set $\mathfrak{G}_z = \mathfrak{G}_z \cup \mathfrak{G}_z$, where $\mathfrak{G}_z = \mathfrak{G} (K/L \cup d_1, d_2 \cup v_2 \cup xw + h$) and w is a primitive element of C over $C \cap Z$. Let σ be an arbitrary automorphism in \mathfrak{G}_z. As σ is contained in some $\mathfrak{G}_z \cup d_1, d_2 \cup v_2 \cup xw + h$ such that $d_1, d_2 \neq d_2, d_2$. Then, if $h^\sigma = h$, we have $d_1, d_2 \cup v_2 \cup xw + h = d_1, d_2 \cup d_2 \cup v_2 \cup xw - h^\sigma$. Noting that $\{ v_2^\sigma - v_2, v_2 \cup xw^\sigma - xw \} \subset V_{K}(L)$ and 1, d_1, d_2 are $V_{K}(L)$-independent, we can readily see $w^\sigma = w$. Conversely if $w^\sigma = w$, σ is contained in $\mathfrak{G} (K/L [C])$. As $d_1, d_2 \cup v_2 \cup xw + h = d_1, d_2 \cup d_2 \cup v_2 \cup xw - h^\sigma$, we have $d_1, (v_2 - v_2^\sigma) - h + h^\sigma = l \in L [V_{K}(L)] \cap H = L [C]$. Recalling $\sigma \in \mathfrak{G} (K/L [C])$,
ON GENERATING ELEMENTS OF GALOIS EXTENSIONS ETC.

$h^* = h^0$ for some $\tau_0 \in \Theta (H/L \{ C \}) = \Theta (K/L \{ C \})_n$. As $\sum_{\tau \in \Theta (H/L \{ C \})} h^\tau = 1$, we have $-h + h^* = \sum h^\tau l$. If $h^\tau \neq h^*$ then $l = -1$, which contradicts the fact that $1, d_1, d_2$ are $V_k (L)$-independent. Thus we have proved that, for any $\sigma \in \Theta$, $h^\sigma = h$ is equivalent with $w^\sigma = w$.

Next we shall prove that there exists some $\Theta \in \Theta (x_0 \in Z)$ such that $h^\sigma = h$ for each $\sigma \in \Theta$. In case $h^\sigma = h$ for all $\sigma \in \Theta$, we have nothing to prove. Therefore, we shall assume that there exist σ's in Θ such that $h^\sigma \neq h$ (accordingly $w^\sigma \neq w$ by the last remark). Now we set $\{ h \}^\Theta = \{ h^1, h^2, \ldots, h^m \} (\subset H)$ and $\{ w \}^\Theta = \{ w_1 = w, w_2, \ldots, w_n \} (\subset C)$, where σ_i is in Θ_i. (Note that $m, n \geq 1$) As Z is infinite, we can choose a non-zero element x_0 in Z such that $x_j (w - w_i) \neq x_0 (w - w_i)$ ($i, l = 1, \ldots, n; j = 1, 2, \ldots, m$). Then $h^* = h$ for all σ in Θ_{x_0}. For, if not, there exists some σ in Θ_{x_0} such that $d_i v_i + d_2 v_2 + x_0 w + h = d_i v_i^\sigma + d_2 v_2^\sigma + x_0 w + h^\sigma$ with some $i \neq 1, j \neq 1$. On the other hand, $d_i v_i + d_2 v_2 + x_0 w + h = d_i v_i^\sigma + d_2 v_2^\sigma + x_0 w + h^\sigma$ for some $l \neq 1$. Hence we have $x_0 (w - w_i) - x_2 (w - w_i) = d_i (v_i^\sigma - v_i) + d_2 (v_2^\sigma - v_2)$, which shows $x_0 (w - w_i) - x_2 (w - w_i) = 0$, for $1, d_1$ and d_2 are $V_k (L)$-independent. But this is a contradiction. Thus $h^\sigma = h$ and so $w^\sigma = w$ for all σ in Θ_{x_0} by the above remark, which implies $v_i^\sigma = v_i, v_2^\sigma = v_2$ for all σ in Θ_{x_0}. Hence, by Galois theory, v_1, v_2, w, h are contained in $L [d_1 v_1 + d_2 v_2 + x_0 w + h]$, whence we have $L [d_1 v_1 + d_2 v_2 + x_0 w + h] \supset L \{ V_k (L), h \} = H \{ V_k (L), h \} = K$ by Lemma 3 (2).

Corollary 1. If $V_n (H) = C, L \supset Z$ and D is a subring of K which is normal over L, then $D = L[d]$ with some d in D.

Proof. Since D is normal over L, D is Galois and finite over L. As $D = D$, either $D \subset H$ or $D \supset V_k (L)$ by [4, Lemma 2]. In case $D \subset H, D = L[d]$ by [5, Corollary 3]. On the other hand, if $D \supset V_k (L)$, we can readily see all the assumptions in Lemma 5 are fulfilled with respect to K/L. And so our proof is a direct consequence of Lemma 5.

Corollary 2. If $L \supset Z$ then $V_k (V_n (H)) = L[k]$ with some $k \in V_k (V_n (H))$.

Proof. If we set $V_k (V_n (H)) = T$ then T is clearly normal over L, whence T is Galois and finite over L. Since $\{ V_n (H) : C \} < \infty$, we have $V_k (T) = V_k (V_k (V_n (H))) = V_n (H)$. As $T \supset V_k (H) = V_k (L) = V_T (L), T \supset V_k (L) \supset V_k (T)$ and $V_T (T) = V_k (T) = V_n (H)$, we can apply Lemma 5 to T/L instead of K/L.

Produced by The Berkeley Electronic Press, 1956
Lemma 6. If \(v \) is a non-zero element of \(V_p(Z) \), there exist some element \(d \) in \(D \) and some finite subset \(\{ z_1, \ldots, z_n \} \) of \(Z \) such that
\[
D = \sum_{i=1}^{n} \tilde{z}_i V_p(Z) \quad \text{and} \quad d^{\tilde{z}_i} v + d^{\tilde{z}_2} v_2 + \ldots + d^{\tilde{z}_n} v_n = 1 \quad \text{with some} \; v_i \; \text{s in} \; V_p(Z),
\]
where \(\tilde{z}_i \) are inner automorphisms generated by \(z_i \) \((i = 1, \ldots, n) \).

Proof. By Lemma 3 (3), \(Z \cap C \subseteq D \cap C \subseteq V_p(D) \) and \([V_p(L) : Z \cap C] < \infty \). Since \(V_p(L) \supseteq V_p(D) \) and \(V_p(L) \supseteq Z \), we have \([V_p(D) : Z] \leq [V_p(L) : Z \cap C] < \infty \). As \(V_p(V_p(D) [Z]) = V_p(Z) \) and \([V_p(D) : Z] < \infty \), it follows that \(V_p(V_p(Z)) = V_p(D) [Z] \) and so \(V_p(V_p(V_p(Z))) = V_p(Z) \), that is, \(D \) is finite and Galois over \(V_p(Z) \) and the total group of \(D/V_p(Z) \) is inner. Furthermore, since \(V_p(V_p(Z)) = V_p(D) [Z] \subseteq V_p(Z) \), the ring \(\mathfrak{D} \) of endomorphisms of \(D \) generated by \(\mathfrak{D} (D/V_p(Z)) \) and \(V_p(Z) \), is \(\mathfrak{D} \)-isomorphic with \(D \) by [3, Satz 9]. Now we can choose a \(V_p(D) \)-basis \(\{ z_1, \ldots, z_n \} \) of \(V_p(D)/[Z] \) from \(Z : V_p(D) [Z] \)
\[
= \sum_{i=1}^{n} \tilde{z}_i V_p(D).
\]
Clearly there holds \(\sum_{i=1}^{n} \tilde{z}_i D_r = \sum_{i=1}^{n} \tilde{z}_i D_r \) and so
\[
\sum_{i=1}^{n} \tilde{z}_i (V_p(Z)_r) = \sum_{i=1}^{n} \tilde{z}_i (V_p(Z)_r).
\]
Since \([D : V_p(Z)] = [V_p(D) : Z] = [V_p(D)] \), \(\mathfrak{D} = \sum_{i=1}^{n} \tilde{z}_i (V_p(Z)_r) \) by [3, Satz 10]. As \(\mathfrak{D} \) is \(\mathfrak{D} \)-isomorphic to \(D \), there exists an element \(d' \) in \(D \) which corresponds to 1 of \(\sum_{i=1}^{n} \tilde{z}_i (V_p(Z)_r) = \mathfrak{D} \) under this isomorphism. Then \(D = \sum_{i=1}^{n} \tilde{z}_i d' \tilde{v} \) \(V_p(Z) = V_p(Z) [d'] \) and we have \(\sum_{i=1}^{n} d' \tilde{v} \] in \(V_p(Z) \). Here without loss of generality, we may assume that \(v_i \) is non-zero, then \(d' = d' \tilde{v} \) \(v^{-1} \) is clearly a required one.

Theorem 1. (1) If \(v \) is a non-zero element of \(V_p(Z) \), then there exists some element \(d \) in \(D \) such that \(L[d] \ni v \) and \(D = V_p(Z)[d] \).

(2) If \(V_p(Z) \subseteq H \), then \(D = L[d] \) with some \(d \) in \(D \).

Proof. (1) By Lemma 6, there exists an element \(d \in D \) and elements \(\{ z_1, \ldots, z_n \} \) in \(Z \) such that \(D = \sum_{i=1}^{n} \tilde{z}_i V_p(Z) = V_p(Z)[d] \) and that
\[
d^{\tilde{z}_1} v + d^{\tilde{z}_2} v_2 + \ldots + d^{\tilde{z}_n} v_n = 1 \quad \text{with some} \; v_i \; \text{s in} \; V_p(Z).
\]
Clearly \(D \supseteq L[d] \), and so, by Lemma 4, \([D : V_p(Z)] \geq [L[d] : V_p(Z)] \) and \(L[d] \supseteq \{ d^{\tilde{z}_1}, \ldots, d^{\tilde{z}_n} \} \). As \(\{ d^{\tilde{z}_1}, \ldots, d^{\tilde{z}_n} \} \) is \(V_p(Z) \)-independent, it is a fortiori \(V_{\tilde{D}[0]}(Z) \)-independent. Accordingly \(\{ d^{\tilde{z}_1}, \ldots, d^{\tilde{z}_n} \} \) is a \(V_{\tilde{D}[0]}(Z) \)-basis of

1) \(V_p(Z)_r \) denotes the totality of right multiplications determined by elements of \(V_p(Z) \).
ON GENERATING ELEMENTS OF GALOIS EXTENSIONS ETC.

187

L[d]. Noting that \(L[d] \ni 1, d \sum_{i=1}^{n} d^{i} v_{i} = 1 = \sum_{i=1}^{n} d^{i} v_{i}' \) for some \(v_{i}' \)s in \(V_{d}(Z) \). As \(d^{i} \)s are \(V_{d}(Z) \)-independent, we have \(v = v_{i}' \in V_{d}(Z) \subset L[d] \), that is, \(L[d] \ni v \). (2) In this case, \(V_{d}(Z) = L[d'] \) with some \(d' \) in \(V_{d}(Z) \) by [5, Corollary 3]. Accordingly \(D = V_{d}(Z)[d] \) for some \(d \) in \(D \) with \(L[d] \ni d' \) by (1). Since \(L[d] \ni L[d'] = V_{d}(Z)[d] = D \) and trivially \(L[d] \subset D \), we have \(D = L[d] \).

Corollary 3. If \(V_{d}(H) = C[Z] \), \(L \supseteq Z \) and \(V_{d}(Z) \) is a subring of \(K \) which is normal over \(L \), then \(D = L[d] \) with some \(d \) in \(D \).

Proof. We shall denote \(V_{d}(Z) = T \). Since \(T \) is normal over \(L \), either \(T \subset H \) or \(T \supset V_{d}(L) \) by [4, Lemma 2]. If \(T \subset H \), then \(D = L[d] \) for some \(d \in D \) by Theorem 1 (2). If \(T \supset V_{d}(L) \) then \(V_{d}(L) = T \cap V_{d}(L) = V_{d}(L) \), that is, the center of \(V_{d}(L) \) is \(C[Z] = V_{d}(H) \) (= center of \(V_{d}(L) \)). Since \(C[Z] \subset V_{d}(L) \subset T = V_{d}(Z) \), we may easily see that \(C[Z] \subset V_{d}(T) \subset V_{d}(L) \) = \(C[Z] \), whence \(C[Z] = V_{d}(T) \). Applying Lemma 5 to \(L[d] \), we have \(V_{d}(Z) = L[d'] \) for some \(d' \in V_{d}(Z) \) and hence, \(D = L[d] \) for some \(d \in D \) by Theorem 1 (1).

Corollary 4. If \(V_{d}(L) = C[Z] \) and \(D \) is an intermediate subring of \(K/L \), then \(D = L[d] \) with some \(d \in D \).

Proof. Clearly \(V_{d}(Z) \subset H = V_{d}(C[Z]) \), and so \(D = L[d] \) with some \(d \in D \) by Theorem 1 (2). In particular, if \(V_{d}(L) \subset L \), that is, \(V_{d}(L) = Z \), then \(D = L[d] \) with some \(d \in D \).

Corollary 5. Let \(L \) be finite over \(Z \). Then we have the following:

(1) If \(V_{d}(L) \) is commutative, then \(D = L[d] \) with some \(d \in D \).

(2) If \(L \supseteq Z \) and \(D \) is a subring of \(K \) which is normal over \(L \), then \(D = L[d] \) with some \(d \in D \).

Proof. As \([L : Z] < \infty \), we have \([K : C] < \infty \) (cf. 4, p. 10), whence \(K \) is inner Galois over \(C \). We obtain therefore \(V_{d}(L[C]) = V_{d}(V_{d}(L[C])) = L[C] \subset L \times_{Z} V_{d}(L) \), and so \(V_{d}(H) = C[Z] \). (1) If \(V_{d}(L) \) is commutative, then \(D = L[d] \) with some \(d \in D \) by Corollary 4. (2) If \(D \) is normal over \(L \), then so is \(V_{d}(Z) \), and hence \(D = L[d] \) with some \(d \in D \) by Corollary 3.

Lemma 7. If \(L \) is a field and \(L \subsetneq C \), then \(K = L[d] \) for some \(d \in K \).

Proof. We set \(L \cap C = C_{0} \). Then, \([K : C] < \infty \) and \([C : C_{0}] < \infty \), whence \([K : C] = [K : C_{0}] [C : C_{0}] \). Let \(K \) be the group of
all inner automorphisms generated by non-zero elements of K and let \mathcal{O} be the total group of K/L. Then, C_0 is the fixed subring of $[\overline{K}, \mathcal{O}]$ in K where $[\overline{K}, \mathcal{O}]$ is the group of automorphisms generated by \overline{K} and \mathcal{O}, that is, K is finite and Galois over C_0. If C_0 is finite then K is a finite field and so, $K = C$ which contradicts $L \not\subset C$. Therefore, C_0 is an infinite field. We consider a maximal subfield M of K which is separable over C. Since C is separable over C_0, M is separable over C_0. Therefore, there is an element $d_1 \in M$ such that $M = C_0[d_1]$. Further, there exists only a finite number of subfields $\{W_1, W_2, \ldots, W_n\}$ of M which properly contain C. As $V_K(M) = M$, there exists an element d_2 such that $K = M[d_2] = C_0[d_1, d_2]$. Now, let a be an element of $L \setminus C$. Then, we may assume without loss of generality that $ad_2 \neq d_2a$. For, if not, we can use $d_1 + d_2$ in place of d_2. As $K_i = V_K(W_i) \supset M$ and $W_i \supseteq C$ for $i = 1, 2, \ldots, n$, d_2 is contained in none of K_i's. Since C_0 is infinite, we can choose by Lemma 1 an element $c \in C_0$ such that $(d_2 + c)^{-1} \not\in K_i (i = 1, 2, \ldots, n)$. Hence we have $K = C_0[d_1, (d_2 + c)a, (d_2 + c)^{-1}]$. Clearly, $K = (d_2 + c)^{-1}K(d_2 + c) = C_0[(d_2 + c)^{-1}d_1(d_2 + c), a] = C_0[a] [(d_2 + c)^{-1}d_1(d_2 + c) = L [(d_2 + c)^{-1}d_1(d_2 + c)]] = K$, whence $K = L[d]$ for $d = (d_2 + c)^{-1}d_1(d_2 + c)$.

Remark. In case $L = Z$, $H = L[C]$ and so $V_H(H) = C[Z]$.

Combining Lemma 7 with Corollaries 3, 4, we can easily obtain the following:

Theorem 2. Under the assumption that K is non-commutative and $V_K(H) = C[Z]$, $K = L[d]$ with some d if and only if $L \not\subset C$.

Corollary 6. Under the assumption that K is non-commutative and K is inner Galois over L, $K = L[d]$ with some d if and only if $L \not\subset C$.

Proof. Clearly, $H = V_K(V_K(L)) = L$, and so, we obtain $C \subset V_K(H) = V_K(L) = Z$. Hence, our assertion is an immediate consequence of Theorem 2.

Combining Lemma 7 with Corollary 5, we can easily obtain the following:

Corollary 7. Let L be finite over Z and K be non-commutative, then $D = L[d]$ with some $d \in K$ if and only if $L \not\subset C$.
3. Two conjugate generating elements of K over L.

Theorem 3. If $V_{\kappa}(L)$ is commutative, then $D = L[k, uku^{-1}]$ with some $k, u \in D$.

Proof. If $V_{\kappa}(L)$ is finite, then $D = L[d]$ with some d in D by [5, Corollary 2]. If $V_{\nu}(Z) \subseteq H$, then $D = L[d]$ with some d in D by Theorem 1 (2). In both cases, the theorem holds clearly true. Hence we shall assume that $V_{\kappa}(L)$ is infinite and $V_{\nu}(Z)$ is not contained in H. Then clearly $L \cap C$ is infinite, D is non-commutative and $V_{\kappa}(L) \nsubseteq V_{\kappa}(V_{\nu}(Z))$. Since $V_{\kappa}(L) \supseteq V_{\kappa}(V_{\nu}(Z)) \supseteq Z$ and $V_{\kappa}(L)$ is separable over Z, so it is over $V_{\kappa}(V_{\nu}(Z))$. Then there exists only a finite number of subfields $\{W_1, \ldots, W_n\}$ of $V_{\kappa}(L)$ which properly contain $V_{\kappa}(V_{\nu}(Z))$. Let $\{t_1, \ldots, t_n\}$ be chosen such that $t_i \in W_i \setminus V_{\kappa}(V_{\nu}(Z))$. Since L is infinite, we can select from $V_{\nu}(Z)$ an element d such that $d^i \neq d(i = 1, 2, \ldots, n)$, by making use of the same method as in the proof of [2, Hilfssatz 1]. Then $V_{\kappa}(V_{\nu}(Z)) = V_{\kappa}(V_{\nu}(Z))$. Moreover, by Theorem (1), there exists some $f \in D$ such that $D = V_{\nu}(Z)[f]$ and $L[f] \supseteq d$. And so, $V_{\kappa}(L[f]) = V_{\kappa}(L[f], d) = V_{\kappa}(V_{\nu}(Z), d) = V_{\kappa}(V_{\nu}(Z))$. Thus, we have $V_{\kappa}(V_{\nu}(Z)[f]) \supseteq D \supseteq L[f]$. Clearly, $V_{\kappa}(V_{\kappa}(L[f]))$ is outer Galois over $L[f]$ so that there exists only a finite number of intermediate subrings of $D/L[f]$. Hence, by Lemma 2, $D = L[k, uku^{-1}]$ for some $k, u \in D$.

Lemma 8. If D is left set-wise invariant by \mathfrak{S}, then $D = L[k, uku^{-1}]$ with some $k, u \in D$.

Proof. By [4, Lemma 2], either $D \subseteq H$ or $D \supseteq V_{\kappa}(L)$. In the first case, D has a single generating element over L by [5, Corollary 3]. Now, we shall assume that $D \nsubseteq H$, so that $D \supseteq V_{\kappa}(L) (= V_{\nu}(L))$ and D is non-commutative. We set $D_1 = V_{\nu}(V_{\nu}(L))$, then D is inner Galois over D_1. If $D_1 \supseteq V_{\nu}(D)$, then $D = D_1[d]$ by Corollary 6. Since $V_{\nu}(D) = V_{\kappa}(L)$, it follows that $L \subseteq D_1 \subseteq H$, whence $V_{\kappa}(L[d]) = V_{\kappa}(V_{\nu}(D) = V_{\kappa}(D_1[d]) = V_{\kappa}(V_{\nu}(D)) \supseteq D \supseteq L[d]$. Clearly, $V_{\kappa}(V_{\nu}(L[d]))$ is outer Galois over $L[d]$. So that, all the assumptions in Lemma 2 are satisfied with respect to $D/L[d]$. Hence $D = L[k, uku^{-1}]$ for some $k, u \in D$ by Lemma 2.

On the other hand, if $D_1 = V_{\nu}(D)$, then $L \subseteq D_1 = V_{\nu}(D)$, and so $Z = V_{\nu}(L) = L$, $V_{\kappa}(L) \subseteq D \subset V_{\kappa}(V_{\nu}(D) \subset V_{\kappa}(L)$. Hence $D = V_{\kappa}(L)$. As is easily seen, $V_{\kappa}(L)$ is Galois over Z. Moreover, $V_{\nu}(D) = C[Z]$ is
separable over \(Z \). We have therefore \(D = V(x)(L) = Z[k, uk^{-1}] \) with some \(k, u \in D \) by [5, Lemma 4].

Theorem 4. If, for any \(x \in D \), \(\{ x \}\) is finite, then \(D = L[k, uk^{-1}] \) for some \(k, u \in D \). In particular, \(K = L[k, uk^{-1}] \) for some \(k, u \in K \).

Proof. In case \(\mathfrak{G}(K/L) \) is almost outer, all the restrictions in this theorem are superfluous and \(D = L[d] \) for some \(d \in D \) by [5, Corollary]. On the other hand, in case \(\mathfrak{G}(K/L) \) is not almost outer, by making use of the same method as in the proof of [5, Principal Theorem], we obtain that \(D \) is left set-wise invariant by \(\mathfrak{S} \). Hence \(D = L[k, uk^{-1}] \) for some \(k, u \in D \) by Lemma 8.

And we can readily see.

Corollary 8. Let \(K/L \) be Galois, \(\mathfrak{G}(K/L) \) be locally finite-dimensional. If \(D \) is an intermediate subring of \(K \) finite over \(L \) such that, for any \(x \in D \), \(\{ x \}\) is finite, then \(D = L[k, uk^{-1}] \) with some \(k, u \in D \).

REFERENCES

DEPARTMENT OF MATHEMATICS,

OKAYAMA UNIVERSITY

(Received March 3, 1957)