On periodic P.I. rings and locally finite rings

Yasuyuki Hirano

*Okayama University

ON PERIODIC P.I. RINGS AND
LOCALLY FINITE RINGS

YASUYUKI HIRANO

An element x of a ring R is called periodic if there exist distinct positive integers m, n for which $x^m = x^n$. Especially, x is called potent if $x^m = x$ for some positive integer $m > 1$. A ring R is called periodic if all elements of R are periodic. It is easily seen that a periodic ring R has the property that every element of R is expressible as a sum of a potent element and a nilpotent element. However it is not known whether a ring R with this property is periodic or not. On the other hand, by a result of the author and H. Tominaga [6], if R is a P. I. ring in which every element is the sum of two idempotents, then R is periodic. In this paper, we shall prove that a P. I. ring R in which every element is expressible as a sum of two periodic elements, is periodic.

We shall next consider the local finiteness of a periodic P. I. ring. A ring R is said to be locally finite if any finitely generated subring of R is a finite ring. Let R be a periodic P. I. ring, and S a finitely generated subring of R. We shall show that the additive group of S is finitely generated and that some power of S is a finite ring. Consequently a P. I. ring R is locally finite if and only if R is periodic and the additive group of R is a torsion group. Using this, we shall give a characterization of a locally finite ring.

We begin with the following lemma.

Lemma 1. Let R be a ring. Then R is periodic if and only if all prime factor rings of R are periodic.

Proof. Suppose that all prime factor rings of R are periodic. For each $x \in R$, let $S(x) = \{x^n - x^{n+1}f(x) | n > 0 \text{ is an integer, } f(t) \in \mathbb{Z}[t] \}$, which is multiplicatively closed. By virtue of [3, Proposition 2], R is periodic if and only if $0 \in S(x)$ for all $x \in R$. Assume, to the contrary, that there exists $a \in R$ such that $0 \notin S(a)$. Then, by Zorn’s lemma, we can find an ideal I of R which is maximal with respect to the property that $S(a) \cap I = \phi$. It is easy to check that I is a prime ideal of R. Hence R/I is periodic by hypothesis. But this contradicts the fact that $S(a) \cap I = \phi$.

A ring R is said to be of bounded index (of nilpotence) if there is a positive integer n such that $a^n = 0$ for any nilpotent element a in R. The least
such integer is called the index of R. We shall show that a periodic ring of bounded index is a P. I. ring. Let G denote the symmetric group of degree n. The identity
\[s_n = \sum_{\sigma \in G} \text{sgn}(\sigma) X_{1\sigma} X_{2\sigma} \cdots X_{n\sigma} \]
is called the standard identity of degree n.

Proposition 1. Let n be a positive integer and let R be a periodic ring of index n. Then R satisfies the polynomial identity $(s_2)^n$.

Proof. Let J denote the Jacobson radical of R, and x an element of J. Then there exist positive integers p, q such that $x^{p+q} = x^p$. By [4, Theorem 1.2.3] all elements of J are right-quasi-regular. Hence there exists $y \in R$ such that $(-x^p) + y + (-x^q)y = 0$. Then $x^p = x^p + x^q(-x^p + y - x^q) = (x^p - x^{p+q}) + (x^q - x^{p+q})y = 0$. This implies that J is a nil ideal. Let P be a primitive ideal of R. By [7, Theorem 2.3] $R/P = M_t(D)$ for some division ring D and some positive integer $t \leq n$. Since D is a periodic division ring, D is commutative by [4, Lemma 3.1.3]. Hence R/P satisfies the standard identity s_{2n} of degree $2n$ by [8, Theorem 1.4.1]. Since R/J can be embedded in the direct product of all primitive factor rings of R, R/J also satisfies the identity s_{2n}, in other words, $s_{2n}(a_1, a_2, \ldots, a_{2n}) \in J$ for all elements a_1, a_2, \ldots, a_{2n} in R. Since J is a nil ideal of index at most n, we have that $s_{2n}(a_1, a_2, \ldots, a_{2n}) = 0$ for all $a_1, a_2, \ldots, a_{2n} \in R$. This completes the proof.

If R is a periodic ring, each element x in R can be expressed in the form $y + w$, where $y^n = y$ for some $n = n(y) > 1$ and w is nilpotent (e.g., see [2, Lemma 1]). However it is not known whether this property characterizes a periodic ring. On the other hand, by [6, Theorem 2], if R is a P. I. ring in which every element is the sum of two idempotents then, for any $x \in R$, $x^3 - x$ is nilpotent. Hence R is periodic by [3, Proposition 2]. We shall now prove the following

Theorem 1. Let R be a P. I. ring. If every element of R is expressed as a sum of two periodic elements, then R is periodic.

Proof. By virtue of Lemma 1, we may assume that R is a prime ring. Then, by [5, Theorem 1.4.2] the center C of R is nonzero. We claim that C is periodic. Let c be a nonzero element of C. Then, by hypothesis, there
exist \(x, y \in R \) such that \(c = x + y, x^n = x^n \) for some \(m > n > 0 \), and \(y^p = y^q \) for some \(p > q > 0 \). Then \((c - y)^m = (c - y)^n\), and so \((c^n - c^n) = zy \) for some \(z \in C[y] \subseteq R \). If \(c^n - c^n \) is nilpotent, then \(c^n = c^n \), because \(C \) is an integral domain. Assume now that \(c^n - c^n \) is not nilpotent. Then \(e = \frac{y^p - y^q}{y^q} \) is a nonzero idempotent and \(y^q e = ey^q = y^q \). Therefore we have that \((c^n - c^n)^q (ae - a) = 0 \) for all \(a \in R \). Let us put \(L = \{ae - a \mid a \in R \} \). Then \(L \) is a left ideal of \(R \), and as seen above, \((c^n - c^n)^q L = 0 \). Since \((c^n - c^n)^q \neq 0 \) and since \(R \) is a prime ring, we obtain \(L = 0 \), that is, \(e \) is a right identity of \(R \). We can similarly prove that \(e \) is a left identity of \(R \). Hence \(e \) is the identity of \(R \). We shall now prove that the characteristic of \(R \) is nonzero. Assume, to the contrary, that the characteristic of \(R \) is zero. Then we may assume that \(R \) contains the ring \(Z \) of integers as a subring. By hypothesis, there exist two periodic elements \(v, w \in R \) such that \(3 = v + w \). Obviously the subring \(S = Z[v, w] \) of \(R \) generated by \(v \) and \(w \) over \(Z \) is a commutative ring which is integral over \(Z \). By [1, Theorem 5.10] there exists a prime ideal \(P \) of \(S \) such that \(P \cap Z = 0 \). Consider now the factor ring \(S/\overline{P} \). Then \(S \) is an integral domain which is integral over \(Z \). So, without loss of generality, we may assume that \(S \) is a subring of the field \(C \) of complex numbers. In general, if \(a \) is a periodic element of \(C \), then the absolute value \(|a| \) of \(a \) is either 0 or 1. Hence we have \(3 = |v + w| \leq |v| + |w| \leq 2 \), which is a contradiction. Therefore the characteristic of \(R \) is nonzero. Let \(F \) denote the prime field of \(C \). Since \(x \) and \(y \) are integral over \(F \), \(c = x + y \) is integral over \(F \). Hence \(c \) generates a finite subring of \(C \), and so \(c \) is periodic. Therefore we proved that \(C \) is a periodic field. By [8, Corollary 1.6.28], \(R \) is a simple P.I. ring. Hence, by Kaplansky’s theorem [8, Theorem 1.5.16], \(R \) can be identified with the matrix ring \(M_k(D) \) over a division ring \(D \) which is finite dimensional over \(C \). Then \(D \) is also periodic, and hence \(D \) is commutative. Thus we get \(C = D \). Therefore \(R = M_\delta(C) \) is periodic.

We shall next consider the finitely generated subrings of a periodic P.I. ring. Clearly a periodic P.I. ring need not be locally finite. For example, the subring

\[
\begin{pmatrix}
0 & Z \\
0 & 0
\end{pmatrix}
\]

of \(M_\delta(Z) \)

is a finitely generated periodic commutative ring, but this is not a finite ring. We shall prove the following:

Theorem 2. Let \(R \) be a periodic P.I. ring and let \(S \) be a finitely gener-
ated subring of \(R \). Then the additive group \(S^* \) of \(S \) is a finitely generated abelian group. Moreover there exists a positive integer \(n \) such that \(S^n \) is a finite ring. In particular, if \(S \) has an identity, then \(S \) is finite.

Proof. Let \(t(S) \) denote the torsion submodule of the \(\mathbb{Z} \)-module \(S \). Then \(t(S) \) is an ideal of \(S \) and \(S/t(S) \) is torsion-free. Let \(x \) be an element of \(S/t(S) \). Then \(x^{m+n} = x^m \) for some positive integers \(m, n \). Then we can easily see that \(x^m \) is an idempotent. Since \((2x^{m+n})^{p+q} = (2x^m)^p \) for some positive integers \(p \) and \(q \), we obtain a positive integer \(h \) such that \(hx^{m+n} = 0 \). Since \(S/t(S) \) is torsion-free, we conclude that \(x^{m+n} = 0 \). Thus \(S/t(S) \) is a nil ring. Since \(S/t(S) \) is also a finitely generated P.I. ring, there exists a positive integer \(n \) such that \((S/t(S))^n = 0 \) by [8, Proposition 1.6.34]. Hence we have \(S^n \subset t(S) \). Let \(c_1, c_2, \ldots, c_n \) generate the subring \(S \). Then \(A = \{ c_1, c_2, \ldots, c_n \} | 1 \leq i \leq m \} \) is a finite set, and hence there exists a positive integer \(k \) such that \(kA = 0 \). Hence we have \(kS^n = 0 \). Let \(B \) denote the set \(\{ c_1, c_2, \ldots, c_n \} | 1 \leq i \leq m, 1 \leq p \leq n \} \). Then we can easily see that

\[
kS = \sum_{b \in B} \mathbb{Z}kb.
\]

Hence \(kS \) is a finitely generated \(\mathbb{Z} \)-module. Let \(S' \) denote the ring \(S/kS \) and let us write \(k = \prod_{i=1}^t p_i^{k_i} \) where the \(p_i \) are distinct primes and \(k_i > 0 \) for all \(i \). Then, for each \(i \), \(S_i = \{ a \in S' | p_i^{k_i}a = 0 \} \) is a subring of \(S' \) and \(S' \) is the direct sum of \(S_1, S_2, \ldots, S_t \). We shall show that \(S' \) is finite. To show it, it suffices to prove that \(S_i \) is finite for each \(i = 1, 2, \ldots, t \). Hence, without loss of generality, we may assume that \(k = p^h \) for some prime \(p \) and some positive integer \(h \). Let us set \(I = pS' \). Then \(I^h = 0 \) and \(p^{h-1}I = 0 \). Then the ring \(S'/I \) is a finitely generated periodic algebra over \(\mathbb{Z}/p\mathbb{Z} \) satisfying a polynomial identity. Hence \(S/I \) is a finite dimensional algebra over \(\mathbb{Z}/p\mathbb{Z} \) by [4, Theorem 6.4.3]. Let \(S'/I = \{ a_0 + I, a_1 + I, \ldots, a_d + I \} \) where \(a_0 = 0 \), \(a_1, \ldots, a_d \) are elements of \(S' \). Then we can choose elements \(b_1, b_2, \ldots, b_r \) of \(I \) such that \(a_1, a_2, \ldots, a_d, b_1, b_2, \ldots, b_r \) generate \(S' \). For any \(i, j \) with \(1 \leq i, j \leq d \), we have a unique integer \(t(i, j) \) with \(1 \leq t(i, j) \leq d \) such that \(a_i a_j = a_{t(i, j)} \) modulo \(I \). Similarly we have a unique integer \(s(i, j) \) such that \(a_i + a_j = a_{s(i, j)} \) modulo \(I \). Let us now set \(x_{ij} = a_i a_j - a_{s(i, j)} \) and \(y_{ij} = a_i + a_j - a_{t(i, j)} \) for each \(1 \leq i, j \leq d \). Let \(J \) denote the subring of \(S' \) generated by \(x_{ab}, y_{uv}, b_1, a_1 a_2, a_1 y_{uv}, a_2 y_{uv}, b_1 a_1, x_{ab} a_1, y_{uv} a_2, b_1 a_1 \) for \(1 \leq a, \beta, \gamma \leq d, 1 \leq \mu, \nu \leq d, 1 \leq \lambda \leq f \). Then \(J \) is a finitely generated subring of \(I \). Since \(I^h = 0 \) and \(p^{h-1}I = 0 \), \(J \) must be finite. We can now easily see that each element \(x \) of \(S' \) can be uniquely expressed in the form \(a_i + z \), where \(0 \leq i \leq d \) and \(z \in J \). This implies that \(I = J \). Therefore \(S' \) is a finite ring. Conse-
quently S is a finitely generated \mathbb{Z}-module. Since the additive group of S^n is a torsion group, S^n is a finite ring. In particular, if S has an identity, then $S^n = S$, and hence S is finite.

As an immediate consequence of this theorem, we obtain the following:

Corollary 1. Let R be a P. I. ring. Then R is locally finite if and only if R is periodic and the additive group of R is a torsion group.

A ring R is said to be of locally bounded index if every finitely generated subring of R is of bounded index. Combining Corollary 1 with Proposition 1, we obtain the following characterization of a locally finite ring.

Corollary 2. A ring R is locally finite if and only if R is a periodic ring of locally bounded index and the additive group of R is a torsion group.

The following example due to Golod and Shafarevitch shows that a finitely generated periodic ring with torsion additive group need not be finite.

Example 1. Let p be a prime number. By [4, Theorem 8.1.3], there exists an infinite dimensional nil algebra A over $\mathbb{Z}/p\mathbb{Z}$ generated by three elements. Clearly A is generated by those three elements as a ring. Note that those elements generate infinite subsemigroup of the multiplicative semigroup of R.

As another corollary of Theorem 2, we obtain the following:

Corollary 3. Let R be a P. I. ring. Then the following statements are equivalent:

1. R is periodic.
2. For any finitely generated subring S of R, there exists a positive integer n such that S^n is a finite subring.
3. For any finitely generated subring S of R, there exists a finite ideal I of S such that S/I is a nilpotent ring.
4. The ideal $t(R) = \{a \in R | na = 0 \text{ for some positive integer } n\}$ is locally finite and $R/t(R)$ is a nil ring.

Proof. The implication (1) \Rightarrow (2) follows from Theorem 2 and (2) \Rightarrow (3) is obvious.

(3) \Rightarrow (1). Let x be an element of R, and S denote the subring of R
generated by \(x \). Then there exists a finite ideal \(I \) of \(S \) such that \(S/I \) is nilpotent. This implies that some power of \(x \) generates a finite subring. Hence there exist distinct positive integers \(m, n \) such that \(x^m = x^n \).

(1) \(\iff \) (4). Assume that \(R \) is periodic. By Corollary 1 \(t(R) \) is locally finite. We also know that \(R/t(R) \) is a nil ring by the proof of Theorem 2.

Conversely, suppose that (4) holds, and let \(x \) be an element of \(R \). Then some power of \(x \) generates a finite subring of \(R \), and hence \(x \) is periodic.

A ring \(R \) is periodic if and only if each subsemigroup of \(R \) generated by a single element is finite. If \(R \) is a commutative periodic ring, then all finitely generated subsemigroups of \(R \) are finite. However Example 1 shows that this does not remain valid for noncommutative periodic rings. Thus we have the following

Conjecture. Let \(R \) be a periodic P. I. ring. Then all finitely generated subsemigroups of \(R \) are finite.

REFERENCES

DEPARTMENT OF MATHEMATICS

OKAYAMA UNIVERSITY

OKAYAMA, 700 JAPAN

(Received December 5, 1990)