On the Weighted Ergodic Properties of Invertible Lamperti Operators

Ryotaro Sato*
On the Weighted Ergodic Properties of Invertible Lamperti Operators

Ryotaro Sato

Abstract

In this paper we investigate the weighted ergodic properties of invertible Lamperti operators. Some results of Martín-Reyes, de la Torre and others in Málaga (Spain) are unified and generalized.

KEYWORDS: Weighted ergodic properties, invertible Lamperti operators, dominated ergodic theorem, almost everywhere convergence in the sense of Cesaro-alpha means, ergodic averages, ergodic Hilbert transform

ON THE WEIGHTED ERGODIC PROPERTIES OF INVERTIBLE LAMPERTI OPERATORS

RYOTARO SATO

ABSTRACT. In this paper we investigate the weighted ergodic properties of invertible Lamperti operators. Some results of Martín-Reyes, de la Torre and others in Málaga (Spain) are unified and generalized.

1. INTRODUCTION

Let \((X, \mathcal{F}, \mu)\) be a \(\sigma\)-finite measure space and let \(M(\mu)\) denote the space of all complex-valued measurable functions on \(X\). Two functions \(f\) and \(g\) in \(M(\mu)\) are not distinguished provided that \(f(x) = g(x)\) for almost all \(x \in X\). Hereafter all statements and relations will be assumed to hold modulo sets of measure zero. By a Lamperti operator \(T\) on \(M(\mu)\) we mean an operator of the form

\[
Tf(x) = h(x)\Phi f(x),
\]

where \(h \in M(\mu)\) is a fixed function and \(\Phi : M(\mu) \rightarrow M(\mu)\) is a linear and multiplicative operator. We recall that \(\Phi\) is a multiplicative operator if \(\Phi\) satisfies \(\Phi(fg) = (\Phi f)(\Phi g)\) for all \(f, g \in M(\mu)\).

In this paper we always assume \(T\) to be invertible on \(M(\mu)\). Hence it follows that \(0 < |h| < \infty\) a.e. on \(X\) and that \(\Phi\) is invertible on \(M(\mu)\). The following properties of \(T\) are known (cf. [11], [13]).

(I) If we put \(h_1 = h\), \(h_0 = 1\), \(h_{-1} = 1/\Phi^{-1}h\), \(h_n = h_1 \cdot \Phi h_{n-1}\) and \(h_{-n} = h_{-1} \cdot \Phi^{-1}h_{-n+1}\) \((n \geq 2)\), then for each \(j, k \in \mathbb{Z}\) we have

\[
T^j f = h_j \cdot \Phi^j f \quad \text{and} \quad h_{j+k} = h_j \cdot \Phi^j h_k.
\]

(II) By the Radon-Nikodym theorem, for each \(j \in \mathbb{Z}\) there exists a positive measurable function \(J_j\) in \(M(\mu)\) such that if \(0 \leq f \in M(\mu)\) then

\[
\int J_j \cdot \Phi^j f \, d\mu = \int f \, d\mu \quad \text{and} \quad J_{j+k} = J_j \cdot \Phi^j J_k \quad \text{for} \quad j, k \in \mathbb{Z}.
\]

Let \(\tau f = |h_1| \cdot \Phi f\) for \(f \in M(\mu)\). Then \(\tau\) is a positive invertible Lamperti operator, and for each \(j \in \mathbb{Z}\) we have

\[
\tau^j f = |h_j| \cdot \Phi^j f \quad \text{and} \quad |\tau^j f| = |T^j f| \quad \text{for} \quad f \in M(\mu),
\]

1991 Mathematics Subject Classification. Primary 47A35.

Key words and phrases. Weighted ergodic properties, invertible Lamperti operators, dominated ergodic theorem, almost everywhere convergence in the sense of Cesàro-\(\alpha\) means, ergodic averages, ergodic Hilbert transform.
so that τ^j becomes the linear modulus of T^j.

We recall that if $T : L^p(\mu) \rightarrow L^p(\mu)$, where $1 \leq p \leq \infty$, is a positive linear operator with positive inverse then T has the form (1) for $f \in L^p(\mu)$ (cf. [11]), and thus the operator has a unique extension to an invertible Lamperti operator on $M(\mu)$.

Let w be a nonnegative extended real-valued measurable function on X. Then, since the measure $wd\mu$ on \mathcal{F} is absolutely continuous with respect to μ, $f = g$ a.e. μ implies that $f = g$ a.e. $wd\mu$. But the converse does not hold. Therefore, as it is easily seen, a Lamperti operator T on $M(\mu)$ is no longer an operator on $M(wd\mu)$ in general. And even though it is the case, the operator T is not necessarily invertible on $M(wd\mu)$. In the case where T is invertible on $M(wd\mu)$ and the measure $wd\mu$ is σ-finite, the study of weighted ergodic properties of T on $M(wd\mu)$ reduces to that of T on $M(\mu)$; and there are many papers investigating successfully invertible Lamperti operators T on $M(\mu)$. See e.g. [1], [2], [3], [5], [15], [17] and [23], etc. However it should seem that the study is not enough for the non-invertible case, although some papers have treated of not necessarily invertible Lamperti operators (see e.g. [11], [12]), and hence the author thinks that it would be interesting to investigate the weighted ergodic properties of T on $M(wd\mu)$, without assuming the invertibility of T on $M(wd\mu)$. This is the starting point of the paper. Here we remark that, by an easy observation, an invertible Lamperti operator T on $M(\mu)$ defined by (1) becomes an operator on $M(wd\mu)$ if and only if $\Phi_{\chi_A} \leq \chi_A$, where we let $A = \{ x : w(x) = 0 \}$ and χ_A denotes the characteristic function of A.

For an invertible Lamperti operator T on $M(\mu)$ we introduce two ergodic maximal operators $M^+(T)$ and $M(T)$ on $M(\mu)$ by the relations

\begin{equation}
M^+(T)f = \sup_{n \geq 0} |T_0, nf|
\end{equation}

and

\begin{equation}
M(T)f = \sup_{m,n \geq 0} |T_m, nf|,
\end{equation}

where we let

\[T_{m,n} = \frac{1}{m+n+1} \sum_{i=-m}^{n} T^i. \]

For simplicity τ will denote a positive invertible Lamperti operator on $M(\mu)$, unless the contrary is explained explicitly. In Section 2 we first characterize those τ for which the ergodic maximal operator $M^+(\tau)$ [or $M(\tau)$] is bounded in $L^p(wd\mu)$, $1 < p < \infty$. Among other things we will observe that $M^+(\tau)$ is bounded in $L^p(wd\mu)$ if and only if τ is an operator on $M(wd\mu)$ and satisfies

\begin{equation}
\sup_{n \geq 0} \| \tau_{0,n} \|_{L^p(wd\mu)} < \infty.
\end{equation}
This generalizes Martín-Reyes and de la Torre’s dominated ergodic theorem [17]; they considered the particular case where \(\tau \) comes from a positive linear operator in \(L^p(\mu), 1 < p < \infty \), with positive inverse and \(w = 1 \) on \(X \). We then apply the results obtained to prove the a.e. convergence of the ergodic averages \((1/n) \sum_{i=0}^{n-1} T^i f \) and ergodic partial sums \(\sum_{k=1}^{n} (T^k f - T^{-k} f)/k \).

In Section 3 we consider an invertible Lamperti operator \(T \) on \(M(\mu) \) such that

\[
K_\infty := \sup_{n \in \mathbb{Z}} \|T^n\|_{L^\infty(\mu)} < \infty.
\]

Under the additional hypothesis that \(\Phi \) has no periodic part (i.e. for any \(n \geq 1 \) and \(E \in \mathcal{F} \) with \(\mu E > 0 \) there exists a non-null measurable subset \(A \) of \(E \) such that \(\Phi^n \chi_A \neq \chi_A \)), we prove that the ergodic maximal operator \(M^+(T) \) is of weak type \((p, p), 1 \leq p < \infty \), with respect to the measure \(w d\mu \) if and only if the linear modulus \(\tau \) of \(T \) is an operator on \(M(wd\mu) \) and satisfies norm condition (7). We also consider the ergodic maximal Hilbert transform \(H^*(T) \) on \(M(\mu) \) defined by the relation

\[
H^*(T)f = \sup_{n \geq 1} \left| \sum_{k=1}^{n} \frac{T^k f - T^{-k} f}{k} \right|.
\]

It will be proved that \(H^*(T) \) is of weak type \((p, p), 1 \leq p < \infty \), with respect to the measure \(w d\mu \) if and only if the linear modulus \(\tau \) of \(T \) is an invertible operator on \(M(wd\mu) \) and satisfies

\[
\sup_{n \geq 0} \|\tau_{-n, n}\|_{L^p(wd\mu)} < \infty.
\]

These generalize results of Atencia, Martín-Reyes and de la Torre (cf. [1], [2], [3]); they considered the case where \(w \) and \(T \) are such that \(0 < w \in L^1(\mu) \) and \(T \) is of the form \(Tf(x) = (f \circ \phi)(x) = f(\phi x) \), where \(\phi \) is an ergodic invertible measure preserving transformation on a nonatomic probability measure space. Our proof is an adaptation of their arguments.

Lastly we unify the weighted inequalities obtained here and recent results of [4], [5], [15] to prove the a.e. convergence of the ergodic sequence \(\{T^n f\} \) and the ergodic partial sums \(\{\sum_{k=1}^{n} (T^k f - T^{-k} f)/k\} \) in the sense of Cesàro-\(\alpha \) means.

Throughout the paper \(C \) will denote a positive constant not necessarily the same at each occurrence.

Acknowledgement. The author thanks the referee for helpful comments which made the paper readable.

2. Weighted strong type inequalities and applications

In this section we first consider a \textit{positive} invertible Lamperti operator \(\tau \) on \(M(\mu) \). Let \(\tau f = h_1 \cdot \Phi f \). Then (2) holds with \(\tau \) instead of \(T \), and we have \(0 < h_j < \infty \) on \(X \) for each \(j \in \mathbb{Z} \).
Theorem 1. Let $0 \leq w \leq \infty$ on X and let $1 < p < \infty$. Then the following statements are equivalent for a positive invertible Lamperti operator τ on $M(\mu)$.

(a) τ is an operator on $M(wd\mu)$ and there exists a positive constant C such that for any $f \in L^p(wd\mu)$

\begin{equation}
\int |M^+(\tau)f|^p w \, d\mu \leq C \int |f|^p w \, d\mu.
\end{equation}

(b) τ is an operator on $M(wd\mu)$ and there exists a positive constant C such that for any $f \in L^p(wd\mu)$

\begin{equation}
\sup_{n \geq 0} \int |\tau_n f|^p w \, d\mu \leq C \int |f|^p w \, d\mu.
\end{equation}

(c) There exists a positive constant C such that for a.e. $x \in X$ and all $k \geq 0$

\begin{equation}
\left(\sum_{i=0}^{k} h_{-i}(x)^{-p} J_{-i}(x) \Phi^{-i} w(x) \right) \cdot \left(\sum_{i=0}^{k} [h_i(x)]^{-p} J_i(x) \Phi^i w(x) \right)^{\frac{1}{p-1}} \leq C(k + 1)^p.
\end{equation}

Theorem 2. Let $0 \leq w \leq \infty$ on X and let $1 < p < \infty$. Then the following statements are equivalent for a positive invertible Lamperti operator τ on $M(\mu)$.

(a) τ is an invertible operator on $M(wd\mu)$ and there exists a positive constant C such that for any $f \in L^p(wd\mu)$

\begin{equation}
\int |M(\tau)f|^p w \, d\mu \leq C \int |f|^p w \, d\mu.
\end{equation}

(b) τ is an invertible operator on $M(wd\mu)$ and there exists a positive constant C such that for any $f \in L^p(wd\mu)$

\begin{equation}
\sup_{n \geq 0} \int |\tau_{-n} f|^p w \, d\mu \leq C \int |f|^p w \, d\mu.
\end{equation}

(c) There exists a positive constant C such that for a.e. $x \in X$ and all $k \geq 0$

\begin{equation}
\left(\sum_{i=0}^{k} h_i(x)^{-p} J_i(x) \Phi^i w(x) \right) \cdot \left(\sum_{i=0}^{k} [h_i(x)]^{-p} J_i(x) \Phi^i w(x) \right)^{\frac{1}{p-1}} \leq C(k + 1)^p.
\end{equation}

As in [16] and [17], to prove these theorems we need the following result about weights on the integers.

Lemma 1 (cf. [14], [18], [21]). Let $0 \leq w \leq \infty$ on \mathbb{Z}. For a function f on \mathbb{Z}, define the functions f^* and f^{**} on \mathbb{Z} by the relations
WEIGHTED ERGODIC PROPERTIES

\[f^*(i) = \sup_{n \geq 0} \left| \frac{1}{n+1} \sum_{j=0}^{n} f(i+j) \right| \]

and

\[f^{**}(i) = \sup_{n, m \geq 0} \left| \frac{1}{m+n+1} \sum_{j=-m}^{n} f(i+j) \right| \]

Then we have:

(I) When \(1 < p < \infty \), there exists a positive constant \(C \) such that
\[
\sum_{i=-\infty}^{\infty} (f^*(i))^p w(i) \leq C \sum_{i=-\infty}^{\infty} |f(i)|^p w(i) \quad \text{for all } f \text{ if and only if there exists a positive constant } C \text{ such that for all } j \in \mathbb{Z} \text{ and } k \geq 0
\]

\[
\left(\sum_{i=0}^{k} w(j-i) \right) \cdot \left(\sum_{i=0}^{k} w(j+i)^{-\frac{1}{p-1}} \right)^{p-1} \leq C(k+1)^p.
\]

(II) When \(1 < p < \infty \), there exists a positive constant \(C \) such that
\[
\sum_{i=-\infty}^{\infty} (f^{**}(i))^p w(i) \leq C \sum_{i=-\infty}^{\infty} |f(i)|^p w(i) \quad \text{for all } f \text{ if and only if there exists a positive constant } C \text{ such that for all } j \in \mathbb{Z} \text{ and } k \geq 0
\]

\[
\left(\sum_{i=0}^{k} w(j+i) \right) \cdot \left(\sum_{i=0}^{k} w(j+i)^{-\frac{1}{p-1}} \right)^{p-1} \leq C(k+1)^p.
\]

(III) There exists a positive constant \(C \) such that for all \(f \) and \(\lambda > 0 \)

\[
\sum_{\{i : f^*(i) > \lambda\}} w(i) \leq C \frac{1}{\lambda} \sum_{i=-\infty}^{\infty} |f(i)| w(i)
\]

if and only if there exists a positive constant \(C \) such that for all \(j \in \mathbb{Z} \)

\[
\sup_{n \geq 0} \frac{1}{n+1} \sum_{i=0}^{n} w(j-i) \leq C w(j).
\]

Proof of Theorem 1. (c) \(\Rightarrow \) (a). Let \(A = \{ x : w(x) = 0 \} \). We apply (13) with \(k = 1 \) to see that \(\Phi^{-1} \chi_A \geq \chi_A \). Hence \(\Phi \chi_A \leq \chi_A \), and thus \(\tau \) becomes an operator on \(M(wd\mu) \). Let \(0 \leq f \in L^p(wd\mu) \). For an \(N \geq 1 \) we put

\[
f_N^* = \max_{0 \leq n \leq N} \tau_0, n f.
\]

Then for each \(L \geq 1 \) we have, by (3),

\[
\int (f_N^*)^p w \, d\mu = \frac{1}{L+1} \int \sum_{i=0}^{L} (\tau_i f_N^*)^p (h_i^{-p}, J_i \Phi^i w) \, d\mu,
\]

Proof of Theorem 2. (c) \(\Rightarrow \) (a). Let \(A = \{ x : w(x) = 0 \} \). We apply (13) with \(k = 1 \) to see that \(\Phi^{-1} \chi_A \geq \chi_A \). Hence \(\Phi \chi_A \leq \chi_A \), and thus \(\tau \) becomes an operator on \(M(wd\mu) \). Let \(0 \leq f \in L^p(wd\mu) \). For an \(N \geq 1 \) we put

\[
f_N^* = \max_{0 \leq n \leq N} \tau_0, n f.
\]

Then for each \(L \geq 1 \) we have, by (3),

\[
\int (f_N^*)^p w \, d\mu = \frac{1}{L+1} \int \sum_{i=0}^{L} (\tau_i f_N^*)^p (h_i^{-p}, J_i \Phi^i w) \, d\mu,
\]
where by (2), (3) and (c),
\[\tau^j f^*_N = h_j \cdot \Phi^j f^*_N = h_j \cdot \max_{0 \leq n \leq N} \frac{1}{n+1} \sum_{i=0}^{n} \Phi^i h_i \cdot \Phi^{j+i} f \]
\[= \max_{0 \leq n \leq N} \frac{1}{n+1} \sum_{i=0}^{n} \tau^{j+i} f \]
and
\[\left(\sum_{i=0}^{k} h_{j-i}^{-p} J_{j-i} \Phi^{j-i} w \right) \cdot \left(\sum_{i=0}^{k} \left[h_{j+i}^{-p} J_{j+i} \Phi^{j+i} w \right]^{\frac{1}{p-1}} \right)^{p-1} \leq C(k+1)^p \text{ a.e.} \]
on \(X \) for all \(j \in \mathbb{Z} \) and \(k \geq 0 \). Thus we apply Lemma A to obtain that
\[\int (f^*_N)^p w \, d\mu \leq \frac{C}{L+1} \int \sum_{i=0}^{L+N} (\tau^i f)^p (h_i^{-p} J_i \Phi^i w) \, d\mu \]
\[= \frac{C}{L+1} \sum_{i=0}^{L+N} \int \Phi^i (f^p w) \cdot J_i \, d\mu \]
\[= \frac{C}{L+1} (L+N+1) \int f^p w \, d\mu \quad \text{(by (3)).} \]
By letting \(L \uparrow \infty \) and then \(N \uparrow \infty \), it follows that
\[\int [M^+(\tau) f]^p w \, d\mu \leq C \int f^p w \, d\mu. \]

(a) \(\Rightarrow \) (b) is obvious.
(b) \(\Rightarrow \) (c). Let \(\tau^* \) denote the invertible Lamperti operator on \(M(\mu) \) defined by the relation
\[\tau^* f = \frac{J_{-1}}{h_{-1}} \Phi^{-1} f \quad \text{for} \quad f \in M(\mu). \]
Using (2) and (3), we have
\[\tau^{*i} f = \frac{J_{-i}}{h_{-i}} \cdot \Phi^{-i} f \quad \text{for} \quad i \in \mathbb{Z}, \]
and
\[\int (\tau^i f) g \, d\mu = \int f(\tau^{*i} g) \, d\mu \quad \text{for} \quad 0 \leq f, g \in M(\mu). \]
Let \(1/p + 1/p' = 1 \). If \(0 \leq f \in L^p(\mu) \) and \(k \geq 0 \) then by (b)
\[\int \left[w^{\frac{1}{p}} \cdot \tau_{0,2k}(f w^{-\frac{1}{p}}) \right]^p \, d\mu = \int w \cdot \left[\tau_{0,2k}(f w^{-\frac{1}{p}}) \right]^p \, d\mu \]
\[\leq C \int (f^p w^{-1}) w \, d\mu \leq C \int f^p \, d\mu, \]

http://escholarship.lib.okayama-u.ac.jp/mjou/vol40/iss1/18
so that the mapping \(f \mapsto w_{p}^{\frac{1}{p}} \cdot \tau_{0, 2k}(f \cdot w_{p}^{-\frac{1}{p}}) \) is a bounded linear operator from \(L^p(\mu) \) into \(L^p(\mu) \) with norm less than or equal to \(C_{p'}^{\frac{1}{p}} \); and from (21) it follows that its adjoint operator defined on \(L^{p'}(\mu) \) is identical with the mapping \(g \mapsto w_{p}^{-\frac{1}{p}} \cdot \tau_{0, 2k}^{*}(g \cdot w_{p}^{-\frac{1}{p}}) \) for \(g \in L^{p'}(\mu) \). Thus if \(0 \leq f \in L^p(\mu) \) then we have
\[
\int \left(w_{\frac{1}{p}}^{\frac{1}{p-1}} \cdot \left[\tau_{0, 2k}^{*}(f^{p-1} \cdot w_{p}^{\frac{1}{p}}) \right]^{\frac{1}{p-1}} \right)^{p} \, d\mu = \int \left(w_{p}^{-\frac{1}{p}} \cdot \tau_{0, 2k}(f^{p-1} \cdot w_{p}^{\frac{1}{p}}) \right)^{p'} \, d\mu \leq C \int f^{p} \, d\mu.
\]
Let us assume for the moment that \(p \geq 2 \). Since \(p - 1 \geq 1 \), the operator \(U : L^p(\mu) \to L^{p'}(\mu) \) defined by the relation
\[
Uf = w_{p}^{\frac{1}{p}} \cdot \tau_{0, 2k}(|f| \cdot w_{p}^{-\frac{1}{p}}) + w_{\frac{1}{p-1}}^{\frac{1}{p-1}} \cdot \left[\tau_{0, 2k}^{*}(|f|^{p-1} \cdot w_{p}^{\frac{1}{p}}) \right]^{rac{1}{p-1}}
\]
satisfies \(U(f_1 + f_2) \leq Uf_1 + Uf_2 \) for \(f_1, f_2 \in L^p(\mu) \), and clearly we have
\[
\|U\| \leq 2C.
\]
Then choose a function \(g \in L^p(\mu) \) with \(g > 0 \) on \(X \), and define a function \(G \) on \(X \) by the relation
\[
G = \sum_{i=0}^{\infty} \frac{U^{i}g}{(3C)^{i}}.
\]
It follows that \(0 < G \in L^p(\mu) \) and that
\[
UG \leq \sum_{i=0}^{\infty} \frac{U^{i+1}g}{(3C)^{i}} < 3CG < \infty \text{ a.e.}\]
on \(X \). Therefore we get
\[
\tau_{0, 2k}(G \cdot w_{p}^{-\frac{1}{p}}) \leq (3CG) \cdot w_{p}^{-\frac{1}{p}} \text{ a.e.}
\]
on \(X \), and
\[
\tau_{0, 2k}^{*}(G^{p-1} \cdot w_{p}^{\frac{1}{p}}) \leq (3CG)^{p-1} \cdot w_{p}^{\frac{1}{p}} \text{ a.e.}
\]
on \(X \). Consequently if we put
\[
w_1 = G^{p-1} \cdot w_{p}^{\frac{1}{p}} \quad \text{and} \quad w_2 = G \cdot w_{p}^{-\frac{1}{p}},
\]
then
\[
w = \left(G^{p-1} \cdot w_{p}^{\frac{1}{p}} \right) \cdot \left(G \cdot w_{p}^{-\frac{1}{p}} \right)^{1-p} = w_1 \cdot w_2^{1-p},
\]
and further by (23) and (22),
\[
\tau_{0, 2k}w_1 \leq (3C)^{p-1}w_1 \quad \text{and} \quad \tau_{0, 2k}w_2 \leq 3Cw_2 \text{ a.e.}
\]
on \(X \).

Next, let \(1 < p < 2 \). Since \(p' > 2 \) and \(w^{-1/p} = \left(\frac{1}{w^{p-1}} \right)^{1/p'} \), we can apply
the above argument to p' and observe that there exist two functions w_1 and w_2 such that

$$w_{p-1} = w_1 \cdot w_2^{1-p'}, \quad \tau_{0,2k} w_1 \leq (3C)^{p'-1} w_1 \quad \text{and} \quad \tau_{0,2k}^* w_2 \leq 3C w_2.$$

Since $w = \left(w_1 \cdot w_2^{1-p'} \right)^{1-p} = w_2 \cdot w_1^{1-p}$, we conclude that, in any case, w has the representation

$$w = w_1 \cdot w_2^{1-p} \quad \text{with} \quad \tau_{0,2k}^* w_1 \leq C w_1 \quad \text{and} \quad \tau_{0,2k}^* w_2 \leq C w_2,$$

where C is a positive constant independent of $k \geq 0$.

If $0 \leq i \leq k$ then we have

$$\sum_{s=0}^{k} \tau^i w_2 \leq (2k+1) \tau^{-i} (\tau_{0,2k}^* w_2) \leq 2C (k+1) \tau^{-i} w_2,$$

whence

$$(25) \quad \sum_{i=0}^{k} \left((\tau^i w_1) \cdot (\tau^{-i} w_2)^{1-p'} \right) \leq \left(\frac{1}{2C} \cdot \tau_{0,k}^* w_1 \right)^{1-p} \sum_{i=0}^{k} \tau^i w_1.$$

Similarly, since $\sum_{s=0}^{k} \tau^s w_1 \leq 2C (k+1) \tau^{-i} w_1$ for $0 \leq i \leq k$, we get

$$(26) \quad \sum_{i=0}^{k} \left[(\tau^i w_1)^{1-p'} \cdot \tau^{-i} w_2 \right] \leq \left(\frac{1}{2C} \cdot \tau_{0,k}^* w_1 \right)^{1-p} \sum_{i=0}^{k} \tau^i w_2.$$

Now we use the relations

$$\quad (\tau^i w_1) \cdot (\tau^{-i} w_2)^{1-p'} = \frac{J_{-i}}{h_{-i}} \cdot \Phi^{-i} w_1 \cdot (h_{-i} \Phi^{-i} w_2)^{1-p}$$

$$\quad = h_{-i}^{p'} J_{-i}^{1-p'} \cdot \Phi^{-i} (w_1^{1-p'} w_2) = h_{-i}^{p'} J_{-i}^{1-p'} \cdot \Phi^{-i} w$$

and

$$(\tau^i w_1)^{1-p'} \cdot \tau^{-i} w_2 = h_i^{p'} J_i^{1-p'} \cdot \Phi^i (w_1^{1-p'} w_2)$$

By these together with (25) and (26) we have

$$\sum_{i=0}^{k} h_{-i}^{p'} J_{-i} \Phi^{-i} w \right)^{p-1} \left(\sum_{i=0}^{k} [h_i^{p'} J_i \Phi^i w]^{p-1} \right)^{1-p}$$

$$\leq \left(\frac{1}{2C} \right)^{p-1} \left(\sum_{i=0}^{k} \tau^i w_1 \right) \left(\frac{1}{2C} \right)^{p-1} \left(\sum_{i=0}^{k} \tau^i w_2 \right)^{p-1} \quad \text{a.e.}$$

on X, which completes the proof.

Proof of Theorem 2. This is similar to that of Theorem 1, and hence we omit the details.
Remark 1. (i) Let $A = \{x : w(x) = 0\}$ and $B = \{x : w(x) = \infty\}$. Then each of statements (a), (b) and (c) of Theorem 1 implies that $\Phi_{\chi A} \leq \chi A$ and $\Phi_{\chi B} \geq \chi B$. But in general we have $\Phi_{\chi A} \neq \chi A$ and $\Phi_{\chi B} \neq \chi B$. On the other hand, each of statements (a), (b) and (c) of Theorem 2 implies that $\Phi_{\chi A} = \chi A$ and $\Phi_{\chi B} = \chi B$. In this case we may assume without loss of generality that $X = \{x : 0 < w(x) < \infty\}$. Then it follows that $M(\omega d\mu) = M(\mu)$ and

$$\int \frac{\Phi^i w}{w} J_i \cdot (\Phi^i f) \, \omega d\mu = \int f \omega d\mu$$

for all $i \in \mathbb{Z}$ and $0 \leq f \in M(\mu)$. By using this together with Theorem of [16], we could give another proof of Theorem 2.

(ii) For a function f on \mathbb{Z} if we define the function f^k on \mathbb{Z} by

$$f^k(i) = \sup_{n \geq 0} \left| \frac{1}{n+1} \sum_{j=0}^{n} f(i-j) \right|,$$

then it follows clearly that

$$f^{**}(i) \leq f^*(i) + f^k(i) \leq 2 f^{**}(i) \quad (i \in \mathbb{Z}).$$

Using these inequalities together with Lemma A, we could prove that Theorem 1 implies Theorem 2.

Theorem 3. Let $0 \leq w \leq \infty$ on X and let $1 < p < \infty$. If τ is the linear modulus of an invertible Lamperti operator T on $M(\mu)$, then the following statements hold.

(a) If τ becomes an operator on $M(\omega d\mu)$ and satisfies $\sup_{n \geq 0} \|\tau_{0,n}\|_{L^p(\omega d\mu)} < \infty$, then for any $f \in L^p(\omega d\mu)$ the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} T^i f$$

exists a.e. on the set $\{x : w(x) > 0\}$.

(b) If τ becomes an invertible operator on $M(\omega d\mu)$ and satisfies $\sup_{n \geq 0} \|\tau_{-n,n}\|_{L^p(\omega d\mu)} < \infty$, then for any $f \in L^p(\omega d\mu)$ the limit

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{(T^k f - T^{-k} f)/k}{k}$$

exists a.e. on the set $\{x : w(x) > 0\}$.

Proof. (a) By using Theorem 1 it follows from [7] that

$$\lim_{n \to \infty} \frac{1}{n} \tau^{|n| f} = \lim_{n \to \infty} \frac{1}{n} T^n f = 0 \quad \text{a.e.}$$

on the set $\{x : w(x) > 0\}$ for any $f \in L^p(\omega d\mu)$. Since the set $\{g + (f - T f) : Tg = g, f \in L^p(\omega d\mu)\}$ is a dense subspace of $L^p(\omega d\mu)$ by a mean ergodic theorem, we then apply Banach's convergence principle (see e.g. [8]) to infer that (a) holds.
(b) By Remark 1 (i), T and τ can be considered to be invertible Lamperti operators on $M(\omega d\mu) = M(\mu)$. Thus (b) is a consequence of [19]. The proof is complete.

3. WEIGHTED WEAK TYPE INEQUALITIES AND APPLICATIONS

In this section we assume that an invertible Lamperti operator T on $M(\mu)$ satisfies

\begin{equation}
K_\infty := \sup_{n \in \mathbb{Z}} \|T^n\|_{L^\infty(\mu)} < \infty.
\end{equation}

Hence from (2) we observe that

\begin{equation}
\frac{1}{K_\infty} \leq |h_n| \leq K_\infty \quad \text{a.e.}
\end{equation}

on X for each $n \in \mathbb{Z}$. For $f \in M(\mu)$ we let

\[M^+(\Phi)f = \sup_{n \geq 0} |\Phi_0, nf| \quad \text{and} \quad M(\Phi)f = \sup_{m, n \geq 0} |\Phi_m, nf|, \]

where

\[\Phi_{m, n}f = \frac{1}{m + n + 1} \sum_{i=-m}^{n} \Phi^i f. \]

If τ denotes the linear modulus of T, then by (2), (4) and (28) we have

\begin{equation}
\frac{1}{K_\infty} \Phi_{m, n} \leq \tau_{m, n} \leq K_\infty \Phi_{m, n},
\end{equation}

so that

\begin{equation}
\frac{1}{K_\infty} M^+(\Phi) \leq M^+(\tau) \leq K_\infty M^+(\Phi) \quad \text{and}
\end{equation}

\begin{equation}
\frac{1}{K_\infty} M(\Phi) \leq M(\tau) \leq K_\infty M(\Phi).
\end{equation}

Using these relations we first prove the following weighted weak type inequalities.

Theorem 4. Let $0 \leq w \leq \infty$ on X and let $1 \leq p < \infty$. If T is an invertible Lamperti operator on $M(\mu)$ satisfying (27) and Φ has no periodic part, then the following statements are equivalent.

(a) T becomes an operator on $M(\omega d\mu)$ and there exists a positive constant C such that for any $f \in L^p(\omega d\mu)$ and $\lambda > 0$

\begin{equation}
\int_{\{x : M^+(T)f(x) > \lambda\}} w d\mu \leq C \frac{1}{\lambda^p} \int |f|^p w d\mu.
\end{equation}

(b) The linear modulus τ of T becomes an operator on $M(\omega d\mu)$ and there exists a positive constant C such that for any $f \in L^p(\omega d\mu)$

\[\sup_{n \geq 0} \int |\tau_{0, n} f|^p w d\mu \leq C \int |f|^p w d\mu. \]
Theorem 5. Let \(0 \leq w \leq \infty \) on \(X \). If \(T \) is an invertible Lamperti operator on \(M(\mu) \) satisfying (27) and \(\Phi \) has no periodic part, then the following statements are equivalent when \(1 < p < \infty \), and statements (a) and (b) are equivalent when \(p = 1 \).

(a) \(T \) becomes an invertible operator on \(M(w\mu) \) and there exists a positive constant \(C \) such that for any \(f \in L^p(w\mu) \) and \(\lambda > 0 \)

\[
\int_{\{x : H^*(T)f(x) > \lambda\}} w \, d\mu \leq C \frac{1}{\lambda^p} \int |f|^p w \, d\mu.
\]

(b) The linear modulus \(\tau \) of \(T \) becomes an invertible operator on \(M(w\mu) \) and there exists a positive constant \(C \) such that for any \(f \in L^p(w\mu) \)

\[
\sup_{n \geq 0} \int |\tau_{-n} nf|^p w \, d\mu \leq C \int |f|^p w \, d\mu.
\]

(c) \(T \) becomes an invertible operator on \(M(w\mu) \) and there exists a positive constant \(C \) such that for any \(f \in L^p(w\mu) \)

\[
\int |H^*(T)f|^p w \, d\mu \leq C \int |f|^p w \, d\mu.
\]

Proof of Theorem 4. Let \(1 < p < \infty \).

(b) \(\Rightarrow \) (a). Since \(|M^+(T)f| \leq M^+(\tau)|f| \) for \(f \in M(\mu) \), this implication is obvious from Theorem 1.

(a) \(\Rightarrow \) (b). By (29) it suffices to prove that

\[
\sup_{n \geq 0} \|\Phi_{0,n}\|_{L^p(w\mu)} < \infty.
\]

To do so, we apply Theorem 1. We see that it is enough to prove the existence of a positive constant \(C \) such that for a.e. \(x \in X \) and all \(k \geq 0 \)

\[
\left(\sum_{i=0}^{k} J_{-i}(x) \Phi^{-i} w(x) \right) \cdot \left(\sum_{i=0}^{k} [J_i(x)\Phi^i w(x)]^{\frac{1}{p} - 1} \right)^{p-1} \leq C(k + 1)^p.
\]

As in the proof of Lemma of [20], we may assume without loss of generality that there exists a one-to-one onto mapping \(S \) from \(X \) to \(X \) such that

(i) \(A \in \mathcal{F} \) if and only if \(SA \in \mathcal{F} \),
(ii) \(\mu(SA) > 0 \) if and only if \(\mu A > 0 \),
(iii) \(\Phi^i f = f \circ S^i \) for all \(i \in \mathbb{Z} \) and \(f \in M(\mu) \).

For simplicity, from now on, we will always assume that the one-to-one onto mapping \(S : X \rightarrow X \) satisfies the above conditions (i), (ii) and (iii).

For an integer \(k \) with \(k \geq 0 \) we define a nonnegative extended real-valued function \(d_k \) on \(X \) by the relation

\[
d_k(x) = \sum_{i=0}^{k} \left[J_i(x) w(S^i x) \right]^{\frac{1}{p} - 1}.
\]
Write \(D_{-\infty} = \{ x : d_k(x) = 0 \}, \ D_\infty = \{ x : d_k(x) = \infty \}, \) and
\[
D_n = \{ x : 2^n \leq \frac{1}{2(k+1)} d_k(x) < 2^{n+1} \} \quad \text{for} \quad n \in \mathbb{Z}.
\]

Then we have
\[
X = D_{-\infty} \cup D_\infty \cup \left(\bigcup_{n \in \mathbb{Z}} D_n \right);
\]
and it is clear that (34) holds on \(D_{-\infty} \). On the other hand, (a) implies that
\[
\{ x : w(Sx) = 0 \} \subset \{ x : w(x) = 0 \},
\]
and therefore we get
\[
\sum_{i=0}^{k} J_{-i}(x)w(S^{-i}x) = 0 \quad \text{on} \quad D_\infty.
\]

It follows that (34) holds on \(D_\infty \). To prove (34) on each \(D_n, n \in \mathbb{Z} \), we apply the hypothesis that \(\Phi \) has no periodic part. By this hypothesis, \(D_n \) has the form
\[
D_n = \bigcup_{n=1}^{\infty} B_j,
\]
where the \(B_j \) satisfy
\[
B_j \cap S^\ell B_j = \emptyset \quad \text{for} \quad 1 \leq \ell \leq 2(k+1).
\]

Let us fix \(B_j \), and let \(A \) denote a measurable subset of \(B_j \) with \(0 < \mu A < \infty \).

Then define a function \(f \) on \(X \) by the relation
\[
f(S^i x) = \begin{cases}
 h_i(x)^{-1} \cdot [J_i(x)w(S^i x)]^{\frac{1}{p-1}} & \text{if} \quad x \in A \quad \text{and} \quad 0 \leq i \leq k \\
 0 & \text{otherwise.}
\end{cases}
\]

Since \(A \subset B_j \subset D_n \) and \(h_{i+j}(S^{-j} x) = h_j(S^{-j} x)h_i(x) \) by (2), it follows that for \(x \in A \) and \(0 \leq j \leq k \),
\[
M^+(T)f(S^{-j} x) \geq \frac{1}{2(k+1)} \left| \sum_{i=0}^{k} h_{i+j}(S^{-j} x)f(S^{i+j}(S^{-j} x)) \right|
\]
\[
= \frac{1}{2(k+1)} \left| \sum_{i=0}^{k} h_j(S^{-j} x)h_i(x)f(S^i x) \right|
\]
\[
\geq \frac{1}{2(k+1)} \cdot \frac{1}{K_\infty} \sum_{i=0}^{k} [J_i(x)w(S^i x)]^{\frac{1}{p-1}} \quad \text{(by (28))}
\]
\[
= \frac{1}{K_\infty} \cdot \frac{1}{2(k+1)} d_k(x) \geq \left(\frac{1}{K_\infty} \right) \cdot 2^n \quad \text{(by (36))}.
\]

Hence if we set
\[
E(-1) := \bigcup_{i=0}^{k} S^{-i}A \quad \text{and} \quad E(1) := \bigcup_{i=0}^{k} S^iA,
\]

http://escholarship.lib.okayama-u.ac.jp/mjou/vol40/iss1/18
then

\[M^+(T)f \geq \left(\frac{1}{K_\infty} \right) 2^n \quad \text{on} \ E(-1). \]

Thus (a) implies that

\[\int_{E(-1)} w \, d\mu \leq C \left(\frac{K_\infty}{2^n} \right)^p \int |f|^p w \, d\mu, \]

where by the definition of \(f \)

\[\int |f|^p w \, d\mu = \int_{E(1)} |f|^p w \, d\mu = \sum_{i=0}^{k} \int_{S^i A} |f|^p w \, d\mu \]

\[= \sum_{i=0}^{k} \int_{A} |f(S^ix)|^p w(S^ix)J_i(x) \, d\mu \quad \text{(by (3))} \]

\[\leq K_\infty^p \sum_{i=0}^{k} \int_{A} [J_i(x)w(S^ix)]^{\frac{1}{p-1}} \, d\mu \quad \text{(by (28)),} \]

and by (3)

\[\int_{E(-1)} w \, d\mu = \sum_{i=0}^{k} \int_{S^{-i} A} w \, d\mu = \sum_{i=0}^{k} \int_{A} w(S^{-i}x)J_{-i}(x) \, d\mu. \]

Consequently we get

\[2^{np} \int_{A} \sum_{i=0}^{k} J_{-i}(x)w(S^{-i}x) \, d\mu \leq C \cdot K_\infty^{2p} \int_{A} \sum_{i=0}^{k} [J_i(x)w(S^ix)]^{\frac{1}{p-1}} \, d\mu. \]

On the other hand, since \(A \subset B_j \subset D_n \), it follows that

\[\frac{1}{\mu A} \int_{A} \frac{1}{k+1} \sum_{i=0}^{k} [J_i(x)w(S^ix)]^{\frac{1}{p-1}} \, d\mu \leq 2^{n+2}. \]

Combining this with (40) yields

\[\left(\frac{1}{\mu A} \int_{A} \frac{1}{k+1} \sum_{i=0}^{k} J_{-i}(x)w(S^{-i}x) \, d\mu \right) \cdot \left(\frac{1}{\mu A} \int_{A} \frac{1}{k+1} \sum_{i=0}^{k} [J_i(x)w(S^ix)]^{\frac{1}{p-1}} \, d\mu \right)^{p-1} \leq C \cdot 2^{2p} K_\infty^{2p}. \]

Since this holds for every \(A \), arbitrary measurable subset of \(B_j \) with positive finite measure, we conclude that for a.e. \(x \in B_j \)

\[\left(\frac{1}{k+1} \sum_{i=0}^{k} J_{-i}(x)w(S^{-i}x) \right) \cdot \left(\frac{1}{k+1} \sum_{i=0}^{k} [J_i(x)w(S^ix)]^{\frac{1}{p-1}} \right)^{p-1} \leq C \cdot 2^{2p} K_\infty^{2p}, \]
whence (34) holds on D_n, $n \in \mathbb{Z}$, and thus (b) has been established.

Let $p = 1$.

(b) \Rightarrow (a). By (29), (b) is equivalent to

$$C = \sup_{n \geq 0} \|\Phi_{0,n}\|_{L^1(wd\mu)} < \infty.$$

Since (3) implies

$$\int (\Phi_{0,n}f) \cdot w \, d\mu = \int f \cdot \left(\frac{1}{n+1} \sum_{i=0}^{n} J_{-i} \Phi^{-i}w \right) \, d\mu$$

for $0 \leq f \in M(\mu)$, (41) is equivalent to

$$\sup_{n \geq 0} \frac{1}{n+1} \sum_{i=0}^{n} J_{-i}(x)w(S^{-i}x) \leq Cw(x) \quad \text{a.e.}$$

on X. Hence, using (3) again, for a.e. $x \in X$ and all $j \in \mathbb{Z}$ we have

$$\sup_{n \geq 0} \frac{1}{n+1} \sum_{i=0}^{n} J_{j-i}(x)w(S^{-i}x) \leq CJ_{j}(x)w(S^{i}x).$$

Let $0 \leq f \in L^1(wd\mu)$. For an $N \geq 0$ we then define

$$f_{\Phi,N}^* = \max_{0 \leq n \leq N} \Phi_{0,n}f = \max_{0 \leq n \leq N} \frac{1}{n+1} \sum_{i=0}^{n} \Phi^{i}f$$

It follows that $f_{\Phi,N}^* \uparrow M^+(\Phi)f$ a.e. on X as $N \to \infty$; and for any $L \geq 0$ we have, by (3),

$$(L+1) \int_{\{x : f_{\Phi,N}(x) > \lambda\}} w \, d\mu = \sum_{i=0}^{L} \int_{\{x : f_{\Phi,N}(S^{i}x) > \lambda\}} J_{i}(x)w(S^{i}x) \, d\mu$$

$$= \int_{\{0 \leq i \leq L : f_{\Phi,N}(S^{i}x) > \lambda\}} J_{i}(x)w(S^{i}x) \, d\mu.$$

We then apply Lemma A together with (43) to infer that there exists a positive constant C independent of N, $L \geq 0$ such that for a.e. $x \in X$

$$\sum_{\{0 \leq i \leq L : f_{\Phi,N}(S^{i}x) > \lambda\}} J_{i}(x)w(S^{i}x) \leq \frac{C}{\lambda} \sum_{i=0}^{L+N} f(S^{i}x)J_{i}(x)w(S^{i}x).$$

Hence

$$\int_{\{x : f_{\Phi,N}(x) > \lambda\}} w \, d\mu \leq \frac{C}{\lambda} \cdot \frac{1}{L+1} \int \sum_{i=0}^{L+N} f(S^{i}x)J_{i}(x)w(S^{i}x) \, d\mu$$

$$= \frac{C}{\lambda} \cdot \frac{L + N + 1}{L + 1} \int fw \, d\mu.$$
By letting $L \uparrow \infty$, and then $N \uparrow \infty$, we see that (a) holds.

(a) \Rightarrow (b). Since Φ has no periodic part, if $n \geq 0$ is an integer then X has the form

$$X = \bigcup_{j=1}^{\infty} B_j,$$

where the B_j satisfy

$$B_j \cap S^\ell B_j = \emptyset \quad \text{for} \quad 0 \leq \ell \leq n. \quad (45)$$

For the moment let us fix B_j, and let A be a measurable subset of B_j. If we set

$$F(-1) := \bigcup_{i=0}^{n} S^{-i} A$$

and if $x \in F(-1)$ then by (2), (28) and (45) we have

$$\max_{0 \leq k \leq n} \frac{1}{k+1} \left| \sum_{i=0}^{k} T^i \chi_A(x) \right| \geq \frac{1}{n+1} \cdot \frac{1}{K_\infty}. \quad \text{Therefore by (a)}$$

$$\int_{F(-1)} w \, d\mu \leq C \cdot (n+1) K_\infty \int_A w \, d\mu.$$

Since

$$\int_{F(-1)} w \, d\mu = \sum_{i=0}^{n} \int_{S^{-i} A} w \, d\mu = \sum_{i=0}^{n} \int_A J_{-i}(x) w(S^{-i} x) \, d\mu,$$

we then have

$$\int_A \frac{1}{n+1} \sum_{i=0}^{n} J_{-i}(x) w(S^{-i} x) \, d\mu \leq C \cdot K_\infty \int_A w \, d\mu,$$

which implies, as before, that

$$\frac{1}{n+1} \sum_{i=0}^{n} J_{-i}(x) w(S^{-i} x) \leq CK_\infty w(x) \quad \text{a.e.}$$

on B_j and hence on X. Since the constant CK_∞ is independent of $n \geq 0$, this establishes (42) and hence (b).

The proof is complete. \qed

Proof of Theorem 5. Let $1 < p < \infty$.

(c) \Rightarrow (a) is obvious.

(a) \Rightarrow (b). As in the proof of Theorem 4, it suffices to prove that there exists a positive constant C such that

$$\left(\sum_{i=0}^{k} J_i(x) w(S^i x) \right) \cdot \left(\sum_{i=0}^{k} [J_i(x) w(S^i x)]^{p-1} \right)^{p-1} \leq C(k+1)^p \quad (46)$$
for a.e. \(x \in X \) and all \(k \geq 0 \).

To do so, let \(d_k, D_{-\infty}, D_{\infty} \) and \(D_n (n \in \mathbb{Z}) \) be the same as in the proof of Theorem 4 (cf. (35), (36)). Since \(\Phi \) has no periodic part by hypothesis, (a) implies that \(\{ x : w(Sx) = \infty \} = \{ x : w(x) = \infty \} \). Indeed if this is not true, then we can choose an \(E \in \mathcal{F} \), with \(\mu E > 0 \) and \(\int_E wd\mu < \infty \), such that

\[
SE \subset \{ x : w(x) = \infty \} \quad \text{and} \quad S^2(E) \cap (E \cup SE) = \emptyset.
\]

Then the function \(f = \chi_E \) (\(\in L^p(\mu) \)) satisfies \(H^*(T)f(x) \geq 1/K_\infty \) on \(SE \), whence

\[
\int_{\{ x : H^*f(x) > \lambda \}} w d\mu = \infty \quad \text{for all} \quad 0 < \lambda < \frac{1}{K_\infty}.
\]

This is a contradiction. Similarly (a) implies that \(\{ x : w(Sx) = 0 \} = \{ x : w(x) = 0 \} \). Therefore we have

\[
D_{-\infty} = \{ x : w(x) = \infty \}, \quad D_{\infty} = \{ x : w(x) = 0 \}, \quad SD_{-\infty} = D_{-\infty} \quad \text{and} \quad SD_{\infty} = D_{\infty}.
\]

Thus (46) holds clearly on \(D_{-\infty} \cup D_{\infty} \). To prove (46) on each \(D_n, n \in \mathbb{Z} \), we represent \(D_n \) as

\[
D_n = \bigcup_{j=1}^{\infty} B_j,
\]

where the \(B_j \) satisfy

\[
S^\ell B_j \cap B_j = \emptyset \quad \text{for} \quad 1 \leq \ell \leq 4(k + 1).
\]

If \(A \) is a measurable subset of \(B_j \) with \(0 < \mu A < \infty \), then let

\[
E(1) := \bigcup_{i=0}^{k} S^i A \quad \text{and} \quad E(2) := \bigcup_{i=k+1}^{2k+1} S^i A.
\]

If \(0 \leq f \in M(\mu) \) and \(\{ x : f(x) \neq 0 \} \subset E(1) \), then define a function \(f^\sim \) on \(X \) by the relation

\[
\begin{cases}
 f^\sim(S^{k+1-i}x) = |\text{sgn } h_{-i}(S^{k+1}x)|^{-1} \cdot f(S^{k+1-i}x) & \text{for } x \in A \text{ and } 1 \leq i \leq k + 1, \\
 f^\sim = 0 & \text{on } X \setminus \bigcup_{i=0}^{k} S^i A,
\end{cases}
\]

where \(\text{sgn } \alpha = \alpha/|\alpha| \) for a complex number \(\alpha \neq 0 \), and \(\text{sgn } 0 = 0 \).

Then for \(x \in A \) and \(k + 1 \leq j \leq 2k + 1 \) we have

\[
H^*(T)f^\sim(S^j x) \geq \left| \sum_{i=1}^{k+1} h_{-i-(j-k-1)}(S^i x) \cdot \frac{f^\sim(S^{k+1-i}x)}{i + (j - k - 1)} \right|.
\]

Since \(h_{j-k-1}(S^{k+1}x) \cdot h_{-i-(j-k-1)}(S^{i-k-1}(S^{k+1}x)) = h_{-i}(S^{k+1}x) \) by (2),

\[
h_{-i-(j-k-1)}(S^i x) = \frac{h_{-i}(S^{k+1}x)}{h_{j-k-1}(S^{k+1}x)}.
\]
Therefore for \(x \in A \) and \(k + 1 \leq j \leq 2k + 1 \) we have

\[
H^*(T)f^\sim(S^j)x \geq \frac{1}{h_{j-k-1}(S^{k+1}x)} \sum_{i=1}^{k+1} \frac{|h_{-i}(S^{k+1}x)| \cdot f(S^{k+1-i}x)}{i + (j - k - 1)} \geq K^{-2}_\infty \cdot \frac{1}{2(k+1)} \sum_{i=0}^{k} f(S^i x) \quad \text{(by (28)).}
\]

In particular, if \(0 \leq f \in M(\mu) \) is such that

\[
\begin{align*}
&f(S^i x) = [J_i(x)w(S^i x)]^{\frac{1}{p-1}} &\text{for } x \in A \text{ and } 0 \leq i \leq k, \\
&f = 0 &\text{on } X \setminus \bigcup_{i=0}^{k} S^i A,
\end{align*}
\]

then, by (36) and the fact \(A \subset B_j \subset D_n \), we have

\[
H^*(T)f^\sim(S^j)x \geq K^{-2}_\infty \cdot \frac{1}{2(k+1)} \sum_{i=0}^{k} [J_i(x)w(S^i x)]^{\frac{1}{p-1}}
\]

for \(x \in A \) and \(k + 1 \leq j \leq 2k + 1 \).

Thus by (a)

\[
\int_{E(2)} w \, d\mu \leq C \cdot K^{2p}_\infty \frac{1}{2np} \int_{E(1)} f^p w \, d\mu.
\]

Since (3) implies

\[
\int_{E(1)} f^p w \, d\mu = \sum_{i=0}^{k} \int_{S^i A} f^p w \, d\mu = \sum_{i=0}^{k} \int_{A} f^p(S^i x)w(S^i x)J_i(x) \, d\mu,
\]

we can apply the following equations

\[
\sum_{i=0}^{k} f^p(S^i x)w(S^i x)J_i(x) = \sum_{i=0}^{k} [J_i(x)w(S^i x)]^{\frac{1}{p-1}} = d_k(x),
\]

to obtain that

\[
(48) \quad \int_{E(2)} w \, d\mu \leq C \cdot K^{2p}_\infty \frac{1}{2np} \int_{A} d_k(x) \, d\mu.
\]

Next, if \(0 \leq f \in M(\mu) \) and \(\{x : f(x) \neq 0\} \subset E(2) \), then define a function \(f^\sim \) on \(X \) by the relation

\[
\begin{align*}
&f^\sim(S^k+i)x = [\text{sgn } h_i(S^k x)]^{-1} \cdot f(S^{k+i}x) &\text{for } x \in A \text{ and } 1 \leq i \leq k + 1, \\
&f^\sim = 0 &\text{on } X \setminus \bigcup_{i=k+1}^{2k+1} S^i A.
\end{align*}
\]

Then for \(x \in A \) and \(0 \leq j \leq k \) we have

\[
H^*(T)f^\sim(S^j)x \geq \sum_{i=1}^{k+1} \frac{h_{i+(k-j)}(S^i x) \cdot f^\sim(S^{k+i}x)}{i + (k - j)}.
\]
Since \(h_{j-k}(S^k x) \cdot h_{i+(k-j)}(S^{j-k}(S^k x)) = h_i(S^k x) \) by (2),
\[
h_{i+(k-j)}(S^j x) = \frac{h_i(S^k x)}{h_{j-k}(S^k x)}.
\]

Hence it follows that
\[
H^*(T)f_\sim(S^j x) \geq \frac{1}{|h_{j-k}(S^k x)|} \cdot \sum_{i=1}^{k+1} \frac{|h_i(S^k x)| \cdot f(S^{k+i} x)}{i + (k - j)} \geq K^{-2}_\infty \cdot \frac{1}{2(k + 1)} \sum_{i=k+1}^{2k+1} f(S^i x) \quad \text{(by (28))}
\]
for \(x \in A \) and \(0 \leq j \leq k \). In particular, if \(f = \chi_{E(2)} \) then
\[
H^*(T)f_\sim(S^j x) \geq K^{-2}_\infty \cdot \frac{1}{2}
\]
for \(x \in A \) and \(0 \leq j \leq k \). Thus by (a)
\[
\int_{E(1)} w \, d\mu \leq C \cdot K^{2p}_\infty \cdot 2^p \int_{E(2)} w \, d\mu.
\]
We then use the following equations
\[
\int_{E(1)} w \, d\mu = \sum_{i=0}^{k} \int_{S^i A} w \, d\mu = \sum_{i=0}^{k} \int_{A} w(S^i x) J_i(x) \, d\mu,
\]
to obtain that
\[
\int_{A} \sum_{i=0}^{k} J_i(x) w(S^i x) \, d\mu \leq C \cdot K^{2p}_\infty \cdot 2^p \int_{E(2)} w \, d\mu.
\]
Combining this with (48) yields
\[
\int_{A} \sum_{i=0}^{k} J_i(x) w(S^i x) \, d\mu \leq C^2 \cdot K^{4p}_\infty \cdot \frac{1}{2(n-1)p} \int_{A} d_k(x) \, d\mu.
\]
Since \(2^n \leq d_k/(k + 1) < 2^{n+1} \) on \(D_n \) and \(A \subset B_j \subset D_n \), it follows that
\[
2^{(n+1)p} \leq \left(\frac{1}{\mu A} \int_{A} \frac{1}{k + 1} d_k(x) \, d\mu \right)^p \leq 2^{(n+2)p}.
\]
Thus we obtain
\[
\left(\frac{1}{\mu A} \int_{A} \frac{1}{k + 1} \sum_{i=0}^{k} J_i(x) w(S^i x) \, d\mu \right) \cdot \left(\frac{1}{\mu A} \int_{A} \frac{1}{k + 1} d_k(x) \, d\mu \right)^{p-1} \leq C^2 \cdot K^{4p}_\infty \cdot 2^{3p},
\]
and therefore
\[
\left(\frac{1}{k+1} \sum_{i=0}^{k} J_i(x)w(S^i x) \right) \cdot \left(\frac{1}{k+1} \sum_{i=0}^{k} [J_i(x)w(S^i x)]^{p-1} \right)^{p-1} \leq C^2 \cdot K_{\infty}^{4p} \cdot 2^{3p} \quad \text{a.e.}
\]
on B_j (and hence on D_n). Since the constant $C^2 \cdot K_{\infty}^{4p} \cdot 2^{3p}$ is independent of $k \geq 0$, we have proved (46) and hence (b).

(b) \Rightarrow (c). By Remark 1 (i), we may assume without loss of generality that $X = \{ x : 0 < w(x) < \infty \}$. Then T and τ can be considered to be invertible Lamperti operators on $M(\omega \mu) = M(\mu)$, whence (b) \Rightarrow (c) follows from Lemma of [19].

Let $p = 1$.

(a) \Rightarrow (b). As in the proof of Theorem 4 (cf. (41), (42)), (b) is equivalent to the existence of a positive constant C such that
\[
(51) \quad \sup_{n \geq 0} \frac{1}{2n+1} \sum_{i=-n}^{n} J_i(x)w(S^i x) \leq Cw(x) \quad \text{a.e.}
\]
on X. To prove (51), let $N \geq 1$ be fixed arbitrarily. Since Φ has no periodic part by hypothesis, X has the form
\[
X = \bigcup_{j=0}^{\infty} B_j,
\]
where the B_j satisfy
\[
B_j \cap S^\ell B_j = \emptyset \quad \text{for} \quad 1 \leq \ell \leq 2N.
\]
If A is a measurable subset of B_j such that $0 < \mu A < \infty$, and if $x \in S^i A$ for some i with $1 < |i| \leq N$, then by (28) we have
\[
H^*(T)\chi_A(x) \geq \frac{1}{K_{\infty}} \cdot \frac{1}{N}.
\]
Hence (a) implies
\[
\sum_{|i|=1}^{N} \int_{S^i A} w \, d\mu \leq C \cdot K_{\infty} \cdot N \int_A w \, d\mu.
\]
We now apply (3) to infer that
\[
\int_A \frac{1}{2N+1} \sum_{i=-N}^{N} J_i(x)w(S^i x) \, d\mu \leq (CK_{\infty} + 1) \int_A w \, d\mu;
\]
therefore
\[
\frac{1}{2N+1} \sum_{i=-N}^{N} J_i(x)w(S^i x) \leq (CK_{\infty} + 1)w \quad \text{a.e.}
\]
on B_j and hence on X, completing the proof of (51).
(b) \Rightarrow (a). By (51) and (3), we have

$$
\frac{1}{2n+1} \sum_{i=-n}^{n} J_{j+i}(x)w(S^{j+i}x) \leq C J_j(x)w(S^jx)
$$

for a.e. $x \in X$ and all $j \in \mathbb{Z}$ and $n \geq 0$. For an $N \geq 1$ we then define the truncated maximal operator $H_N^*(T)$ on $M(\mu)$ by the relation

$$
H_N^*(T)f = \max_{1 \leq n \leq N} \left| \sum_{k=-n}^{n} T^k f \right|
$$

where the prime means that the term with zero denominator is omitted.

Clearly we have

$$
H_N^*(T)f(x) \uparrow H^*(T)f(x) \quad \text{a.e.}
$$
on X as $N \to \infty$. If $j \in \mathbb{Z}$, then

$$
|h_j(x)|H_N^*(T)f(S^jx) = \max_{1 \leq n \leq N} \left| \sum_{k=-n}^{n} \frac{h_j(x)h_k(S^jx)f(S^{j+k}x)}{k} \right|
$$

$$
= \max_{1 \leq n \leq N} \left| \sum_{k=-n}^{n} \frac{h_{j+k}(x)f(S^{j+k}x)}{k} \right| \quad \text{(by (2))},
$$

so that

$$
H_N^*(T)f(S^jx) = \frac{1}{|h_j(x)|} \cdot \max_{1 \leq n \leq N} \left| \sum_{k=-n}^{n} \frac{h_{j+k}(x)f(S^{j+k}x)}{k} \right|
$$

$$
\leq K_\infty \cdot \max_{1 \leq n \leq N} \left| \sum_{k=-n}^{n} \frac{h_{j+k}(x)f(S^{j+k}x)}{k} \right|.
$$

By this together with (3) we observe that for $L \geq 1$ and $\lambda > 0$

$$
(2L+1) \int_{\{x : H_N^*(T)f(x) > \lambda \}} w \ d\mu = \sum_{j=-L}^{L} \int_{\{x : H_N^*(T)f(S^jx) > \lambda \}} J_j(x)w(S^jx) \ d\mu
$$

$$
= \int_{\{-L \leq j \leq L : H_N^*(T)f(S^jx) > \lambda \}} J_j(x)w(S^jx) \ d\mu
$$

$$
= \int_{\{-L \leq j \leq L : \max_{1 \leq n \leq N} \left| \sum_{k=-n}^{n} \frac{h_{j+k}(x)f(S^{j+k}x)}{k} \right| > \lambda/K_\infty \}} J_j(x)w(S^jx) \ d\mu.
$$

Next we apply (52) together with a known result about the classical discrete Hilbert transform (see e.g. Theorem 10 of [10]) to infer that there exists a
positive constant C such that

$$\sum_{L \leq j \leq L: \max_{1 \leq n \leq N} \left| \sum_{t=-n}^{n} h_{j+k}(s_j x) \right| > \lambda/K_\infty} J_j(x) w(S^j x)$$

$$\leq C \frac{K_\infty}{\lambda} \sum_{j=-N-L}^{N+L} |h_j(x) f(S^j x)| \cdot J_j(x) w(S^j x)$$

for a.e. $x \in X$ and all $\lambda > 0$ and $N, L \geq 1$. Thus by (28) and (3)

$$(2L + 1) \int_{\{x: H^*_N(T)f(x) > \lambda\}} w \, d\mu$$

$$\leq \int_X C \cdot \frac{K_\infty}{\lambda} \cdot \left(\sum_{j=-N-L}^{N+L} |h_j(x) f(S^j x)| \cdot J_j(x) w(S^j x) \right) \, d\mu$$

$$\leq C \cdot \frac{K_\infty^2}{\lambda} \int_X \sum_{j=-N-L}^{N+L} |f(S^j x)| \cdot J_j(x) w(S^j x) \, d\mu$$

$$= C \cdot \frac{K_\infty^2}{\lambda} \cdot (2N + 2L + 1) \int_X |f| w \, d\mu.$$

Letting $L \uparrow \infty$ yields

$$\int_{\{x: H^*_N(T)f(x) > \lambda\}} w \, d\mu \leq C \cdot \frac{K_\infty^2}{\lambda} \int_X |f| w \, d\mu.$$

Hence (a) follows from (53), and this completes the proof of Theorem 5. □

Remark 2. The hypothesis that Φ has no periodic part was used only in the proof of implication (a) \Rightarrow (b) of Theorems 4 and 5. Thus, without this hypothesis, implication (b) \Rightarrow (a) of Theorem 4 and implications (b) \Rightarrow (c) \Rightarrow (a) of Theorem 5 are true.

In the remainder of the paper we investigate the a.e. convergence of the ergodic sequence $\{T^n f\}$ and the ergodic partial sums $\{\sum_{k=1}^n (T^k f - T^{-k} f)/k\}$ in the sense of Cesàro-α means. For the basic properties of Cesàro-α means we refer the reader to Zygmund [24].

Following [4], for a real number α with $-1 < \alpha \leq 0$ we write

$$R_{n,1+\alpha}(T)f = \frac{1}{A_{n+1+\alpha}} \sum_{k=0}^{n} A_{n-k}^\alpha T^k f$$

and

$$H_{n,\alpha}(T) = \frac{1}{A_{n+1}^\alpha} \sum_{k=1}^{n} A_{n+1-k}^\alpha \left(\frac{T^k f - T^{-k} f}{k} \right).$$
where the Cesàro numbers A_n^β are given as

$$A_n^\beta = \frac{(\beta + 1) \ldots (\beta + n)}{n!} \quad \text{and} \quad A_0^\beta = 1.$$

Two maximal operators $M_{1+\alpha}^+(T)$ and $H_\alpha^*(T)$ on $M(\mu)$ are defined by the relations

$$M_{1+\alpha}^+(T)f = \sup_{n \geq 0} |R_{n,1+\alpha}(T)f|$$

and

$$H_\alpha^*(T)f = \sup_{n \geq 0} |H_{n,\alpha}(T)f|.$$

Note that $M_1^+(T)f = M^+(T)f$ and $H_0^*(T)f = H^*(T)f$. In the theorems below we use the Lorentz spaces $L_{r,1}(wd\mu)$ with $1 \leq r < \infty$. Recall that $f \in L_{r,1}(wd\mu)$ if and only if

$$\|f\|_{r,1;wd\mu} := \int_0^\infty \left(\int_{\{x : |f(x)| > t\}} wd\mu \right)^{1/r} dt < \infty,$$

that $\|\chi_E\|_{1;wd\mu} = \left(\int_E wd\mu \right)^{1/r}$ for $E \in \mathcal{F}$ with $\int_E wd\mu < \infty$, and that $L_{r,1}(wd\mu) \subset L_{r,r}(wd\mu) = L^r(wd\mu)$. These properties of Lorentz spaces are explained in Hunt [9].

Theorem 6. Let $0 \leq w \leq \infty$ on X and let $1 \leq p < \infty$. If T is an invertible Lamperti operator on $M(\mu)$ satisfying (27) and if the linear modulus τ of T becomes an operator on $M(wd\mu)$ and satisfies

$$\sup_{n \geq 0} \|\tau_0,n\|_{L^p(wd\mu)} < \infty,$$ \hfill (55)

then the following statements hold.

(a) When $1 < p \leq r < \infty$, the limit

$$\lim_{n \to \infty} R_{n,p/r}(T)f$$

exists a.e. on the set $\{x : w(x) > 0\}$ for all $f \in L^r(wd\mu)$; further there exists a positive constant C such that

$$\|M_{p/r}^+(T)f\|_{L^r(wd\mu)} \leq C \|f\|_{L^r(wd\mu)}$$ \hfill (56)

for all $f \in L^r(wd\mu)$.

(b) When $1 = p \leq r < \infty$, the limit

$$\lim_{n \to \infty} R_{n,1/r}(T)f$$

exists a.e. on the set $\{x : w(x) > 0\}$ for all $f \in L_{r,1}(wd\mu)$.

Theorem 7. Let $0 \leq w \leq \infty$ on X and let $1 \leq p < \infty$. If T is an invertible Lamperti operator on $M(\mu)$ satisfying (27) and if the linear modulus τ of T becomes an invertible operator on $M(wd\mu)$ and satisfies

$$\sup_{n \geq 0} \|\tau_{n,n}\|_{L^p(wd\mu)} < \infty,$$ \hfill (57)
then the following statements hold.
(a) When \(1 < p \leq r < \infty\), the limit
\[
\lim_{n \to \infty} H_{n,(p/r)-1}(T)f
\]
exists a.e. on the set \(\{x : w(x) > 0\}\) for all \(f \in L^r(w\mu)\); further there exists a positive constant \(C\) such that
\[
\|H^*_{(p/r)-1}(T)f\|_{L^r(w\mu)} \leq C \|f\|_{L^r(w\mu)}
\]
for all \(f \in L^r(w\mu)\).

(b) When \(1 = p \leq r < \infty\), the limit
\[
\lim_{n \to \infty} H_{n,(1/r)-1}(T)f
\]
exists a.e. on the set \(\{x : w(x) > 0\}\) for all \(f \in L_{r,1}(w\mu)\).

Proof of Theorem 6. (a) By (29), \(\Phi\) becomes an operator on \(M(w\mu)\) and satisfies
\[
\sup_{n \geq 0} \|\Phi_{0,n}\|_{L^p(w\mu)} < \infty,
\]
whence we can apply Theorem 1 together with (28) to infer that there exists a positive constant \(C\) such that
\[
\left(\sum_{i=0}^{k} |h_{-i}(x)|^{-r} J_{-i}(x) w(S^{-i}x) \right) \cdot \left(\sum_{i=0}^{k} |h_{i}(x)|^{-r} J_{i}(x) w(S^{i}x) \right)^{\frac{1}{r-1}} \leq C (k+1)^p
\]
for a.e. \(x \in X\) and all \(k \geq 0\). Since \(0 < p/r \leq 1\) and \(1 < p = (p/r)r\), it follows from [15] (cf. especially the proofs of Corollary 3.4 and Theorem 3.1 of [15]) that
(i) the limit \(\lim_{n \to \infty} R_{n,p/r}(\tau)f\) exists a.e. on the set \(\{x : w(x) > 0\}\) for all \(f \in L^r(w\mu)\), and
(ii) the maximal operator \(M^+_{p/r}(\tau)\) is bounded in \(L^r(w\mu)\).

Since \(0 \leq M^+_{p/r}(T)f \leq M^+_{p/r}(\tau)|f|\) for \(f \in L^r(w\mu)\), (56) holds. And the a.e. convergence of \(R_{n,p/r}(T)f\) on the set \(\{x : w(x) > 0\}\) follows from Banach’s convergence principle, because \(\{g + (f - Tf) : Tg = g, f \in L^r(w\mu)\}\) is a dense subspace of \(L^r(w\mu)\) by a mean ergodic theorem, and for \(f \in L^r(w\mu)\) we have
\[
\lim_{n \to \infty} R_{n,p/r}(T)[f - Tf] = 0 \quad \text{a.e.}
\]
on the set \(\{x : w(x) > 0\}\). Indeed (59) holds for \(f\) of the form \(f = \chi_E\) by the proof of Proposition 3.2 of [15], and thus an approximation argument together with (56) can be used to see that (59) holds for any \(f \in L^r(w\mu)\).

(b) Let \(r < s < \infty\), where \(1 = p \leq r < \infty\). Then \(p = 1 < s/r \leq s\), and the Marcinkiewicz interpolation theorem implies that
\[
\sup_{n \geq 0} \|\tau_{0,n}\|_{L^{s/r}(w\mu)} < \infty.
\]
Since \(1 < s/r \leq s\), we then apply (a) to infer that the limit \(\lim_{n \to \infty} R_{n,1/r}(T)f\) exists a.e. on the set \(\{x : w(x) > 0\}\) for all \(f \in L^s(w \mu)\).

Since the Lorentz space \(L_{r,1}(w \mu)\) is a Banach space and \(L^s(w \mu) \cap L_{r,1}(w \mu)\) is a dense subspace of \(L_{r,1}(w \mu)\), it is enough to prove by the Banach convergence principle that

\[
M_{1/r}^+(T)f < \infty \quad \text{a.e.}
\]

on the set \(\{x : w(x) > 0\}\) for all \(f \in L_{r,1}(w \mu)\). By (29) and (4) it suffices to prove the following weak type inequality:

(W) There exists a positive constant \(C\) such that

\[
\int_{\{x : M_{1/r}^+(\Phi)f(x) > \lambda\}} w \, d\mu \leq C \frac{1}{\lambda^r} \|f\|_{r,1; w \mu}^r
\]

for all \(f \in L_{r,1}(w \mu)\) and \(\lambda > 0\).

If \(r = 1\) then, since \(\Phi\) satisfies (41), (W) follows from Theorem 4 (cf. also Remark 2).

If \(1 < r < \infty\) then, by the proof of Theorem 3.13 of Chapter V of [22], it suffices to prove the existence of a positive constant \(C\) such that

\[
\int_{\{x : M_{1/r}^+(\Phi)\chi_E(x) > \lambda\}} w \, d\mu \leq C \frac{1}{\lambda^r} \int_{E} w \, d\mu
\]

for all \(E \in \mathcal{F}\) and \(\lambda > 0\). To do so, we adapt the argument of Bernardis and Martín-Reyes [4] as follows.

Let \(f = \chi_E\), where \(E \in \mathcal{F}\). If we define, for an \(N \geq 1\),

\[
M_{1/r}^+(\Phi)N \chi_E(x) = \sup_{0 \leq n \leq N} \left\{ \frac{1}{A_n^{1/r}} \sum_{k=0}^{n} A_{n-k}^{(1/r)-1} \chi_E(S^k x) \right\}
\]

then \(M_{1/r}^+(\Phi)N \chi_E \uparrow M_{1/r}^+(\Phi)\chi_E\) a.e. on \(X\) as \(N \to \infty\). For the moment let us fix an \(N \geq 1\). If we set

\[
A := \{x : M_{1/r}^+(\Phi)N \chi_E(x) > \lambda\},
\]

then by (3)

\[
(L + 1) \int_A w \, d\mu = \int \sum_{i=0}^{L} \chi_A(S^i x)w(S^i x)J_i(x) \, d\mu
\]

\[
= \int \sum_{\{0 \leq i \leq L : M_{1/r}^+(\Phi)N \chi_E(S^i x) > \lambda\}} J_i(x)w(S^i x) \, d\mu.
\]

On the other hand, we know (cf. (41), (42), (43)) that there exists a positive constant \(C\) such that

\[
\sup_{n \geq 0} \frac{1}{n+1} \sum_{i=0}^{n} J_{j-i}(x)w(S^{j-i} x) \leq C \cdot J_j(x)w(S^j x)
\]
for a.e. \(x \in X \) and all \(j \in \mathbb{Z} \). Thus by Lemma 2.6 and Theorem E of [4] there exists a positive constant \(C \) such that

\[
\sum_{\{0 \leq i \leq L: M_{1/(\mu)}(\Phi)_{N \chi_{E}}(S^i x) > \lambda\}} J_i(x) w(S^i x) < C \frac{1}{\lambda^r} \left(\int_0^\infty \left[\sum_{\{0 \leq i \leq N+L: \chi_{E}(S^i x) > t\}} J_i(x) w(S^i x) \right]^{1/r} dt \right)^r.
\]

Therefore we have

\[
(L + 1) \int_A w \, d\mu \leq C \frac{1}{\lambda^r} \int_X \left(\int_0^1 \left[\sum_{\{0 \leq i \leq N+L: \chi_{E}(S^i x) > t\}} J_i(x) w(S^i x) \right]^{1/r} dt \right)^r d\mu
\]

\[
\leq C \frac{1}{\lambda^r} \int_X \left(\sum_{i=0}^{N+L} J_i(X) w(S^i x) \chi_{E}(S^i x) \right) d\mu \quad \text{(by Hölder's inequality)}
\]

\[
= C \frac{1}{\lambda^r} (N + L + 1) \int_E w \, d\mu \quad \text{(by (3)).}
\]

Letting \(L \uparrow \infty \) and then \(N \uparrow \infty \), we see that (61) holds, and this completes the proof of Theorem 6.

Proof of Theorem 7. By (57) we may assume without loss of generality that \(X = \{ x : 0 < w(x) < \infty \} \). Then \(T \) and \(\tau \) can be regarded as invertible Lamperti operators on \(M(w \mu) = M(\mu) \).

Let \(p \leq r < \infty \). Then by the Marcinkiewicz interpolation theorem

\[
\sup_{n \geq 0} \| \tau_{n,n} \|_{L^r(w \mu)} < \infty.
\]

Hence \(T \) becomes a bounded and invertible operator on \(L^r(w \mu) \). Let \(\tau_{p/r} \) denote the invertible (positive) Lamperti operator on \(M(w \mu) = M(\mu) \) defined by the relation

\[
\tau_{p/r} f = |h_1|^{r/p} \cdot \Phi f.
\]

Then we have

\[
\tau_{p/r}^i f = |h_i|^{r/p} \cdot \Phi^i f = |h_i|^{(r-p)/p} \cdot \tau^i f \quad (i \in \mathbb{Z})
\]

and by (28)

\[
\tau_{p/r}^i \leq K_{\infty}^{(r-p)/p} \cdot \tau^i \quad (i \in \mathbb{Z}).
\]

Thus

\[
\sup_{n \geq 0} \left\| \frac{1}{2n + 1} \sum_{i=-n}^n \tau_{p/r}^i \right\|_{L^p(w \mu)} < \infty.
\]
Since $0 < p/r \leq 1$ and $p = (p/r)r$, (a) now follows from [5] when $1 < p < r < \infty$, and from [19] when $1 < p = r < \infty$. (b) is a consequence of Theorem 1.4 of [4]. \hfill \Box

Remark 3. (i) In statement (b) of Theorems 6 and 7, the function f in $L_{\theta, 1}(wd\mu)$ cannot be replaced by a function in $L'(wd\mu)$ when $1 = p < r < \infty$. In fact, if we consider an ergodic invertible measure preserving transformation ϕ on a nonatomic probability measure space (X, \mathcal{F}, μ) and an operator T on $M(\mu)$ of the form $Tf = f \circ \phi$, then clearly $\|T^n\|_{L_p(\mu)} = 1$ for all $n \in \mathbb{Z}$ and $1 \leq p \leq \infty$. Dénier proved in [6] that if $1 < r < \infty$ then there exists a function $f \in L'(\mu)$ for which the a.e. convergence of the sequence $\{R_{n, 1/r}Tf(x)\}_{n=0}^{\infty}$ fails to hold. Later, modifying the idea of Dénier [6], Bernardis, Martín-Reyes and Sarrión Gavilán proved in [5] that if $1 < r < \infty$ then there exists an $f \in L'(\mu)$ for which the a.e. convergence of the sequence $\{H_{n, 1/r-1}Tf(x)\}_{n=1}^{\infty}$ fails to hold.

(ii) Statement (b) of Theorem 6 is not true if the hypothesis (27) is omitted. A counterexample can be found in [4].

(iii) Statement (b) of Theorem 7 is not true at least for the case $1 = p = r$ if the hypothesis (27) is omitted. This can be seen from [19].

4. CONCLUDING REMARKS

The purpose of this section is to prove the following weighted ergodic theorem, without assuming that T satisfies (27).

Theorem 8. Let $0 \leq w \leq \infty$ on X and let $1 < p < \infty$. Then the following statements hold for an invertible Lamperti operator T on $M(\mu)$.

(a) If T is an operator on $M(wd\mu)$ and satisfies

\[K^+(p) := \sup_{n \geq 0} \|T^n\|_{L_p(wd\mu)} < \infty, \]

then for any r with $1/p < r \leq 1$ the limit

\[\lim_{n \to \infty} R_{n, r}Tf \]

exists a.e. on the set $\{x : w(x) > 0\}$ for every $f \in L^p(wd\mu)$; and the maximal operator $M^+_r(T)$ is bounded in $L^p(wd\mu)$.

(b) If T is an invertible operator on $M(wd\mu)$ and satisfies

\[K(p) := \sup_{n \in \mathbb{Z}} \|T^n\|_{L_p(wd\mu)} < \infty, \]

then for any r with $1/p < r \leq 1$ the limit

\[\lim_{n \to \infty} H_{n, r-1}Tf \]

exists a.e. on the set $\{x : w(x) > 0\}$ for every $f \in L^p(wd\mu)$; and the maximal operator $H^*_{r-1}(T)$ is bounded in $L^p(wd\mu)$.

Remark 4. In the above theorem we cannot take $r = 1/p$. See Remark 3 (i).
Proof of Theorem 8. (a) If τ_r denotes the invertible Lamperti operator on $M(\mu)$ defined by
\[
\tau_r f = |h_1|^{1/r} \cdot \Phi f,
\]
then we have
\[
\tau_r^i f(x) = |h_i(x)|^{1/r} \cdot \Phi^i f(x) \quad (i \in \mathbb{Z}).
\]
If $0 \leq f \in M(\mu)$ then, since $rp > 1$, it follows from H"{o}lder's inequality that
\[
\left(\frac{1}{n+1} \sum_{i=0}^n \tau_r^i f \right)^{rp} \leq \frac{1}{n+1} \sum_{i=0}^n (\tau_r^i f)^{rp} = \frac{1}{n+1} \sum_{i=0}^n [h_i \cdot \Phi^i(f^r)]^p = \frac{1}{n+1} \sum_{i=0}^n [\tau_r^i(f^r)]^p,
\]
whence
\[
\int_X \left(\frac{1}{n+1} \sum_{i=0}^n \tau_r^i f \right)^{rp} \cdot w \, d\mu \leq \frac{1}{n+1} \sum_{i=0}^n \int_X [\tau_r^i(f^r)]^p \cdot w \, d\mu \leq (K^+(p))^p \cdot \int f^{rp} \cdot w \, d\mu.
\]
Therefore τ_r becomes an operator on $M(\mu)$ and satisfies
\[
\sup_{n \geq 0} \left\| \frac{1}{n+1} \sum_{i=0}^n \tau_r^i \right\|_{L^{rp}(\mu)} < \infty.
\]
Thus by Theorem 1 there exists a positive constant C such that
\[
\left(\sum_{i=0}^k |h_{-i}(x)|^{-p} J_{-i}(x) w(S^{-i}x) \right) \cdot \left(\sum_{i=0}^k |h_i(x)|^{-p} J_i(x) w(S^i x) \right)^{1/(rp-1)} \leq C (k+1)^{rp},
\]
for a.e. $x \in X$ and all $k \geq 0$. Since $0 < r \leq 1$ and $1 < rp$, it follows from [15], as in the above proof of (a) of Theorem 6, that

(i) the limit $\lim_{n \to \infty} R_{n, r}(f)$ exists a.e. on the set $\{ x : w(x) > 0 \}$ for every f in $L^p(\mu)$, where τ is the linear modulus of T, and

(ii) the maximal operator $M_r^+(T)$ is bounded in $L^p(\mu)$.

Thus (a) follows similarly, as in (a) of Theorem 6.

(b) We may assume as before that $X = \{ x : 0 < w(x) < \infty \}$, and hence T can be considered to be an invertible Lamperti operator on $M(\mu) = M(\mu)$. As in (a), we observe that
\[
\sup_{n \geq 0} \left\| \frac{1}{2n+1} \sum_{i=-n}^n \tau_r^i \right\|_{L^{rp}(\mu)} \leq K(p)^{1/r}.
\]
Thus (b) follows from [5] when $1/p < r < 1$, and from [19] when $1/p < r = 1$.

This completes the proof of Theorem 8. \qed

The next proposition may be considered to be a supplementary result to Theorem 1.

Proposition. Let $0 \leq w \leq \infty$ on X and let $1 \leq p < \infty$. Then the following statements hold for an invertible Lamperti operator T on $M(\mu)$.

(a) T becomes an operator on $M(\mu w)$ and satisfies the norm condition

$$K^+(p) := \sup_{n \geq 0} \| T^n \|_{L^p(\mu w)} < \infty$$

if and only if there exists a positive constant C such that for a.e. $x \in X$ and all $n \geq 0$

$$|h_{-n}(x)|^{-p} J_{-n}(x) \Phi^{-n} w(x) \leq C w(x). \tag{64}$$

(b) The linear modulus τ of T becomes an operator on $M(\mu w)$ and satisfies the norm condition

$$\sup_{n \geq 0} \| \tau_0, n \|_{L^1(\mu w)} < \infty$$

if and only if there exists a positive constant C such that for a.e. $x \in X$ and all $n \geq 0$

$$\frac{1}{n+1} \sum_{i=0}^{n} |h_{-i}(x)|^{-1} J_{-i}(x) \Phi^{-i} w(x) \leq C w(x). \tag{65}$$

Proof. (a) By (4) we may assume without loss of generality that T is positive. Then for $0 \leq f \in M(\mu)$ and $n \geq 0$ we have, by (2) and (3),

$$\| T^n f \|_{L^p(\mu w)}^p = \int (T^n f)^p \cdot w \, d\mu = \int f^p \cdot (|h_{-n}|^{-p} J_{-n} \Phi^{-n} w) \, d\mu. \tag{66}$$

Thus (64) implies that T becomes an operator on $M(\mu w)$ and satisfies the norm condition: $K^+(p) < \infty$. Conversely if T is an operator on $M(\mu w)$ and satisfies the norm condition: $K^+(p) < \infty$, then for $f = \chi_A$ with $A \in \mathcal{F}$ we have by (66)

$$\int_A (|h_{-n}|^{-p} J_{-n} \Phi^{-n} w) \, d\mu = \int (T^n \chi_A)^p w \, d\mu$$

$$\leq \| T^n \|_{L^p(\mu w)}^p \cdot \int_A w \, d\mu \leq (K^+(p))^p \cdot \int_A w \, d\mu.$$

This completes the proof of (a).

(b) We may assume, as above, that $\tau = T$. Then for $0 \leq f \in M(\mu)$ and
WEIGHTED ERGODIC PROPERTIES

$n \geq 0$ we have, using (66) with $p = 1$, that

\begin{equation}
\|\tau_0, nf\|_{L^1(\omega d\mu)} = \int (\tau_0, nf) \cdot w \, d\mu = \int f \cdot \left(\frac{1}{n + 1} \sum_{i=0}^{n} |h_{-i}|^{-1} J_{-i} \Phi^{-i} w \right) \, d\mu.
\end{equation}

Thus (65) implies that τ becomes an operator on $M(\omega d\mu)$ and satisfies the norm condition.

Conversely if τ is an operator on $M(\omega d\mu)$ and satisfies

$$C := \sup_{n \geq 0} \|\tau_0, n\|_{L^1(\omega d\mu)} < \infty,$$

then for $f = \chi_A$ with $A \in \mathcal{F}$ we have

\begin{equation}
\int_A \left(\frac{1}{n + 1} \sum_{i=0}^{n} |h_{-i}|^{-1} J_{-i} \Phi^{-i} w \right) \, d\mu = \int (\tau_0, n\chi_A) \cdot w \, d\mu \\
\leq \|\tau_0, n\|_{L^1(\omega d\mu)} \cdot \int_A w \, d\mu \leq C \int_A \omega d\mu.
\end{equation}

Hence (65) follows, and the proof is complete. \hfill \Box

REFERENCES