On Morava K-Groups of Stunted Projective Spaces

Y. M. Yang

*Kyoto University

ON MORAVA K-GROUPS OF STUNTED PROJECTIVE SPACES

Y.M. YANG

1. INTRODUCTION

Let \(k(n)^*(-) \) be the connective Morava \(K \)-theory with coefficient ring \(k(n)^* = \mathbb{Z}/2[v_n] \) and let \(K(n)^*(-) \) be the Morava \(K \)-theory with coefficient ring \(K(n)^* = \mathbb{Z}/2[v_n, v_n^{-1}] \), where \(|v_n| = -2(2^n - 1) \). In this paper we determine the module structure of \(k(n)^*(RP^l_{m+1}) \) and the algebra structure of \(k(n)^*(RP^l) \) over \(k(n)^* \) at the prime 2. Here, the symbol \(RP^l_{m+1} \) denotes a stunted real projective space \(RP^l/RP^m \) (\(0 \leq m < l \leq \infty \)).

Our principal tool for computing \(k(n)^*(RP^l_{m+1}) \) is the Atiyah-Hirzebruch spectral sequence (AHSS)

\[
E_2^{s,t} = H^s(RP^l_{m+1}; k(n)^*) \Rightarrow k(n)^*(RP^l_{m+1})
\]

and we use the result of Yagita([1], Lemma 2.1) for further computation.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to Professor G. Nishida for his constant attention and valuable advice. I am also grateful to Dr. M. Tanabe for several enlightening discussions and helpful advice.

2. STATEMENT OF RESULTS AND PROOFS

In this section, we determine the module structure of the Morava \(K \)-theory of the stunted real projective space and the algebra structure of the Morava \(K \)-theory of the real projective space over \(k(n)^* \) at the prime 2.

The following lemma is needed for computation of the differentials of AHSS for \(k(n)^*(RP^\infty_{m+1}) \).

Lemma 2.1 [Yagita] Let \(X \) be a CW-complex. Let \(E_r \) be the Atiyah-Hirzebruch spectral sequence for \(k(n)^*(X) \)

\[
E_2^{s,t} = H^s(X; k(n)^t) \Rightarrow k(n)^{s+t}(X)
\]

and its differential be \(d_r : E_r^{s,t} \to E_r^{s+r, t-r+1} \). Let \(u \in H^s(X) \), then \(d_r(u) = 0 \) for \(r < 2^{n+1} - 1 \) and

\[
d_{2^{n+1}-1}(u) = Q_n(u) \otimes v_n.
\]
where \(Q_0 = S^q, Q_n = S^q Q^{n-1} + Q^{n-1} S^q \) (\(n \geq 1 \)).

First we determine differentials of AHSS for \(k(n)^* (R(P^\infty_{m+1})_{m+1}) \)

\[E_2^{p,q}(R(P^\infty_{m+1})_{m+1}) = H^p(R(P^\infty_{m+1})_{m+1}; k(n)^q) \rightarrow k(n)^{p+q}(R(P^\infty_{m+1})_{m+1}). \]

Let us consider the following cofibration

\[R^m \rightarrowtail R^\infty \rightarrowtail \frac{R^\infty}{R^m} = R^\infty_{m+1} \]

from which we get the following exact sequence

\[0 \rightarrowtail \tilde{H}^*(R^\infty_{m+1}) \rightarrowtail \tilde{H}^*(R^\infty) \rightarrowtail \tilde{H}^*(R^\infty_m) \rightarrowtail 0. \]

Throughout this paper all cohomology groups have \(Z/2 \) coefficients unless otherwise stated. Here we recall that \(H^*(R^\infty) = Z/2[u] \) where \(u \in H^1(R^\infty) \) and, via \(\pi^* \), we may identify \(\tilde{H}^*(R^\infty_{m+1}) \) with the submodule of \(\tilde{H}^*(R^\infty) \) generated by \(u^{m+1}, u^{m+2}, \ldots \).

Proposition 2.2 In the AHSS for \(k(n)^* (R(P^\infty_{m+1})_{m+1}) \),

1. \(d_{2^{n+1}-1}(u^{2i}) = 0 \) for all \(2i \geq m+1 \).
2. \(d_{2^{n+1}-1}(u^{2j+1}) = v_n u^{2j+2^{n+1}} \) for all \(2j+1 \geq m+1 \).
3. There are isomorphisms

\[\tilde{E}_2^{s,*} \cong \cdots \cong \tilde{E}_\infty^{s,*} = k(n)^* \{u^{2i} \mid m+1 \leq 2i \leq m+2^{n+1} - 1\} \]

\[\oplus k(n)^* \{u^{2k} \mid m+2^{n+1} \leq 2k\}/(v_n). \]

Proof. By induction on \(n \) we can easily compute the action of \(Q_n \) on \(H^*(R^\infty) \) and hence on \(H^*(R(P^\infty_{m+1})_{m+1}) \). In fact we have \(Q_n(u^{2i}) = 0 \) and \(Q_n(u^{2i+1}) = u^{2i+2^{n+1}} \). Thus by the lemma 2.1 we get

\[d_{2^{n+1}-1}(u^{2i}) = 0 \quad \text{for any} \quad 2i \geq m+1 \]

and

\[d_{2^{n+1}-1}(u^{2j+1}) = v_n u^{2j+2^{n+1}} \quad \text{for any} \quad 2j+1 \geq m+1. \]

This proves 1 and 2.

Next we prove 3. From (1), \(v^a u^{2i} \) is cycle for any \(a \geq 0 \) and \(2i \geq m+1 \). If \(a = 0 \), then \(u^{2i} \) can not be boundary. If \(a \geq 1 \) and \(m+1 \leq 2i \leq m+2^{n+1} - 1 \), then for dimensional reason, \(v^a u^{2i} \) can not be boundary. If \(a \geq 1 \) and \(2i \geq m+2^{n+1} \), then since \(v^a u^{2i} = d_{2^{n+1}-1}(v^{a-1} u^{2i-2^{n+1}+1}) \), from (2), \(v^a u^{2i} \) is boundary. Therefore \(\tilde{E}_{2^{n+1}} \cong k(n)^* \{u^{2i} \mid m+1 \leq 2i \leq m+2^{n+1} - 1\} \oplus k(n)^* \{u^{2k} \mid m+2^{n+1} \leq 2k\}/(v_n) \). Since \(E_{2^{n+1}} \)-term is concentrated in even degree we have \(d_r = 0 \) for any \(r \geq 2^{n+1} \). Thus \(\tilde{E}_{2^{n+1}} \cong \cdots \cong \tilde{E}_\infty \).
Next we consider RP_m^l. Let $m < l$ and recall that
\begin{equation}
H^*(\text{RP}_m^l) = \mathbb{Z}/2\{u^{m+1}, \ldots, u^l\}.
\end{equation}
Let $i: \text{RP}_m^l \hookrightarrow \text{RP}_m^\infty$ be the standard inclusion. Then induced homomorphism
\begin{equation}
i^*: H^*(\text{RP}_m^\infty) \to H^*(\text{RP}_m^l)
\end{equation}
is epimorphism.

Proposition 2.3 \tilde{E}_∞-term of the Atiyah-Hirzebruch spectral sequence for $\tilde{k}(n)^*(\text{RP}_m^l)$ is given by:
\begin{equation}
\tilde{E}_\infty \cong k(n)^*\{u_{2i}, u_{2j+1}|m+1 \leq 2i \leq M, L \leq 2j+1 \leq l\}
\oplus k(n)^*\{v_{2k}|m+2n+1 \leq 2k \leq l\}/(v_n)
\end{equation}
as $k(n)^*$-module where $M = \text{Min}(l, m+2n+1 - 1)$, $L = \text{Max}(m+1, l - 2n+1 + 2)$ and u_i denotes the class represented by u^i.

Proof. For similarity, we only prove the proposition for the case: l is odd and m is even.

(i) If $l < m + 2n+1$, then for dimensional reason, all differentials are zero. Therefore $\tilde{E}_2 = \cdots = \tilde{E}_\infty \cong k(n)^*\{u^{m+1}, \ldots, u^l\}$.

(ii) If $l \geq m + 2n+1$, then since i^* is epimorphism, the generators u^{m+2k} are permanent cycle in AHSS for $\tilde{k}(n)^*(\text{RP}_m^l)$ for $k = 1, 2, \ldots, l - 1$. For dimensional reason, the generators u^{m+2k+1} are cycles for $l - 2n+1 + 2 \leq m + 2k + 1 \leq l$. Also since $v_{2k}u^{m+2k+1}$ can not be boundary, from (1) and (2), $v_{2k}u^{m+2k+1}$ is cycle and is not boundary for $l - 2n+1 + 2 \leq m + 2k + 1 \leq l$. Therefore
\begin{equation}
\tilde{E}_{2n+1} \cong k(n)^*\{u^{m+2}, \ldots, u^{m+2n+1-2}, u^{l-2n+1+2}, \ldots, u^l\}
\oplus k(n)^*\{u^{m+2n+1}, \ldots, u^{l-1}\}/(v_n).
\end{equation}
For dimensional reason and the fact that u^{m+2k} are all permanent cycles, we have $d_r = 0$ for all $r \geq 2n+1$. Thus $\tilde{E}_{2n+1} = \cdots = \tilde{E}_\infty$ and we get the proposition.

Let us consider the following filtration of $\tilde{k}(n)^*(\text{RP}_m^l)$
\begin{equation}
\tilde{k}(n)^*(\text{RP}_m^l) = \tilde{F}_m^0 \supset \cdots \supset \tilde{F}_m^{s-1} \supset \tilde{F}_m^{s+1} \supset \cdots
\end{equation}
where $\tilde{F}_m^{s-1} = \ker(\tilde{k}(n)^*(\text{RP}_m^l) \to \tilde{k}(n)^*((\text{RP}_m^l)^{s-1}))$ is a $k(n)^*$-submodule of $\tilde{k}(n)^*(\text{RP}_m^l)$. Then since $\tilde{F}_m^{l+1, s-l-1} = 0$, the filtration (4) is finite. Note that $\tilde{E}_\infty^{s}s \cong \tilde{F}_m^{s, s}/\tilde{F}_m^{s+1, s-1}$.

Lemma 2.4 $\tilde{F}_m^{s, s} \cong \tilde{F}_m^{s+1, s-1} \oplus \tilde{E}_\infty^{s, s}$ as $k(n)^*$-module.
PROOF. We prove that the following exact sequence splits as $k(n)^*$-module;

$$0 \rightarrow \mathcal{E}_{s+1,*} \rightarrow \mathcal{E}_{s,*} \rightarrow \mathcal{E}_{\infty,*} \rightarrow 0.$$

By Proposition 2.3,

\begin{align*}
\mathcal{E}_{\infty,*} &\cong \begin{cases}
 k(n)^* & \text{if } s \text{ is even and } m+1 \leq s \leq \text{Min}(l, m+2^{n+1}-1) \\
 k(n)^* & \text{if } s \text{ is odd and } \text{Max}(m+1, l-2^{n+1}+2) \leq s \leq l \\
 k(n)^*/(v_n) & \text{if } s \text{ is even and } m+2^{n+1} \leq s \leq l \\
 0 & \text{otherwise}
\end{cases}
\end{align*}

If s is not in the third case, the exact sequence clearly splits. Suppose that s is even and $m+2^{n+1} \leq s \leq l$. Let $u_s \in \mathcal{E}_{\infty,*}$ be as in Proposition 2.3. Then since π is surjective, there exists an element $x \in \mathcal{E}_{n,*}$ such that $\pi(x) = u_s$. To prove the lemma it suffices to show that $v_n x = 0$. Since $\pi(v_n x) = v_n \pi(x) = v_n u_s = 0$, $v_n x$ is in $\mathcal{E}_{s+1,-2(2^{n}-1)-1}$. By Proposition 2.3, it is easy to see that $\mathcal{E}_{s+1,-2(2^{n}-1)-1} = 0$ for all $k \geq 1$. Thus $\mathcal{E}_{s+1,-2(2^{n}-1)-1} = 0$ and hence $v_n x = 0$. \hfill \Box

From Lemma 2.4, we have the following Theorem.

Theorem 2.5 $\mathcal{E}_{\infty,*}(RP_{m+1}) \cong \bigoplus_s \mathcal{E}_{\infty,*,-s}$ as graded $k(n)^*$-module.

Corollary 2.6 As $k(n)^*$-module

$$\mathcal{E}_{\infty,*}(RP_{m+1}) \cong k(n)^* \{x_{2i}, x_{2j+1} | m+1 \leq 2i \leq M, L \leq 2j+1 \leq l\}$$

$$\oplus k(n)^* \{x_{2k} | m+2^{n+1} \leq 2k \leq l\}/(v_n)$$

where $M = \text{Min}(l, m+2^{n+1}-1)$, $L = \text{Max}(m+1, l-2^{n+1}+2)$ and x_i corresponds to u_i under the above isomorphism.

Theorem 2.7 There exists a ring isomorphism $E_{\infty,*} \cong k(n)^*(RP^I)$.

Proof. $E_{\infty,*}$ is generated by 1 and u_i as $k(n)^*$-algebra and

$$u_i \cdot u_j = \begin{cases} u_{i+j} & \text{if } i+j \text{ is in the range given in Prop2.3.} \\
0 & \text{if } i+j \text{ is out of the range.}
\end{cases}$$

Let $x_i \in k(n)^*(RP^I)$ be as in Cor2.6. It is clear that both $x_i \cdot x_j$ and x_{i+j} represent u_{i+j} if $i+j$ is in the range given in Prop2.3 and $x_i \cdot x_j$ represents 0 if $i+j$ is out of the range. First we consider first case. In this case, $x_i \cdot x_j - x_{i+j}$ is in the higher filtration. But we can prove that the higher filtration is zero in the degree of $x_i \cdot x_j$ by using Prop2.3 as in the proof of Lem2.4 and hence $x_i \cdot x_j - x_{i+j} = 0$. Therefore $x_i \cdot x_j = x_{i+j}$. Similarly we have $x_i \cdot x_j = 0$ in the second case. This proves the theorem. \hfill \Box

Theorem 2.8
1. Let $l < 2^{n+1}$, then

 $$k(n)^*(RP^l) = k(n)^*[u]/(u^{l+1})$$

 where the class u represents x_1.

2. Let l be an odd integer such that $l > 2^{n+1}$, then

 $$k(n)^*(RP^l) = k(n)^*[x,y]/(v_n x^{2^n}, y^2 - x^{l-2^{n+1}+2}, x^{l+1}, y x^{2^n})$$

 where $x = x_2$, $y = x_{l-2^{n+1}+2}$.

3. Let l be an even integer such that $l \geq 2^{n+1}$, then

 $$k(n)^*(RP^l) = k(n)^*[x,z]/(v_n x^{2^n}, z^2 - x^{l-2^{n+1}+3}, x^{l+2}, z \cdot x^{2^n-1})$$

 where $z = x_{l-2^{n+1}+3}$.

Proof. 1. Trivial. 2. Let $\psi : k(n)^*[x,y] \to k(n)^*(RP^l)$ be a $k(n)^*$-algebra homomorphism given by $\psi(x) = x_2$ and $\psi(y) = x_{l-2^{n+1}+2}$. Then it is easy to see that ψ is surjective and $(v_n x^{2^n}, y^2 - x^{l-2^{n+1}+2}, x^{l+1}, y x^{2^n}) \subset \ker \psi$. By comparing graded dimension over \mathbb{F}_2, we see that ψ induces an isomorphism $k(n)^*[x,y]/(v_n x^{2^n}, y^2 - x^{l-2^{n+1}+2}, x^{l+1}, y x^{2^n}) \cong k(n)^*(RP^l)$. 3. The proof is similar to 2. \qed

Using $K(n)^*(X) = k(n)^*(X)[v_n^{-1}]$, $K(n)^*(RP^l)$ and $K(n)^*(RP^m_{m+1})$ will immediately be deduced.

Theorem 2.9 As $K(n)^*$-module $\tilde{K}(n)^*(RP^l_{m+1})$ is given by:

$$\tilde{K}(n)^*(RP^l_{m+1}) \cong K(n)^*[x_2i, x_{2j+1}| m + 1 \leq 2i \leq M, L \leq 2j + 1 \leq l$$

where $M = \text{Min}(l, m + 2^{n+1} - 1)$ and $L = \text{Max}(m + 1, l - 2^{n+1} + 2)$.

Theorem 2.10

1. Let $l < 2^{n+1}$, then

 $$K(n)^*(RP^l) = K(n)^*[u]/(u^{l+1})$$

 where the class u represents x_1.

2. Let l be an odd integer such that $l > 2^{n+1}$, then

 $$K(n)^*(RP^l) = K(n)^*[x,y]/(x^{2^n}, y^2 - x^{l-2^{n+1}+2})$$

 where $x = x_2$, $y = x_{l-2^{n+1}+2}$.

3. Let l be an even integer such that $l \geq 2^{n+1}$, then

 $$K(n)^*(RP^l) = K(n)^*[x,z]/(x^{2^n}, z \cdot x^{2^n-1}, z^2 - x^{l-2^{n+1}+3})$$

 where $z = x_{l-2^{n+1}+3}$.

References

Y.M. YANG

Y. M. Yang
Department of Mathematics
Faculty of Science
Kyoto University
Kyoto, 310-0056

(Received February 12, 1999)