Group rings with nilpotent unit groups

Kaoru Motose* Hisao Tominaga†

*Shinshu University
†Okayama University

GROUP RINGS WITH NILPOTENT UNIT GROUPS

Dedicated to Professor Keizo Asano on his 60th birthday

KAORU MOTOSE and HISAO TOMINAGA

In their paper [1], J. M. Bateman and D. B. Coleman stated the following: Let F be a field, and G a finite group. (a) Let the group ring FG be semi-simple. Then the unit group of FG is nilpotent if and only if G is abelian. (b) Let the characteristic of F be a prime p dividing the order of G. Then the unit group of FG is nilpotent if and only if G is a nilpotent group such that the q-Sylow subgroup is abelian for every prime $q
eq p$. Unfortunately, they used there an incorrect lemma, which should be corrected as follows:

Lemma 1. Let S be a ring with 1, and N a nilpotent ideal of S. If S/N is commutative and $[N,S] = \{[x,y] = xy - yx | x \in N, y \in S\}$ is contained in N^2 then the unit group S^* of S is nilpotent. In particular, if S/N^2 is commutative then S^* is nilpotent.

Proof. We define $(u,v) = u^{-1}v^{-1}uv$ for $u, v \in S^*$, and inductively $(u_1, \ldots, u_n) = ((u_1, \ldots, u_{n-1}), u_n)$ for $u_1, \ldots, u_n \in S^*$. Then, we see by induction that for $n \geq 1$

$(u_1, \ldots, u_n)^{-1} = (u_1, \ldots, u_{n-1})^{-1}u_n^{-1}[(u_1, \ldots, u_{n-1}) - 1, u_n] \in N^{n-1}$. Since N is nilpotent, it follows that S^* is nilpotent.

Remark. Let $D = Q + Qi + Qj + Qij$ be the quaternion division algebra over the rational number field Q. We consider the ring $S = \{ \begin{pmatrix} a & 0 \\ d & a \end{pmatrix} | d \in D, a \in C = Q + Qi \}$. Then, $N = \{ \begin{pmatrix} 0 & 0 \\ d & 0 \end{pmatrix} | d \in D \}$ is an ideal of S with $N^2 = 0$ and S/N is isomorphic to the field C. For an arbitrary integer n, we have

$\begin{pmatrix} 1 & 0 \\ nj & 1 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -nj & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2nj & 1 \end{pmatrix}$, whence one will easily see that S^* is not nilpotent. This example shows that the assumption $[N,S] \subseteq N^2$ is indispensable in Lemma 1. Next, we shall claim that the converse of Lemma 1 is not true. Evidently the radical N of the ring $S = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} | a, b, c \in GF(2) \}$ coincides

43
with \(\begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix} \mid b \in GF(2) \) and \(S/N \) is isomorphic to \(GF(2) \oplus GF(2) \). Moreover, \(S' = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \} \) is commutative and \([N,S] \neq 0 = N^3\).

Now, we shall prove the following:

Proposition. Let \(S \) be a semi-primary ring with 1 such that the radical \(R \) is nilpotent and \(S^* = S/R^a \) is commutative, and let \(G \) be a finite group. If (1) \(G \) is commutative or (2) \(S/R \) is of prime characteristic \(p \) and \(G \) is a nilpotent group such that the \(q \)-Sylow subgroup is commutative for every prime \(q \neq p \), then the unit group of the group ring \(SG \) is nilpotent.

Proof. We consider the ring homomorphism \(\lambda \) of \(\mathbb{S} = SG \) onto the group ring \(\mathbb{S}^* = S^* G \) defined by \(\sum_{s \in S} s \sigma \mapsto \sum_{s \in S} s^* \sigma \) where \(s^* \) is the residue class of \(s \in S \) modulo \(R^a \). Evidently, \(RG \) is nilpotent and \(\text{Ker} \lambda = R^a G = (RG)^a \). If \(G \) is commutative then \(\mathbb{S}/(RG)^a \) is isomorphic to the commutative ring \(\mathbb{S}^* \), and hence \(\mathbb{S}^* \) is nilpotent by Lemma 1. It remains therefore to prove the case (2). Let \(G = H \times P \) where \(P \) is a \(p \)-group and \(H \) an abelian group of order prime to \(p \). By [3; Corollary 1], the respective radicals \(\mathfrak{R} \) and \(\mathfrak{R}^* \) of \(SP \) and \(S^* P \) are \(\sum_{\rho \in P} S(\rho - 1) \) and \(\sum_{\rho \in P} S^*(\rho - 1) + (R/R^a)P \). Moreover, noting that \((\mathfrak{R} H)^a \) contains \(\text{Ker} \lambda \) and \(\lambda((\mathfrak{R} H)^a) = (\mathfrak{R}^* H)^a \), we see that \(\mathbb{S}/(\mathfrak{R} H)^a \) is isomorphic to \(\mathbb{S}^*/(\mathfrak{R}^* H)^a \). As \(H \) is contained in the center of \(\mathbb{S}^* \) and \([\sigma, \tau] = [\sigma - 1, \tau - 1] \in (\mathfrak{R}^* H)^a \) for every \(\sigma, \tau \in P \), it is easy to see that \((\mathbb{S}^*/(\mathfrak{R}^* H)^a) \) and hence \(\mathbb{S}/(\mathfrak{R} H)^a \) is commutative. As was noted in the proof of [3; Corollary 1], \(\mathfrak{R}^k \) is contained in \(RP \) for some \(k \), which implies that \(\mathfrak{R} H \) is nilpotent. Hence, again by Lemma 1, \(\mathbb{S}^* \) is nilpotent.

As is well-known, the unit group of the complete \(n \times n \) matrix ring \(D_n \) over a division ring \(D \) is not nilpotent for \(n > 1 \). Moreover, it is known that the unit group of a division ring \(D \) is not commutative ([2] or [4]). Accordingly, we readily obtain

Lemma 2. If the unit group of an artinian semi-simple ring \(S \) is nilpotent then \(S \) is commutative.

Combining the proposition with Lemma 2, we can generalize somewhat the statement cited at the opening of this note.

Theorem. Let \(S \) be an artinian semi-simple ring, and \(G \) a finite group. Then, the unit group of the group ring \(SG \) is nilpotent if and

http://escholarship.lib.okayama-u.ac.jp/mjou/vol14/iss1/10 2
only if S is commutative and either (1) G is abelian or (2) S is of prime characteristic p and G is a nilpotent group such that the q-Sylow subgroup is commutative for every prime $q \neq p$.

Proof. By the validity of our proposition, it suffices to prove the only if part. If S is simple and the characteristic of S does not divide the order of G then, as is well-known, SG is artinian semisimple. Hence, S and G must be commutative by Lemma 2. Next, if S is a simple ring of prime characteristic p dividing the order of G then by the fact noted just above S and every q-Sylow subgroup of G are commutative ($q \neq p$). Now, combining those above, we can readily complete our proof.

Although the converse of our proposition is not valid, we obtain the following:

Corollary. Let S be a semi-primary ring with 1, and G a finite group. If the unit group of SG is nilpotent then the residue class ring \bar{S} of S modulo its radical R is commutative and either (1) G is commutative or (2) \bar{S} is of prime characteristic p and G is a nilpotent group such that the q-Sylow subgroup is commutative for each prime $q \neq p$.

Proof. We consider the ring homomorphism μ of SG onto \bar{SG} defined by $\sum_{s \in S} s \sigma \mapsto \sum_{\bar{s} \in \bar{S}} \bar{s} \sigma$ where \bar{s} is the residue class of s, modulo R. As is well known, $\text{Ker } \mu = RG$ is contained in the radical of SG, and so the unit group of \bar{SG} is nilpotent. Hence, the corollary is evident by our theorem.

REFERENCES

DEPARTMENTS OF MATHEMATICS,
SHINSHU UNIVERSITY AND OKAYAMA UNIVERSITY

(Received July 25, 1969)
Added in proof. After the submission of this manuscript, the writers have learned that K. Eldridge has submitted a short paper that correct the error in [1]. Also P. B. Bhattacharya and S. K. Jain [Notices of Amer. Math. Soc. 16 (1969), 562] have presented a counterexample to the lemma of [1], provided another proof for the theorem of [1], and shown that if S is an artinian ring with 1 and G is a finite group such that the unit group of SG is nilpotent then SG satisfies a polynomial identity $(xy - yx)^n = 0$. Indeed, the last is an easy consequence of our theorem.