Some generalizations of duality theorems in mathematical programming problems

Maretsugu Yamasaki*

*Okayama University
SOME GENERALIZATIONS OF DUALITY THEOREMS IN MATHEMATICAL PROGRAMMING PROBLEMS

MARETSUGU YAMASAKI

§ 1. Introduction and problem setting

Let X, Z and W be real linear spaces and suppose that Z and W are in duality with respect to a certain bilinear functional $((,))$. Let C and D be nonempty sets in X and Z respectively, and let f and g be finite-valued real functions on C and D respectively. Assume that $g(z) = -\infty$ for every $z \in D$. Let A be a transformation from C into Z.

We shall be concerned with the following two problems:

(I) Determine $M = \inf \{ f(x) - g(Ax); x \in C \}$,

(II) Determine $M^* = \sup \{ g^*(w) - f^*_C(w); w \in W \}$,

where

$$g^*(w) = \inf \{ ((z, w)) - g(z); z \in D \}$$

and

$$f^*_C(w) = \sup \{ ((Ax, w)) - f(x); x \in C \}.$$

Here we define

$$r + \infty = \infty + r = \infty, \quad r - \infty = -\infty + r = -\infty$$

for all real numbers r, and set

$$\infty + \infty = \infty, \quad -\infty - \infty = -\infty, \quad -(\infty) = \infty.$$

More precisely, we shall study the problems

(i) the existence of x or w which attains the infimum or the supremum,

(ii) relations between the values M and M^*.

An answer to problem (ii) is called a duality theorem.

R. T. Rockafellar [6] investigated these problems in the case where A is linear and continuous, C and D are convex sets and f and $-g$ are convex functions. Our problems (I) and (II) contain the problems discussed by U. Dieter [3], K. S. Kretschmer [4] and R. Van Slyke and R. Wets [7]. M. Yamasaki [8] studied the above problems in the case where C is a convex set, D is a convex cone, f is a convex function, $g = 0$ and A is convex with respect to D. 69
In the present paper, we shall generalize duality theorems given in [3], [4], [7] and [8] by making use of a well-known separation theorem. We shall introduce in § 5 a condition which was called the normality condition in [6] and [7]. By means of this condition, duality theorems in § 3 will be generalized.

§ 2. Preliminaries

For later use, we shall recall some notions and results in [1] and [2]. Let X and Y be real linear spaces in duality with respect to a certain bilinear functional $(\ , \)$. Let us denote the weak topology on X by $w(X, Y)$ and the Mackey topology by $s(X, Y)$. A locally convex Hausdorff topology $t(X, Y)$ on X compatible with this duality is stronger than $w(X, Y)$ and weaker than $s(X, Y)$. If X is assigned $t(X, Y)$, then every element of Y is identified with a $t(X, Y)$-continuous linear functional on X.

Let R be the set of real numbers and R_0 the set of non-negative real numbers.

We shall utilize the following separation theorem:

Proposition 1. Let K be a $w(X, Y)$-closed convex set in X and x_0 be an element of X such that $x_0 \not\in K$. Then there exist $y_0 \in Y$ and $\alpha \in R$ such that

\[
((x_0, y_0)) \geq \alpha \geq (x, y_0)
\]

for all $x \in K$.

Next we shall recall the conjugate operation of convex functions in [3], which will be used in § 4. For a finite-valued real convex function p on X with nonempty convex domain P, the conjugate function p^* and the conjugate set P^* are defined by

\[
p^*(y) = \sup \{ ((x, y)) - p(x) : x \in P \} ,
\]

\[
P^* = \{ y \in Y : p^*(y) < \infty \} .
\]

Then p^* is a finite-valued real convex function with convex domain P^*.

Let us define

\[
[p, P] = \{ (x, r) : x \in P \text{ and } r \geq p(x) \} .
\]

For a finite-valued real concave function q on X with nonempty convex domain Q, there are similar definitions:

\[
q^*(y) = \inf \{ ((x, y)) - q(x) : x \in Q \} ,
\]

1) [1], p. 73, Proposition 4 and [2], p. 50, Proposition 1.
SOME GENERALIZATIONS OF DUALITY THEOREMS

\[Q^* = \{ y \in Y : q^*(y) \geq -\infty \}, \]
\[[q, Q] = \{ (x, r) : x \in Q \text{ and } r \leq q(x) \}. \]

Then \(q^* \) is a finite-valued real concave function with convex domain \(Q^* \).

Dieter proved

Proposition 2. Let \(X \times R \) and \(Y \times R \) be in duality with respect to the bilinear functional \(< , > \) defined by

\[<(x, r), (y, s)> = ((x, y)) + rs \]

for all \((x, r) \in X \times R \) and \((y, s) \in Y \times R \).

(1) If \(P \) is \(w(X, Y) \)-closed and \(p \) is lower semicontinuous with respect to \(w(X, Y) \), then \([p, P]\) is \(w(X \times R, Y \times R) \)-closed.

(2) If \([p, P]\) is \(w(X \times R, Y \times R) \)-closed, then \(p^{**} = (p^*)^* = p \) and \(P^{**} = (P^*)^* = P \).

§ 3. Duality theorems

Let \(Z \times R \) and \(W \times R \) be in duality with respect to the bilinear functional \(< , > \) defined by

\[<(z, r), (w, s)> = ((z, w)) + rs \]

for every \((z, r) \in Z \times R \) and \((w, s) \in W \times R \). Let \(E, E_0 \) and \(L \) be the sets in \(Z \times R \) defined by

\[E = \{ (Ax - z, r + f(x) - g(z)) : x \in C, z \in D \text{ and } r \in R_0 \}, \]
\[L = \{ (0, r) : 0 \in Z \text{ and } r \in R \}, \]
\[E_0 = E \cap L. \]

In case \(C \cap A^{-1} (D) \) is not empty, we have

\[E_0 = \{ (0, r + f(x) - g(Ax)) : 0 \in Z, x \in C \cap A^{-1} (D) \text{ and } r \in R_0 \}. \]

First we shall study the existence of \(x \) which attains the value \(M \) of problem (I). We have

Theorem 1. Assume that the value \(M \) is finite. Then there exists \(x \in C \) such that \(Ax \in D \) and \(M = f(x) - g(Ax) \) if and only if the set \(E_0 \) is \(w(Z \times R, W \times R) \)-closed.

Proof. Since \(M \) is finite, we have

\[\{ 0 \} \times (M, + \infty) \subset E_0 \subset \{ 0 \} \times [M, + \infty). \]

2) [3], p. 98, Hilfssatz 5 and p. 99, Hilfssatz 7.
Therefore the set E_n is $w(Z \times R, W \times R)$-closed if and only if $(0, M)$ belongs to E_n. We see easily that there exists $x \in C$ such that $Ax \in D$ and $M = f(x) - g(Ax)$ if and only if $(0, M) \in E_n$.

Observe that the set E_n is $w(Z \times R, W \times R)$-closed whenever the set E is $w(Z \times R, W \times R)$-closed, since the set L is $w(Z \times R, W \times R)$-closed. However, the $w(Z \times R, W \times R)$-closedness of the set E_n does not necessarily imply the $w(Z \times R, W \times R)$-closedness of the set E. This is shown by Example 5.1 in [4] or Example 3.5 in [7].

As for the $w(Z \times R, W \times R)$-closedness of the set E_n, we have

Proposition 3. Let X be a topological linear space and let Z be assigned $w(Z, W)$. Assume that the functions f and $-g$ are lower semicontinuous and that the transformation A is continuous. If $C \cap A^{-1}(D)$ is a nonempty and compact set, then the set E_n is $w(Z \times R, W \times R)$-closed.

Proof. Let $(0, r_t; t \in T)$ be a net in E_n which $w(Z \times R, W \times R)$-converges to $(z, r) \in Z \times R$. Then $z = 0$ and there exists $x_t \in C \cap A^{-1}(D)$ such that $r_t = f(x_t) - g(Ax_t)$. By the compactness of $C \cap A^{-1}(D)$, there exists a subnet $(x_t; t \in T')$ which converges to some $x \in C \cap A^{-1}(D)$. Then by the continuity of A and the lower semicontinuity of f and $-g$, we have

$$r = \lim_{t \in T'} r_t \geq \lim_{t \in T'} f(x_t) - g(Ax_t) \geq f(x) - g(Ax),$$

and hence $(0, r) \in E_n$. Therefore the set E_n is $w(Z \times R, W \times R)$-closed.

Next we shall investigate some relations between the values M and M^*. We have

Theorem 2. It is always valid that $M^* \leq M$.

Proof. In case $C \cap A^{-1}(D)$ is empty, we have $M = \infty$ and our assertion is obvious. In case $C \cap A^{-1}(D)$ is not empty, let x and w be arbitrary elements of $C \cap A^{-1}(D)$ and W respectively. The inequalities

$$f(x) + f^*_w(w) \geq ((Ax, w)),$$
$$g(Ax) + g^*(w) \leq ((Ax, w))$$

follow from the definitions of f^*_w and g^* in §1. Thus we have

$$f(x) - g(Ax) \geq g^*(w) - f^*_w(w).$$

This completes the proof.

Before giving the converse relation $M^* \geq M$, we shall prepare
SOME GENERALIZATIONS OF DUALITY THEOREMS

Lemma 1. If \(w \in W \) and \(\alpha \in R \) satisfy the inequality
\[
\alpha \gtrless ((u, w)) - r
\]
for all \((u, r) \in E\), then
\[
\alpha \gtrless f^*_s(w) - g^*(w).
\]

Proof. Since \((Ax - z, f(x) - g(z)) \in E\) for any \(x \in C \) and \(z \in D\), we have
\[
\alpha \gtrless ((Ax - z, w)) - f(x) + g(z)
\]
\[
= \{(Ax, w)) - f(x)\} - ((z, w)) - g(z)\}.
\]
From the definitions of \(f^*_s \) and \(g^* \), it follows that
\[
\alpha \gtrless f^*_s(w) - g^*(w).
\]
Now we shall prove

Theorem 3. If the value \(M \) is finite and the set \(E \) is convex and \(w(Z \times R, W \times R) \)-closed, then \(M = M^* \) holds.

Proof. For an arbitrarily fixed \(\varepsilon > 0, (0, M - \varepsilon) \notin E \). Since \(E \) is a \(w(Z \times R, W \times R) \)-closed convex set, there exist \((w, s) \in W \times R \) and \(\alpha \in R \) such that
\[
(M - \varepsilon)s \gtrless (u, w) + rs
\]
for all \((u, r) \in E\) by Proposition 1. From the fact that \((0, M + \varepsilon) \in E\), it follows that \((M - \varepsilon)s \gtrless (M + \varepsilon)s\) and hence \(s \leq 0\). Writing \(\alpha_0 = \alpha / s \) and \(w_0 = -w / s\), we have
\[
M - \varepsilon \leq \alpha_0 \leq -((u, w_0)) + r
\]
for all \((u, r) \in E\). By means of Lemma 1, we see that
\[
\alpha_0 \leq g^*(w_0) - f^*_s(w_0) \leq M^*.
\]
Therefore \(M^* > M - \varepsilon\). By the arbitrariness of \(\varepsilon\), we conclude that \(M^* \geq M\). The converse inequality was given in Theorem 2. This completes the proof.

Theorem 4. If the value \(M^* \) is finite and the set \(E \) is convex and \(w(Z \times R, W \times R) \)-closed, then \(M = M^* \) holds.

Proof. Suppose \((0, M^*) \notin E\). By Proposition 1 there exist \((w, s) \in W \times R \) and \(\alpha \in R \) such that
\[
M^* s \gtrless (u, w) + rs
\]
for all \((u, r) \in E\). For a fixed \((u_t, r_t) \in E\), we have \((u_t, r_t + t) \in E\) for all \(t \in R_o\) and by (1)

\[\alpha \geq ((u, w)) + r, s + ts. \]

Letting \(t \to \infty\), we see that \(s \leq 0\). First we shall consider the case where \(s < 0\). Writing \(\alpha_a = \alpha / s\) and \(w_a = -w / s\), we have

\[M^* < \alpha_a \leq ((u, w_a)) + r \]

for all \((u, r) \in E\). It follows from Lemma 1 that

\[\alpha_a \leq g^*(w_a) - f^*_a(w_a) \leq M^*. \]

This is a contradiction. Next we shall consider the case where \(s = 0\). Then we have

\[0 > \alpha \geq ((u, w)) \]

for all \((u, r) \in E\). On the other hand, there exist \(v \in W\) and \(\beta \in R\) such that

\[\beta \geq ((u, v)) - r \]

for all \((u, r) \in E\). In fact, by our assumption that \(M^*\) is finite, we can find \(v \in W\) such that both \(f^*_a(v)\) and \(g^*(v)\) are finite. By the definitions of \(f^*_a\) and \(g^*\), we have

\[\beta = f^*_a(v) - g^*(v) \geq ((Ax, v)) - f(x) - ((z, v)) + g(z) \]

\[\geq ((Ax - z, v)) - (r + f(x) - g(z)) \]

for all \(x \in C, z \in D\) and \(r \in R_o\), which implies (4). On account of (3) and (4), we have

\[\alpha + t \geq ((u, tw + v)) - r \]

for all \((u, r) \in E\) and \(t \in R_o\). We see by Lemma 1 that

\[\alpha + t \geq f^*_a(tw + v) - g^*(tw + v) \geq -M^*. \]

Letting \(t \to \infty\), we have \(M^* = -\infty\), since \(\alpha < 0\). This is a contradiction. Thus \((0, M^*) \in E\). It follows that \(M^* \geq M\). On account of Theorem 2, we have \(M = M^*\).

With regard to the convexity of the set \(E\), we have

Theorem 5. Assume that \(C\) and \(D\) are convex sets and \(f\) and \(-g\) are convex functions. If any one of the following conditions (M.1) and (M.2) is fulfilled, then the set \(E\) is convex:

(M.1) \(A\) is linear,
(M. 2) D is a cone, A is convex with respect to D^*, i.e.,
\[A(tx_i + (1-t)x_j) - tAx_i - (1-t)Ax_j \in D \]
for any $x_i, x_j \in C$ and $t \in R_0$ with $0 < t < 1$, and g is increasing with respect to D, i.e., $g(z_i) \geq g(z_j)$ whenever $z_i - z_j \in D$.

Proof. Assume condition (M. 2). Let $(u_i, r_i) \in E (i = 1, 2)$ and $t \in R_0$, $0 < t < 1$. Then there exist $x_i \in C, z_i \in D$ and $s_i \in R_0$ such that $u_i = Ax_i - z_i$ and $r_i = s_i + f(x_i) - g(z_i)$. Let us denote $u_i = tu_i + (1-t)u_0$, $r_i = tr_i + (1-t)r_0$, $x_i = tx_i + (1-t)x_0$, $z_i = tz_i + (1-t)z_0$ and $s_i = ts_i + (1-t)s_0$. Then $x_i \in C, z_i \in D$ and $s_i \in R_0$. Since A is convex with respect to D, we have $tAx_i + (1-t)Ax_2 = Ax_i - v$ for some $v \in D$. Thus $u_i = Ax_i - (v + z_i) \in A(C) - D$. On the other hand, by the convexity of f and $-g$ and by the assumption that g is increasing with respect to D, we have
\[r_i = s_i + tf(x_i) + (1-t)f(x_2) - tg(z_i) - (1-t)g(z_2) \]
\[\geq s_i + f(x_i) - g(z_i) \geq s_i + f(x_2) - g(v + z_i), \]
and hence $r_i = s_i + f(x_i) - g(v + z_i)$ for some $s_i \in R_0$. Therefore $(u_i, r_i) \in E$ and the set E is convex. Similarly we can prove that condition (M. 1) implies the convexity of the set E.

By means of Theorem 5, we see that Theorems 3 and 4 are some generalizations of duality theorems in [3], [4], [7] and [8].

We shall study the $w(Z \times R, W \times R)$-closedness of the set E. In the rest of this section, we always assume that X is a topological linear space, that Z is assigned $w(Z, W)$, that the sets C and D are closed, that the functions f and $-g$ are lower semicontinuous and that the transformation A is continuous. Then we have

Theorem 6. Assume that, for any $w(Z \times R, W \times R)$-convergent net \{(u_i, r_i) ; t \in T\} in E, there exist \{x_i ; t \in T\} $\subset C$ and \{z_i ; t \in T\} $\subset D$ such that
\[u_i = Ax_i - z_i, \quad r_i \geq f(x_i) - g(z_i) \]
and \{x_i ; t \in T\} contains a convergent subnet. Then the set E is $w(Z \times R, W \times R)$-closed.

Proof. Let \{(u_i, r_i) ; t \in T\} be a net in E which $w(Z \times R, W \times R)$-converges to $(u, r) \in Z \times R$. By our assumption, there exist \{x_i ; t \in T\} $\subset C$ and \{z_i ; t \in T\} $\subset D$ such that
\[u_i = Ax_i - z_i, \quad r_i \geq f(x_i) - g(z_i) \]

3) We correct the definition of this notion in [8], p. 332 in the present form.
and \(\{x_t; t \in T \} \) contains a subnet \(\{x_i; t \in T' \} \) which converges to some \(x \). Then \(\{z_t; t \in T' \} \) converges to \(Ax-u=z \), since \(A \) is continuous. Since \(C \) and \(D \) are closed, we have \(x \in C \) and \(z \in D \). By the lower semicontinuity of \(f \) and \(-g \), we have

\[
 r = \liminf_{t \in T'} r_t \geq \liminf_{t \in T'} f(x_t) - \liminf_{t \in T'} g(z_t) \geq f(x) - g(z).
\]

Therefore \((u,r) \in E \) and the set \(E \) is \(w(Z \times R, W \times R) \)-closed.

Corollary. If the set \(C \) is compact, then the set \(E \) is \(w(Z \times R, W \times R) \)-closed.

Similarly we can prove

Proposition 4. Assume that \(A \) is homeomorphic and that the set \(D \) is compact. Then the set \(E \) is \(w(Z \times R, W \times R) \)-closed.

§ 4. The case where \(A \) is linear and continuous

We shall recall the convex programming problems studied by Rockafellar [6].

Let \(X \) and \(Y \) be real linear spaces which are in duality with respect to the bilinear functional \((\cdot, \cdot) \), and let \(Z \) and \(W \) be real linear spaces which are in duality with respect to the bilinear functional \((\cdot, \cdot)_\circ \). Let \(C \) and \(D \) be nonempty convex sets in \(X \) and \(Z \) respectively, and let \(f \) and \(-g \) be finite-valued real convex functions on \(C \) and \(D \) respectively. Let \(A \) be a linear transformation from \(X \) into \(Z \) which is \(w(X,Y) \)-continuous and let \(A^* \) be its adjoint. Thus \(A^* \) is a linear transformation from \(W \) into \(Y \) which is \(w(W,Z)-w(Y,X) \)-continuous and satisfies \(((Ax,w))_\circ = ((x,A^*w))_\circ \) for all \(x \in X \) and \(w \in W \).

By virtue of the conjugate operations for convex sets and convex functions defined in § 2, we see that the function \(g^* \) defined in § 1 is the conjugate function of the concave function \(g \) and that \(f^*_g(w) = f^*(A^*w) \) holds, where \(f^* \) is the conjugate function of the convex function \(f \). Let us denote by \(C^* \) and \(D^* \) the conjugate sets of convex sets \(C \) and \(D \) respectively. The convex programming problems discussed in [6] are as follows:

(III) Determine \(N = \inf \{ f(x) - g(Ax); x \in C \text{ and } Ax \in D \} \),

(IV) Determine \(N^* = \sup \{ g^*(w) - f^*(A^*w); w \in D^* \text{ and } A^*w \in C^* \} \).

Here we use the convention that the infimum and the supremum on the empty set are equal to \(+ \infty\) and \(- \infty\) respectively.
SOME GENERALIZATIONS OF DUALITY THEOREMS

These problems contain the problems investigated by Dieter [3], Kretschmer [4]. Dieter discussed the case where \(X = Z \) and \(A \) is the identity transformation. Kretschmer discussed the case where

\[
\begin{align*}
 f(x) &= ((x, y_0)), \quad C = P, \\
 g(z) &= 0, \quad D = Q + z_0,
\end{align*}
\]

where \(P \) and \(Q \) are convex cones which are \(w(Z, W) \)-closed and \(w(Z, W) \)-closed respectively, and \(y_0 \in Y \) and \(z_0 \in Z \) are fixed elements. In this case, problems (III) and (IV) are called linear programming problems. Van Slyke and Wets [7] investigated problem (III) in the case where \(g = 0 \) and \(D = \{b\}, \quad (b \in Z) \).

Now we shall apply our results in §3 to problems (III) and (IV). On account of Theorems 3, 4 and 5, we have

Proposition 5. Let \(Z \times R \) and \(W \times R \) be in duality as in §3 and let \(E \) be the set in \(Z \times R \) defined by

\[
E = \{(Ax - z, r + f(x) - g(z)); x \in C, z \in D \text{ and } r \in R_o \}.
\]

If the set \(E \) is \(w(Z \times R, W \times R) \)-closed and either \(N \) or \(N^* \) is finite, then \(N = N^* \) holds.

Since problems (III) and (IV) have symmetry, we can derive a dual statement to the above result. Observing that

\[
-N^* = \inf \{-g^*(w) - (-f^*(A^*w)); w \in D^* \text{ and } A^*w \in C^*\},
\]

we shall consider the following problem:

(V) Determine \(-N^{**} = \sup \{-f^{**}(x) + g^{**}(A^{**}x); x \in C^{**} \text{ and } A^{**}x \in D^{**}\}\).

It is always valid that \(N^{**} \leq N \). If the sets \([f, C]\) and \([g, D]\) defined in §2 are \(w(X \times R, Y \times R) \)-closed and \(w(Z \times R, W \times R) \)-closed respectively, then \(f^{**} = f \), \(g^{**} = g \), \(C^{**} = C \) and \(D^{**} = D \) by Proposition 2. In this case, the set \(P \) in \(Y \times R \) defined by

\[
F = \{(A^*w - y, r - g^*(w) + f^*(y)); w \in D^*, y \in C^* \text{ and } r \in R_o \}
\]

plays the role of the set \(E \) in §3. Noting \(A^{**} = A \) and applying Theorems 3, 4 and 5, we have

Proposition 6. Assume that the sets \([f, C]\) and \([g, D]\) are \(w(X \times R, Y \times R) \)-closed and \(w(Z \times R, W \times R) \)-closed respectively. If the set \(F \) is \(w(Y \times R, X \times R) \)-closed and either \(N \) or \(N^* \) is finite, then \(N = N^* \) holds.
We shall give an application of Theorem 6.

Proposition 7. Let C and D be $w(X, Y)$-closed and $w(Z, W)$-closed respectively and let f and $-g$ be lower semicontinuous with respect to $w(X, Y)$ and $w(Z, W)$ respectively. Assume that any $w(X, Y)$-bounded set in X is relatively $w(X, Y)$-compact. If we further assume that $A^*(D^*) \cap (C^*)^\circ$ is not empty, then the set E is $w(Z \times R, W \times R)$-closed, where $(C^*)^\circ$ denotes the $s(Y, X)$-interior of C^*.

Proof. Let $\{(u_t, r_t) : t \in T\}$ be a net in E which $w(Z \times R, W \times R)$-converges to $(u, r) \in Z \times R$. Then there exist $x_t \in C$ and $z_t \in D$ such that $u_t = Ax_t - z_t$ and $r_t \leq f(x_t) - g(z_t)$. By the definitions of f^* and g^*, we have

$$r_t \geq (x_t, y_t) - (z_t, w_t) - f^*(y_t) - g^*(w_t)$$

for all $y \in C^*$ and $w \in D^*$. By our assumption, there are y_0 and w_0 such that $w_0 \in D^*$ and $y_0 = A^* w_0 \in (C^*)^\circ$. For any $y \in Y$, there exists $\varepsilon > 0$ such that $y_0 \pm \varepsilon y \in (C^*)^\circ$. Consequently

$$r_t \geq ((x_t, y_0 \pm \varepsilon y), (z_t, w_0) - f^*(y_0 \pm \varepsilon y) + g^*(w_0)$$

$$=((Ax_t - z_t, w_0) + \varepsilon (x_t, y_0) - f^*(y_0 \pm \varepsilon y) + g^*(w_0)$$

$$=((u_t, w_0) + \varepsilon (x_t, y_0) - f^*(y_0 \pm \varepsilon y) + g^*(w_0).$$

Since $r_t - ((u_t, w_0)) : t \in T$ converges to $r - ((u, w_0))$, there is $t_0 \in T$ such that $\{r_t - ((u_t, w_0)) : t \in T, t > t_0\}$ is bounded. Consequently $\{(x_t, y_0) : t \in T, t > t_0\}$ is bounded for every $y \in Y$, and hence $\{x_t : t \in T, t > t_0\}$ is relatively $w(X, Y)$-compact by our assumption. Thus $\{x_t : t \in T\}$ contains a $w(X, Y)$-convergent subnet. Therefore the set E is $w(Z \times R, W \times R)$-closed by Theorem 6.

Note that any $w(X, Y)$-bounded set in X is relatively $w(X, Y)$-compact provided that Y is a disk space (= espace tonnelé) and X is the topological dual space of Y ([2], p. 65, Théorème 1).

§ 5. Normality condition

We return to the general problem (I). Let E be as defined in § 3 and denote by \bar{E} the $w(Z \times R, W \times R)$-closure of E. We shall introduce another quantity m defined by

$$m = \inf\{r : r \in R \text{ and } (0, r) \in \bar{E}\},$$

where we set $m = \infty$ in the case where $(0, r) \notin \bar{E}$ for any $r \in R$. This
quantity was called the subvalue in the case of linear programming problems (cf. [4]).

We have

Theorem 7. It is always valid that $M^* \leq m \leq M$.

Proof. The inequality $m \leq M$ follows immediately from the definitions of m and M. To prove $M^* \leq m$, we may suppose that $m < \infty$. Let $(0, r) \in \overline{E}$. Then there exists a net $\{(u_t, r_t); t \in T\}$ in E which $w(Z \times R, W \times R)$-converges to $(0, r)$. For every $t \in T$, there exist $x_t \in C$, $z_t \in D$ and $s_t \in R_0$ such that $u_t = Ax_t - z_t$ and $r_t = s_t + f(x_t) - g(z_t)$. By the definitions of f^*_d and g^*, we have

$$r_t \geq f(x_t) - g(z_t) \equiv ((Ax_t, w)) - f^*_d(w) - ((z_t, w)) + g^*(w) \equiv ((u_t, w)) + g^*(w) - f^*_d(w)$$

for any $w \in W$ and hence $r \geq g^*(w) - f^*_d(w)$. Thus we have $M^* \leq m$.

Theorem 8. If the set \overline{E} is convex and $M^* \geq -\infty$, then $M^* = m$ holds.

Proof. On account of Theorem 7, it suffices to show the inequality $M^* \geq m$ in the case where M^* is finite. Suppose $(0, M^*) \not\in \overline{E}$. Applying Proposition 1 to $(0, M^*)$ and the $w(Z \times R, W \times R)$-closed convex set E, we can arrive at a contradiction by the same argument as in the proof of Theorem 4. Therefore $(0, M^*) \not\in \overline{E}$. Thus we have $M^* \geq m$.

Theorem 9. If the set \overline{E} is convex and $m < \infty$, then $M^* = m$ holds.

Proof. By Theorem 7, it is enough to show the inequality $M^* \geq m$ in the case where m is finite. For an arbitrarily fixed $\varepsilon > 0$, we have $(0, m - \varepsilon) \not\in \overline{E}$ by the definition of m. Applying Proposition 1 to $(0, m - \varepsilon)$ and the $w(Z \times R, W \times R)$-closed convex set E, we can prove the inequality $m - \varepsilon < M^*$ by the same argument as in the proof of Theorem 3. By the arbitrariness of ε, we have $m \leq M^*$.

Note that the set \overline{E} is convex whenever the set E is convex ([1], p. 50, Proposition 14).

By means of Theorem 5, we see that Theorems 8 and 9 are some generalizations of Theorem 2 in [4].

Now we introduce

Definition. Problem (I) is said to be normal if $\overline{E} \cap L = \overline{E}_0$, where L and E_0 are the sets defined in § 3 and \overline{E}_0 is the $w(Z \times R, W \times R)$-closure of E_0.

Produced by The Berkeley Electronic Press, 1969
The normality condition was first introduced in [6], cf. [7].
We shall prove

Theorem 10. Problem (I) is normal if and only if $M=m$.

Proof. Observe that $\bar{E}_0=\{0\} \times [M, +\infty)$ in case M is finite, $\bar{E}_0=L$ in case $M=+\infty$ and \bar{E}_0 is empty in case $M=-\infty$. Similarly, $\bar{E} \cap L=\{0\} \times [m, +\infty)$ in case m is finite, $\bar{E} \cap L=L$ in case $m=+\infty$ and $\bar{E} \cap L$ is empty in case $m=-\infty$. Our theorem follows from these observations.

From Theorems 8, 9 and 10, we obtain

Corollary 1. Assume that problem (I) is normal and \bar{E} is convex. If $M<\infty$ or $-\infty< M^*$, then $M=M^*$.

From Theorems 7 and 10, we have

Corollary 2. If $M=M^*$, then problem (I) is normal.

These corollaries are a generalization of Theorem 7 of [6]. We easily have

Proposition 8. If the set E is $w(Z \times R, W \times R)$-closed, then problem (I) is normal.

By this proposition, we see that Corollary 1 is a generalization of Theorems 3 and 4. However it seems difficult to verify the normality in the case where the set E is not $w(Z \times R, W \times R)$-closed.

We have

Proposition 9. Assume that the set E is convex. If L intersects the $s(Z \times R, W \times R)$-interior E^o of E, then problem (I) is normal.

Proof. Suppose $\bar{E}_0 \neq \bar{E} \cap L$. Then there exists $(0, r_0) \in \bar{E} \cap L$ such that $(0, r_0) \notin \bar{E}_0$. By our assumption, there is $(0, r_0) \in L$ such that $(0, r_0) \in E^o$. Let U be a convex $s(Z \times R, W \times R)$-neighborhood of $(0, r_0)$ satisfying $U \subset E^o$. Since $(0, r_0) \in \bar{E}$ and E is convex, we see that the set

$$V=\{(z, s) : z=tu, s=(1-t)r_0+tr \text{ for all } (u, r) \in U \text{ and } t \in R_0 \}$$

with $0 < t \leq 1$.

is contained in E ([1], p. 51, Proposition 15). It is clear that $L \cap V \subset L \cap E = E_0$. Since $(0, (1-t)r_0+tr) \in L \cap V$ for all $t, 0 < t \leq 1$, we see that $(0, r_0) \in \bar{L} \cap \bar{V} \subset \bar{E}_0$. This is a contradiction. Therefore $\bar{E}_0=\bar{E} \cap L$.

This is a straightforward extension of Proposition 5.2 in [7].
SOME GENERALIZATIONS OF DUALITY THEOREMS

REFERENCES

SCHOOL OF ENGINEERING,
OKAYAMA UNIVERSITY

(Received October 28, 1969)