A Note on Osofsky-Smith Theorem

Liu Zhongkui*

*Northwest Normal University

Copyright ©1999 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
A NOTE ON OSOFSKY-SMITH THEOREM

LIU ZHONGKUI

A famous result of B.Osofsky says that a ring R is semisimple artinian if and only if every cyclic left R-module is injective. The crucial point of her proof was to show that such a ring has finite uniform dimension. In [7], B.Osofsky and P.F.Smith proved more generally that a cyclic module M has finite uniform dimension if every cyclic subfactor of M is an extending module. Extending modules have been studied extensively in recent years and many generalizations have been considered by many authors (see, for examples, [1-4, 6, 8, 9]). Lopez-Permouth, Oshiro and Tariq Rizvi in [6] introduced the concepts of extending modules and (quasi-)continuous modules relative a given left R-module X. Let S be the class of all semisimple left R-modules and all singular left R-modules. We say a left R-module N is S-extending if N is X-extending for any $X \in S$. Every extending left R-module is S-extending but the converse is not true. Exploiting the techniques of [7] we prove the following result: Let M be a cyclic left R-module. Assume that all cyclic subfactors of M are S-extending. Then M satisfies ACC on direct summands. As a corollary we show that if cyclic left R-module M is extending and all cyclic subfactors of M are S-extending, then M has finite uniform dimension.

Throughout this note we write $A \leq_e B$ $(A|B)$ to denote that A is an essential submodule (a direct summand) of B.

A left R-module M is called singular if, for every $m \in M$, the annihilator $l(m)$ of m is an essential left ideal of R.

Lemma 1 ([4, 4.6]). The following are equivalent for a left R-module M.
(1) M is singular.
(2) $M \cong L/K$ for a left R-module L and $K \leq_e L$.

Let M, X be left R-modules. Define the family

$\mathcal{A}(X, M) = \{A \subseteq M|\exists Y \subseteq X, \exists f \in Hom(Y, M), f(Y) \leq_e A\}$.

Consider the properties

$\mathcal{A}(X, M)$-$\langle C_1 \rangle$: For all $A \in \mathcal{A}(X, M)$, $\exists A^*|M$, such that $A \leq_e A^*$.

*Supported by National Natural Science Foundation of China (19671063).
\(A(X, M)-(C_2):\) For all \(A \in A(X, M),\) if \(B|M\) is such that \(A \cong B,\) then \(A|M.\)

\(A(X, M)-(C_3):\) For all \(A \in A(X, M)\) and \(B|M,\) if \(A|M\) and \(A \cap B = 0\) then \(A \oplus B|M.\)

According to [6], \(M\) is said to be \(X\)-extending, \(X\)-quasi-continuous or \(X\)-continuous, respectively, if \(M\) satisfies \(A(X, M)-(C_1), A(X, M)-(C_1)\) and \(A(X, M)-(C_3), A(X, M)-(C_1)\) and \(A(X, M)-(C_2).\)

According to [8, 1, 2], a left \(R\)-module \(M\) is called a CESS-module if every complement with essential socle is a direct summand, equivalently, every submodule with essential socle is essential in a direct summand of \(M.\) Now the following result is clear.

Proposition 2. A left \(R\)-module \(M\) is a CESS-module if and only if \(M\) is \(X\)-extending for any semisimple left \(R\)-module \(X.\)

Definition 3. Let \(S\) be the class of all semisimple left \(R\)-modules and all singular left \(R\)-modules. A left \(R\)-module \(M\) is called \(S\)-extending if \(M\) is \(X\)-extending for any \(X \in S.\)

Note that every extending left \(R\)-module is clearly \(S\)-extending. But the following example shows that the converse is not true.

Example 4. Let \(M\) be a free \(\mathbb{Z}\)-module of infinite rank. Since \(M\) is non-singular and has no socle, \(M\) is clearly \(S\)-extending. But \(M\) is not extending by [5, Theorem 5].

Let \(S_1\) and \(S_2\) be the classes of all semisimple left \(R\)-modules, of all singular left \(R\)-modules, respectively. Then \(S_1 \oplus S_2\) is defined to be the class of left \(R\)-modules \(M\) such that \(M = A \oplus B\) is a direct sum of \(A \in S_1\) and \(B \in S_2.\)

Proposition 5. A left \(R\)-module \(M\) is \(S\)-extending if and only if it is \(X\)-extending for any \(X \in S_1 \oplus S_2.\)

Proof. It follows from the fact that if \(0 \rightarrow X' \rightarrow X \rightarrow X'' \rightarrow 0\) is an exact sequence then \(M\) is \(X\)-extending if and only if it is both \(X'\)-extending and \(X''\)-extending by [6, Proposition 2.7].

Proposition 6. Let \(M\) be a cyclic left \(R\)-module. Assume that all cyclic subfactors of \(M\) are \(S\)-extending. Then \(M\) satisfies ACC on direct summands.

Proof. We prove this by adapting the proof of [7, Theorem 1 and 4, 7.12]. Suppose that \(M\) does not satisfy ACC on direct summands and that \(A_1 \subset A_2 \subset A_3 \subset \ldots \) is an infinite ascending chain of direct summands \(A_i (i \geq 1)\) of \(M.\) Then there exists a submodule \(B_1\) of \(M\) such
Zhongkui: A Note on Osofsky-Smith Theorem

that $M = A_1 \oplus B_1$. Thus $A_2 = A_2 \cap (A_1 \oplus B_1) = A_1 \oplus (A_2 \cap B_1)$ so that $A_2 \cap B_1$ is a direct summand of B_1. Let B_2 be a submodule of B_1 such that $B_1 = (A_2 \cap B_1) \oplus B_2$. Then $M = A_2 \oplus B_2$. Repeating this argument we can produce an infinite descending chain

$$B_1 \supset B_2 \supset B_3 \supset \ldots$$

of direct summands B_i of M such that $M = A_i \oplus B_i$. For each $i \geq 1$, there exists a nonzero submodule C_{i+1} of M such that $B_i = B_{i+1} \oplus C_{i+1}$. Put $C_1 = A_1$. Then

$$M = C_1 \oplus C_2 \oplus \cdots \oplus C_n \oplus B_n$$

and $\oplus_{i=n+1}^{\infty} C_i \subset B_n$ for all $n \geq 1$. Clearly C_i is cyclic since M is cyclic, and so C_i contains a maximal submodule W_i. Put

$$P = M/(\oplus_{i=1}^{\infty} W_i), \quad Q = (\oplus_{i=1}^{\infty} C_i)/(\oplus_{i=1}^{\infty} W_i).$$

Then clearly P is a cyclic subfactor of M and Q is a semisimple submodule of P. By the hypothesis, P is X-extending for any $X \in \mathcal{S}$. Particularly P is Q-extending. It is easy to see that $Q \in \mathcal{A}(Q, P)$, and so there exists a direct summand Q^* of P such that $Q \leq_e Q^*$.

Note that $Q = \oplus_{i=1}^{\infty} S_i$ is an infinite direct sum of simple left R-modules S_i ($i \geq 1$). Let $\{1, 2, \ldots\}$ be a disjoint union of countable sets $\{I_j | j = 1, 2, \ldots\}$. Set $Q_j = \oplus_{i \in I_j} S_i$, $j = 1, 2, \ldots$. Then Q_j is a non-finitely generated semisimple left R-module. Clearly Q^* is a cyclic subfactor of M.

By the hypothesis, Q^* is X-extending for any $X \in \mathcal{S}$. Particularly Q^* is Q_j-extending. It is easy to see that $Q_j \in \mathcal{A}(Q_j, Q^*)$, and so there exists a direct summand Q^*_j of Q^* such that $Q_j \leq_e Q^*_j$. Clearly Q^*_j is finitely generated, and thus $Q_j \neq Q^*_j$.

Let $D_j = (Q_j^* + Q)/Q$. Since $Q_j^* \cap (\oplus_{k \neq j} Q_k) = 0$ and $Q_j \neq Q_j^*$, it is easy to see that $D_j \neq 0$. Also $Q_j \leq Q \cap Q_j^* \leq Q_j^*$, so $Q \cap Q_j^* \leq_e Q_j^*$. This implies that $D_j \simeq Q_j^*/(Q_j^* \cap Q)$ is singular by Lemma 1. Hence

$$D = \sum_{j=1}^{\infty} D_j = \oplus_{j=1}^{\infty} D_j$$

is a singular submodule of Q^*/Q. Since Q^*/Q is a cyclic subfactor of M, it follows that Q^*/Q is X-extending for any $X \in \mathcal{S}$. Particularly Q^*/Q is D-extending. It is easy to see that $D \in \mathcal{A}(D, Q^*/Q)$, and so there exists a direct summand D^* of Q^*/Q such that $D \leq_e D^*$.

Since D^* is a cyclic submodule of Q^*/Q, there exists a cyclic submodule H of Q^* such that $D^* = (H + Q)/Q$. It is easy to see that $Q_j^* \cap H \neq 0$. Thus $Q_j \cap H = (Q_j^* \cap H) \cap Q_j \neq 0$. Hence there exists a non-zero simple submodule V_j of $Q_j \cap H$. Let $V = \oplus_{j=1}^{\infty} V_j$. Then $V \leq H$. Since H is a cyclic subfactor of M, it follows that H is X-extending for any $X \in \mathcal{S}$.

Produced by The Berkeley Electronic Press, 1999
Particularly H is V-extending. Clearly $V \in \mathcal{A}(V, H)$, and so there exists a direct summand V^* of H such that $V \leq V^*$. It is easy to see that $V \neq V^*$ since V^* is cyclic. If $(V^* + Q)/Q = 0$, then $V^* \leq Q$, and thus V^* is semisimple. Hence V is a direct summand of V^*. But $V \leq V^*$, it follows that $V = V^*$, a contradiction. Thus $(V^* + Q)/Q \neq 0$.

For any $n \geq 1$, we have $(V^* \cap \bigoplus_{j=1}^{n} Q_j) \cap Q = V^* \cap (\bigoplus_{j=1}^{n} Q_j) = V^* \cap (\bigoplus_{j=1}^{n} Q_j) \cap Q = V^* \cap (\bigoplus_{j=1}^{n} Q_j) = \bigoplus_{j=1}^{n} V_j$. Since $V^* \cap (\bigoplus_{j=1}^{n} Q_j)$ is semisimple, it follows that

$$\left(V^* \cap \bigoplus_{j=1}^{n} Q_j \right) \cap Q = \bigoplus_{j=1}^{n} V_j.$$

Clearly, $\bigoplus_{j=1}^{n} V_j$ is a finitely generated submodule of Q. Thus there exists a finitely generated submodule N of $\bigoplus_{i=1}^{\infty} C_i$ such that $(N + \bigoplus_{i=1}^{\infty} W_i) / (\bigoplus_{i=1}^{\infty} W_i) = \bigoplus_{j=1}^{n} V_j$. Suppose that $N \leq \bigoplus_{i=1}^{m} C_i$. It is easy to see that

$$L = (\bigoplus_{i=1}^{m} C_i + \bigoplus_{i=1}^{\infty} W_i) / (\bigoplus_{i=1}^{\infty} W_i)$$

is semisimple. Thus $\bigoplus_{j=1}^{n} V_j$ is a direct summand of L. It is easy to see that L is a direct summand of P. Thus $\bigoplus_{j=1}^{n} V_j$ is a direct summand of P. Let $P = (\bigoplus_{j=1}^{n} V_j) \oplus P_1$. By modularity, $V^* \cap (\bigoplus_{j=1}^{n} Q_j) = (V^* \cap (\bigoplus_{j=1}^{n} Q_j) \cap Q) \oplus (V^* \cap (\bigoplus_{j=1}^{n} Q_j) \cap P_1)$. But it is easy to see that $(V^* \cap (\bigoplus_{j=1}^{n} Q_j)) \cap Q \leq V^* \cap (\bigoplus_{j=1}^{n} Q_j)$. Thus $(V^* \cap (\bigoplus_{j=1}^{n} Q_j)) \cap Q = V^* \cap (\bigoplus_{j=1}^{n} Q_j)$, which implies that $V^* \cap (\bigoplus_{j=1}^{n} Q_j) \leq Q$. This holds for each $n \geq 1$, hence it follows that $V^* \cap (\bigoplus_{j=1}^{\infty} Q_j) \leq Q$. But $Q \leq \bigoplus_{j=1}^{\infty} Q_j$, it follows that

$$(\bigoplus_{j=1}^{\infty} (Q_j^* + Q)/Q) \cap ((V^* + Q)/Q) = 0.$$

Now it follows that $(V^* + Q)/Q = 0$, which is a contradiction, because $D \leq D^*$. This completes the proof of the proposition.

Now we have the main result of this paper, which generalizes Osofsky-Smith theorem ([7, Theorem 1]).

Theorem 7. Let M be a cyclic extending left R-module. Assume that all cyclic subfactors of M are S-extending. Then M has finite uniform dimension.

Proof. By Proposition 6, M is a finite direct sum of indecomposable submodules. Since every direct summand of an extending module is extending, the result follows by the fact that each indecomposable extending module is uniform.

References

Liu Zhongkui
Department of Mathematics
Northwest Normal University
Lanzhou, Gansu 730070, China

E-mail address: liuzk@nwnu.edu.cn

(Received November 19, 1999)