Note on Schreier Semigroup Rings

Ryûki Matsuda*

*Ibaraki University

Copyright ©1997 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
NOTE ON SCHREIER SEMIGROUP RINGS

RYÜKI MATSUDA

Let D be an integral domain with the quotient field $q(D)$. Let c be an element of D. Assume that, if c is a divisor of a_1a_2 (for $a_1, a_2 \in D$), then c is a product of a divisor of a_1 and a divisor of a_2. Then c is called a primal element of D. If each divisor of c is a primal element of D, then c is called a completely primal element of D. D is called a Schreier ring if D is an integrally closed ring in which every element is primal ([2]). Let S be a semigroup $\cong 0$ of a torsion-free abelian (additive) group. Then S is called a grading monoid (or a g-monoid) ([6]). Let $D[X; S] = \{ \sum_{finite} a_s X^s \mid a_s \in D, s \in S \}$ be the semigroup ring of S over D (X is a symbol). [3] is a general reference on $D[X; S]$. For various ring-theoretic properties Π, conditions for $D[X; S]$ to have the property Π have been obtained (cf. [1, 3, 5]). The aim of this note is to obtain conditions for $D[X; S]$ to be a Schreier ring.

Lemma 1 ([2]). Let D be an integrally closed domain, and let T be a multiplicative system of D generated by completely primal elements. If the quotient ring DT is a Schreier ring, then D is a Schreier ring.

For elements s, t of a g-monoid S, if $t = s + s'$ for some $s' \in S$, then s is called a divisor of t. For elements s, t_1, \cdots, t_n of S, if s is a divisor of t_1, \cdots, t_n, then s is called a common divisor of t_1, \cdots, t_n. The group $\{ s_1 - s_2 \mid s_1, s_2 \in S \}$ is called the quotient group of S, and is denoted by $q(S)$. We note that $q(S)$ is a totally ordered abelian group ([3, COROLLARY 3.4]). An element x of $q(S)$ is called integral over S, if $nx \in S$ for some $n \in \mathbb{N}$. If every integral element of $q(S)$ is contained in S, then S is called an integrally closed semigroup. Let G be a torsion-free abelian (additive) group, and Γ a totally ordered abelian group. A homomorphism v of G to Γ is called a valuation on G. The semigroup $\{ x \in G \mid v(s) \geq 0 \}$ is called the valuation semigroup of G associated with v. A valuation semigroup of $q(S)$ which contains S is called a valuation oversemigroup of S. Let c be an element of S. Assume that, if c is a divisor of $a_1 + a_2$ (for $a_1, a_2 \in S$), then c is a sum of a divisor of a_1 and a divisor of a_2. Then c is called a primal element of S. S is called a Schreier semigroup if S is an integrally closed semigroup in which every element is primal. We
consider the following condition:

(*) For every finite subsets \(\{s_1, \ldots, s_n\}, \{t_1, \ldots, t_m\}\) of \(S\) and an element \(s\) of \(S\), if \(s\) is a common divisor of \(s_1 + t_1, s_1 + t_2, \ldots, s_i + t_j, \ldots, s_n + t_m\), then \(s\) is a sum of a common divisor of \(s_1, \ldots, s_n\), and a common divisor of \(t_1, \ldots, t_m\).

If \(S\) is integrally closed and satisfies the condition \((*)\), then \(S\) is a Schreier semigroup.

Lemma 2 ([3, THEOREM 12.8]). \(S\) is integrally closed if and only if \(S\) is the intersection of all the valuation oversemigroups of \(S\).

Let \(v\) be a valuation on \(q(S)\). Let \(f = \sum a_i X^{s_i}\) be an element of \(D[X; S]\), where each \(a_i \neq 0\) and \(s_i \neq s_j\) for \(i \neq j\). We set \(v^*(f) = \inf v(s_i)\).

Lemma 3. (1) ([3, THEOREM 15.7]) \(v^*\) naturally induces a valuation on \(q(D[X; S])\).

(2) ([3, COROLLARY 12.11]) \(D[X; S]\) is integrally closed if and only if \(D\) is integrally closed and \(S\) is integrally closed.

Lemma 4. (1) ([4, (4.5)PROPOSITION]) Let \(G\) be a torsion-free abelian group. Then \(D[X; G]\) is a Schreier ring if and only if \(D\) is a Schreier ring.

(2) ([4, (4.6)PROPOSITION]) \(D[X; S]\) is a Schreier ring if and only if \(D\) and \(K[X; S]\) are Schreier rings and \(S\) is a Schreier semigroup, where \(K = q(D)\).

Lemma 5. Let \(k\) be a field. If \(k[X; S]\) is a Schreier ring, then \(S\) satisfies the condition \((*)\).

Proof. Let \(s, s_1, \ldots, s_n, t_1, \ldots, t_m\) be a finite number of elements of \(S\) such that \(s\) is a common divisor of \(s_1 + t_1, s_1 + t_2, \ldots, s_i + t_j, \ldots, s_n + t_m\). Set \(f = X^{s_1} + \ldots + X^{s_n}\) and \(g = X^{t_1} + \ldots + X^{t_m}\). Then \(X^s\) is a divisor of \(fg\) in \(k[X; S]\). Hence there exist a divisor \(f_1\) of \(f\) and a divisor \(g_1\) of \(g\) such that \(X^{s'} = f_1 g_1\). Noting that \(S\) is a subsemigroup of a totally ordered abelian group \(q(S)\), we may assume that \(f_1 = X^a\) and \(g_1 = X^b\) for \(a, b \in S\). It follows that \(a\) is a common divisor of \(s_1, \ldots, s_n\), and \(b\) is a common divisor of \(t_1, \ldots, t_m\), and \(a + b = s\). Therefore \(S\) satisfies the condition \((*)\).
NOTE ON SCHREIER SEMIGROUP RINGS

Lemma 6. Let k be a field, and let S be an integrally closed semigroup which satisfies the condition (\ast). Then $k[X; S]$ is a Schreier ring.

Proof. By Lemma 3(2), $k[X; S]$ is integrally closed. Let $s \in S$. We will show that X^s is a primal element of $k[X; S]$. Thus let f, g be non-zero elements of $k[X; S]$ such that $fg = X^s h$ for some $h \in k[X; S]$. Set $f = \sum_1^n a_i X^{s_i}, g = \sum_1^m b_i X^{t_i}$, where each a_i and b_j are non-zero elements of k, $s_i \neq s_j$ for $i \neq j$, and $t_k \neq t_l$ for $k \neq l$. Let $1 \leq k \leq n$, and $1 \leq l \leq m$. Let V be a valuation oversemigroup of S, and let v be the valuation on $q(S)$ associated with V. Then we have

$$v(s_k) + v(t_l) \geq v^*(f) + v^*(g) = v^*(X^s h) = v(s) + v^*(h).$$

It follows that $v(s_k + t_l - s) \geq 0$, and hence $s_k + t_l - s \in V$. Since V is arbitrary, $s_k + t_l - s \in S$ by Lemma 2. Hence s is a divisor of $s_k + t_l$. Since k and l are arbitrary, s is a common divisor of $s_1 + t_1, s_1 + t_2, \cdots, s_n + t_m$. Hence there exist a common divisor a of s_1, \cdots, s_n, and a common divisor b of t_1, \cdots, t_m such that $s = a + b$. Then X^a is a divisor of f, X^b is a divisor of g, and $X^a X^b = X^s$. Therefore X^s is a primal element of $k[X; S]$. Since s is arbitrary, we see that, for every element s of S, X^s is a completely primal element of $k[X; S]$. $T = \{X^s \mid s \in S\}$ is a multiplicative system of $k[X; S]$ generated by completely primal elements, and we have $k[X; S]_T = k[X; G]$, where $G = q(S)$. By Lemma 4(1), $k[X; G]$ is a Schreier ring. By Lemma 1, $k[X; S]$ is a Schreier ring.

Lemmas 5 and 6 imply the following,

Proposition 7. Let k be a field. Then $k[X; S]$ is a Schreier ring if and only if S is an integrally closed semigroup which satisfies the condition (\ast).

Lemma 4 (2) and Proposition 7 imply the following,

Theorem 8. $D[X; S]$ is a Schreier ring if and only if D is a Schreier ring, S is an integrally closed semigroup which satisfies the condition (\ast).

References

R. MATSUDA

DEPARTMENT OF MATHEMATICAL SCIENCES
IBARAKI UNIVERSITY
MITO, IBARAKI 310-8512, JAPAN

(Received November 28, 1997)