On rings satisfying the identity $X^{2k} = X^k$

Y. Hirano* H. Komatsu†
H. Tominaga‡ A. Yaqub**

*Okayama University
†Okayama University
‡Okayama University
**University of California
ON RINGS SATISFYING THE
IDENTITY $X^{2k} = X^k$

Y. HIRANO, H. KOMATSU, H. TOMINAGA and A. YAQUB

Throughout the present paper, R will represent a ring, E the set of idempotents in R, and N the set of nilpotents in R. Our present objective is to give the conditions for R to satisfy the identity $x^{2k} = x^k$ and to reprove all the results obtained in the previous paper [5], without the extra hypothesis that R is left s-unital.

First, careful scrutiny of the proof of [1, Lemma 1] shows the next

Lemma 1. Let m and q be positive integers, and let $k = q^m$. Suppose that R satisfies the identity $f(x) = 0$, where $f(t)$ is a co-monic polynomial in $tZ[t]$ with degree $\leq m$. If $qR = 0$ then R satisfies the identity $x^{k+1} = x^k$, and therefore $x^{2-k} = x^k$.

Next, we shall prove

Lemma 2. Suppose that R satisfies the identity $f(x) = 0$, where $f(t)$ is a primitive polynomial in $tZ[t]$. Then there exist positive integers q and h such that $(qr)^h = 0$ for all $r \in R$.

Proof. Consider the direct product $S = R^k$, which satisfies the same identity $f(x) = 0$. In case S coincides with its prime radical $P(S)$, R is a nil ring of bounded index. In what follows, we assume that S contains a proper prime ideal P, and choose an integer n_o such that $q = |f(n_o)| > 0$. By [2, Theorem 7 (6)], the classical quotient ring of S/P is an Artinian simple ring satisfying the same identity $f(x) = 0$. Hence $qS \subseteq P$, which proves that $qS \subseteq P(S)$. Thus we can find a positive integer h such that $(qr)^h = 0$ for all $r \in R$.

Corollary 1. Suppose that R satisfies the identity $f(x) = 0$, where $f(t)$ is a co-monic polynomial in $tZ[t]$. Then R satisfies the identity $x^{2k} = x^k$ for some positive integer k.

Proof. In view of Lemma 2, there exist positive integers q and h such that $(qr)^h = 0$ for all $r \in R$. Let T be the subring of R generated by $|r^h| r \in R$. Then T satisfies the identity $f(x) = 0$ and $q^hT = 0$. Hence,
by Lemma 1, there exists a positive integer k such that $r^{kk} = r^k$ for all $r \in R$.

Now, we can prove our first theorem.

Theorem 1. The following conditions are equivalent:

1) There exists a primitive polynomial $f(t)$ in $\mathbb{Z}[t]$ such that R satisfies the identity $f(x) = 0$.

2) There exists a monic polynomial $f(t)$ in $\mathbb{Z}[t]$ such that R satisfies the identity $f(x) = 0$.

3) There exists a co-monadic polynomial $f(t)$ in $\mathbb{Z}[t]$ such that R satisfies the identity $f(x) = 0$.

4) There exists a positive integer k such that R satisfies the identity $x^{2k} = x^k$.

5) $qE = 0$ for some positive integer q, and there exists a positive integer m with the following property: For every $r \in R$, there exists a co-monadic polynomial $g(t)$ in $\mathbb{Z}[t]$ with $\deg g(t) \leq m$ such that $g(r) = 0$.

6) The (Jacobson) radical J of R is a nil ideal of bounded index, and there exists a positive integer k such that every primitive homomorphic image of R contains at most k elements.

In case R contains 1, the next is equivalent to each of the above equivalent conditions:

7) The addition of R is equationally definable in terms of the multiplication and the successor operation.

Proof. Obviously, 4) \iff 2) \iff 1), and 4) \iff 3) \iff 1).

1) \iff 4). Consider the direct product $S = R^k$, which satisfies the same identity $f(x) = 0$. In case S coincides with its prime radical $P(S)$, there is nothing to prove. Thus, henceforth, we may assume that S contains a proper prime ideal P. Choose an integer n_0 such that $q = |f(n_0)| > 0$. By [2, Theorem 7 (6)], the classical quotient ring of S/P is an Artinian simple ring satisfying the same identity $f(x) = 0$. Hence the characteristic of S/P is a factor of q. Noting that $f(t)$ is primitive, we can easily see that there exists a co-monadic polynomial $g(t)$ in $\mathbb{Z}[t]$ with $\deg g(t) \leq m = \deg f(t)$ such that S/P satisfies the identity $g(x) = 0$. Then, by Lemma 1, there exists a positive integer $l = l(q, m)$ such that S/P satisfies the identity $x^{2l} = x^l$. This proves that $S/P(S)$ satisfies the identity $x^{2l} = x^l$. Then there exists a positive integer h such that R satisfies the identity $(x^l - x^{2l})^h = 0$. Now, by Corollary 1, there exists a positive integer k such that R
satisfies the identity $x^{2k} = x^k$.

3) \Rightarrow 5). Let $q = |f(2)|$, and let $g(t) = f(t)$ for all $r \in R$.

5) \Rightarrow 3). Let $f(t) = \prod_{p} \prod_{\alpha = 1}^{m} (t - t^\alpha)^m$, where p ranges over all the prime factors of q. We shall show that R satisfies the identity $f(x) = 0$. Now, let r be an arbitrary element of R, and let $\langle r \rangle$ be a subdirect sum of subdirectly irreducible rings R_α. By 5), there exists a co-monic polynomial $g(t)$ in $tZ[t]$ with $\deg g(t) \leq m$ such that $g(r) = 0$. Let N_α be the set of nilpotents in R_α. Then it is easy to see that $a^m = 0$ for all $a \in N_\alpha$, and so N_α satisfies the identity $f(x) = 0$. Now, assume that R_α is not nil. Then, as is easily seen, R_α is a local ring whose radical is N_α and $R_\alpha/N_\alpha = GF(p^a)$ with some prime factor p of q and $a \leq m$. Hence $f(r) = 0$.

4) \Rightarrow 6). This is an easy consequence of Kaplansky's theorem (see, e.g., [2, Theorem 1]).

6) \Rightarrow 3). As is easily seen, every primitive homomorphic image of R satisfies the identity $x^{2k} = x^k$, and so R/J satisfies the same. Hence R satisfies the identity $(x^{k_1} - x^{2-k_2})^h = 0$ for some positive integer h.

The latter assertion is clear by [6, Theorem 1].

Following [7], a ring R is called a δ-ring if R contains a finite subset S with the following property: For every $x \in R$, there exists a $p(t) \in Z[t]$ such that $x - x^2 p(x) \in S$. As an application of Theorem 1, we shall prove the following theorem.

Theorem 2. Let R be a δ-ring. If there exists a positive integer q such that $|K| \leq q$ for every field K which is a homomorphic image of R, then there exists a positive integer k such that R satisfies the identity $x^{2k} = x^k$.

In preparation for proving Theorem 2, we state the next lemma.

Lemma 3. Suppose that R contains a finite subset S with the following property: For every $x \in R$, there exists a $p(t) \in Z[t]$ such that $x - x^2 p(x) \in S$. Let $s = |S|$. Then there holds the following:

1. R is a periodic ring and N is finite.
2. There is a positive integer n such that for every $x \in R$ there exists an $f(t) \in Z[t]$ with $x^n = x^{n+1} f(x)$, and then $|N| \leq (s!)^{n-1}s$.

Proof. Let x be an arbitrary element of R. For each positive integer $i \leq s + 1$, there exists $g_i(t) \in Z[t]$ such that $x^i - x^{2i} g_i(x) \in S$. Then we...
can easily see that there exists a positive integer \(i' \) and \(g(t) \in \mathbb{Z}[t] \) such that \(x^{i'} = x^{i' + 1} g(x) \). Hence \(R \) is periodic by Chacron's theorem (see, e.g., [3, Theorem 1]). Now, let \(a \in N; \ a^k = 0 \). Choose a positive integer \(m \) such that \(2^m \geq k \). By hypothesis, there exist \(p_1(t), \ldots, p_m(t) \) in \(\mathbb{Z}[t] \) such that \(a_1 = a - a^2 p_1(a) \) and \(a_j = a^{2^{j-1}} p_{j-1}(a) - a^{2^j} p_j(a) \) are in \(S \cap N \) (\(j = 2, \ldots, m \)). Then \(a = a_1 + a_2 + \ldots + a_m \). Again by hypothesis, for each positive integer \(i \leq s + 1 \), there exists \(q_i(t) \in \mathbb{Z}[t] \) such that \(iq_i(t) \in \mathbb{Z}[t] \) and \(a^{s!} q_i(a) \in S \). Then we can easily see that \((s!) a = a^{s!} q(a) \) with some \(q(t) \in \mathbb{Z}[t] \). This implies that \(a^{s!} q(a) = a^{s!} q(a) \) is \(k \)-nilpotent, and hence the additive order of every element in \(N \) is finite. Combining this with the fact that every element is a sum of elements in \(S \cap N \), we see that \(N \) is finite. Now, we can choose a positive integer \(n \) such that \(a^n = 0 \) for all \(a \in N \). Since \(x - x^{i'} g(x) \in \mathbb{Z}[t] \), we get \(0 = (x - x^{i'} g(x))^n = x^n - x^{n + 1} f(x) \) with some \(f(t) \in \mathbb{Z}[t] \).

Proof of Theorem 2. Let \(S, s \) and \(n \) be as in Lemma 3. If \(R' \) is an arbitrary homomorphic image of \(R \) and \(N' \) is the set of nilpotents in \(R' \), then \(|N'| \leq (s!)^{n-1}\) by Lemma 3. This together with the structure theorem of primitive rings shows that every primitive homomorphic image of \(R \) is either a periodic field or the full matrix ring \(M_m(K) \), where \(1 < m \leq n \) and \(K \) is a field with \(|K| \leq (s!)^{n-1} \). Hence, by Theorem 1 6), \(R \) satisfies the identity \(x^{sk} = x^k \) for some positive integer \(k \).

By the proof of Theorem 2, we can easily see the following

Corollary 2. Let \(R \) be a \(\delta \)-ring. If \(R = \langle E \cup N \rangle \) and \(qE = 0 \) for some positive integer \(q \), then there exists a positive integer \(k \) such that \(R \) satisfies the identity \(x^{3k} = x^k \).

Next, by making use of Theorem 1, we shall improve [5, Theorems 1 and 2].

Theorem 3. Suppose that \(R \) satisfies the identity \(f(x) = 0 \), where \(f(t) \) is a primitive polynomial in \(t \mathbb{Z}[t] \).

1. If either \(R \) is normal or \(N^* = \{ x \in R \mid x^2 = 0 \} \) is commutative, then \(N \) is a nil ideal and \(R/N \) satisfies the identity \(x = x^{k+1} \) for some \(k > 1 \).

2. If \(N \) is commutative then \(N \) is a commutative nil ideal and \(R/N \) satisfies the identity \(x = x^{k+1} \) for some \(k > 1 \). If, furthermore, \([a, x] \cdot x = 0 \) for all \(a \in N \) and \(x \in R \), then \(R \) is commutative.

Proof. By Theorem 1, there exists a positive integer \(k \) such that \(R \)
satisfies the identity $x^{2k} = x^k$.

(1) If R is normal, then R satisfies the identity $[x^k, y] = 0$, and therefore [4, Proposition 2] shows that N is a nil ideal of R. On the other hand, if N^* is commutative, then [5, Lemma 2 (2)] shows that N is a nil ideal of R. Needless to say, R/N satisfies the identity $x = x^{k+1}$, in either case.

(2) The former assertion is clear by (1), and the latter is immediate by [8, Theorem 1]. (If $a \in N$ and $x \in R$, then $[a, x]^2 = [a, [a, x]] = 0$. Hence, in [5, Theorem 2 (3)], the hypothesis (iv) implies (iii).)

Given $x \in R$, we define inductively $x^{11} = x$, $x^{(k_i)} = x^{k_i-1} \circ x$, where $x \circ y = x + y + xy$. In [5], we introduced the following conditions:

(i) $$(x + x^2 + \cdots + x^n)^m = 0 \text{ for all } x \in R.$$

(*) For any $x, y \in R$, $(x + xy) \circ (y + yx) = 0$ if and only if $x = y$.

In what follows, we shall reprove [5, Theorems 3, 4 and 5] without the hypothesis that R is a left s-unital ring.

Lemma 4. Suppose that R satisfies $(i)_{\geq m}$. Then either R is a nil ring of bounded index or there exists a positive integer q such that $qR = 0$.

Proof. There exist positive integers q' and h such that $(q'x)^h = 0$ for all $x \in R$, by Lemma 2. If $h > 1$ then $|(q'x)^{h-1}|^2 = 0$, and so $(i)_{\geq m}$ implies that $2^m(q'x)^{h-1} = 0$; hence $(2^m q'x)^{h-1} = 0$. Repeating the same argument, we obtain eventually $2^{m(h-1)}q'x = 0$ for all $x \in R$.

Now, we can improve [5, Theorems 3 and 4] as follows:

Theorem 4. Suppose that R satisfies $(i)_{\geq m}$. Then N is a nil ideal and $R = R_1 \oplus R_2$, where R_1 is either 0 or a ring of odd characteristic satisfying the identity $x = x^{k+1}$ for some $k > 1$. $R_2 \supseteq N$, and R_2/N is a Boolean ring. If, furthermore, R is normal and N is commutative then R is commutative.

Proof. Take Lemma 4 into account and follow the proof of [5, Theorems 3 and 4].

Finally, we shall reprove [5, Theorem 5] without assuming that R is left s-unital.

Lemma 5. Let $f(t) = k_1t + k_2t^2 + \cdots + k_mt^m$ be a polynomial in $t\mathbb{Z}[t]$ with $(k_1, k_2) = 1$. If N satisfies the identity $f(x) = 0$, then N satisfies the identities $x^3 = 0 = k_1x + (k_2 - k_1)x^2$.

Produced by The Berkeley Electronic Press, 1988
Proof. Let \(a \) be an arbitrary element of \(N \). To see that \(a^3 = 0 \), it suffices to show that if \(a^n = 0 \) with \(n \geq 4 \) then \(a^{n-1} = 0 \). Obviously, \(0 = f(a^{n-2}) = k_1a^{n-2} + \cdots + k_ma^m = k_1a^{n-1} \). Since \((k_1, k_2) = 1 \), we obtain \(a^{n-1} = 0 \). Hence \(a^3 = 0 = k_1a + k_2a^2 \), and therefore \(k_1a + (k_2 - k_1)a^2 = k_1a + k_2a^2 - (k_1a + k_1a^2)a = 0 \).

Combining Lemma 5 with Theorem 1, we readily obtain

Corollary 3. Let \(f(t) = k_1t + k_2t^2 + \cdots + k_mt^m \) be a polynomial in \(t \mathbb{Z}[t] \) with \((k_1, k_2) = 1 \). If \(R \) satisfies the identity \(f(x) = 0 \), then \(R \) satisfies the identity \((x-x^k)^3 = 0 \) for some \(k > 1 \).

Lemma 6. Suppose that \(R \) satisfies (i). Then \(N \) is a nil ideal of \(R \) and \(R/N \) is a Boolean ring.

Proof. Since \(6x^2 + 2x^4 = (x+x^2)^2 + (-x + (-x)^2)^2 = 0 \) and \(4x + 4x^3 = (x+x^2)^2 - (-x + (-x)^2)^2 = 0 \), we get \(2x^2 - 2x^4 = (6x^2 + 2x^4) - (4x^2 + 4x^3)x = 0 \), and therefore \(8x^2 = (6x^2 + 2x^4) + (2x^2 - 2x^4) = 0 \). Hence \(2^3x = 8x - 2(4x + 4x^3) = -8x^2 = 0 \), and therefore \(N \) is a nil ideal and \(R/N \) is a Boolean ring by [5, Lemma 3].

Lemma 7. If \(R \) satisfies (\(\ast \)), then \(R \) is normal.

Proof. The assertion has been proved in the proof of [5, Theorem 5].

We are now ready to prove the following

Theorem 5. A ring \(R \) satisfies the condition (\(\ast \)) if and only if 1) \(R \) is commutative and \(R/N \) is a Boolean ring, and 2) \(a^{(2)} = 0 \) for all \(a \in N \).

Proof. Since the "if" part has been proved in the proof of [5, Theorem 5], it remains only to prove the "only if" part. Obviously, \((\ast) \) implies \((i) \), and so \(N \) is a nil ideal of \(R \) and \(R/N \) is a Boolean ring by Lemma 6. Noting that \(R \) satisfies the identity \(2x + 3x^2 + 2x^3 + x^4 = (x + x^2)^2 = 0 \), we can conclude that \(a^{(2)} = 0 \) for all \(a \in N \) (Lemma 5). Therefore, for any \(a, b \in N \), we get \(a \circ b = a \circ (a \circ b)^{(2)} \circ b = b \circ a \), which shows that \(N \) is commutative. Furthermore, \(R \) is normal by Lemma 7, and so \(R \) is commutative.

References

ON RINGS SATISFYING THE IDENTITY $X^{2k} = X^k$

Y. HIRANO, H. KOMATSU and H. TOMINAGA

OKAYAMA UNIVERSITY

OKAYAMA, 700 JAPAN

A. YACUB

UNIVERSITY OF CALIFORNIA

SANTA BARBARA, CALIFORNIA 93106, U.S.A.

(Received April 27, 1987)