Operations associated with the G-equivariant unitary cobordism theory

Michikazu Fujii*
OPERATIONS ASSOCIATED WITH
THE G-EQUIVARIANT
UNITARY COBORDISM THEORY

MICHIKAZU FUJII

Introduction. Let G be a compact abelian Lie group. In the previous paper [4] we have introduced a G-equivariant cohomology theory which is concerned with the G-equivariant unitary cobordism theory. In the equivariant cohomology theory there is the splitting principle and Chern classes are defined for complex G-vector bundles.

In this paper we shall study on cohomology operations in the equivariant cohomology theory. In §1 we consider Landweber-Novikov operations in our equivariant cohomology theory. And, in §2 we observe mod p Steenrod operations in the G-equivariant unitary cobordism theory and research on them in connection with the Landweber-Novikov operations introduced in §1.

1. Landweber-Novikov operations. Let G be a compact abelian Lie group. Let $U^*_c(-)$ and $K^*_c(-)$ be the G-equivariant unitary cobordism theory and the G-equivariant complex K-theory, respectively. By making use of Thom classes in K^*_c-theory, we can get a natural multiplicative transformation

$$\mu_c: U^*_c(-) \to K^*_c(-)$$

of the cohomologies (cf. [3], [4]). We take up a multiplicative set T_k consisting of all one dimensional representations in the representation ring $R(G) \cong K_c(pt)$ and we consider a multiplicative system $T = \mu_c^{-1}(T_k)$ in U^*_c. Then our multiplicative G-equivariant cohomology theory $h^*_c(-)$ is defined by

$$h^*_c(-) = T^{-1}U^*_c(-),$$

where $T^{-1}U^*_c(-)$ means a ring localized by the multiplicative system T.

Using the local triviality of complex G-vector bundles [5] and Theorem 4.5 in [4] we obtain the following splitting principle:

Proposition 1.1. Let ξ be an n-dimensional complex G-vector bundle over a compact G-space X. Then there exist a compact G-space $F(\xi)$, a G-map $\pi: F(\xi) \to X$ and n complex G-line bundles ξ_1, \ldots, ξ_n over $F(\xi)$ satisfying the following conditions:

161
1) \(\pi^*: h^*_c(X) \to h^*_c(F(\xi)) \) is a monomorphism.
2) \(\pi^*(\xi) \) is isomorphic to the sum \(\xi_1 \oplus \cdots \oplus \xi_n \).

Proposition 1.2. Let \(\xi \) and \(\eta \) be \(n \) and \(m \)-dimensional complex \(G \)-vector bundles over a compact \(G \)-space \(X \), respectively. Then there exist a compact \(G \)-space \(F \) and a \(G \)-map \(\pi: F \to X \) satisfying the following conditions:

1) \(\pi^*: h^*_c(X) \to h^*_c(F) \) is a monomorphism.
2) \(\pi^*(\xi) \) and \(\pi^*(\eta) \) are isomorphic to the sums of \(n \) and \(m \) \(G \)-line bundles over \(F \), respectively.

Furthermore we have \(G \)-equivariant Chern classes \(c_i^o(\xi) \in h^*_c(X) \), \(0 \leq i \leq n \), \(c_i^o(\xi) = 1 \), of an \(n \)-dimensional complex \(G \)-vector bundle \(\xi \) over a compact \(G \)-space \(X \).

We now define Landweber-Novikov operations \([1, 9]\) in the cohomology theory \(h^*_c(-) \) and call up their basic properties. Let \(t = (t_1, t_2, \ldots) \) be a sequence of indeterminates. Assigning \(\deg t_i = -2i \) for each \(i \geq 1 \), \(U^*_c(-)[[t]] \) and \(h^*_c(-)[[t]] \) become multiplicative \(G \)-equivariant cohomology theories.

Let \(\xi \) be an \(n \)-dimensional complex \(G \)-vector bundle over a compact \(G \)-space \(X \) and let \(\pi: F(\xi) \to X \) and \(\xi_1, \ldots, \xi_n \) be ones of Proposition 1.1. Consider the following

\[
\prod_{i=1}^n (1 + e(\xi_i)t_1 + \cdots + e(\xi_i)^k t_k + \cdots) \in U^*_c(F(\xi))[[t]]
\]

and

\[
\prod_{i=1}^n (1 + c_1^o(\xi_i)t_1 + \cdots + c_1^o(\xi_i)^k t_k + \cdots) \in h^*_c(F(\xi))[[t]],
\]

where \(e(\xi_i) \in U^*_c(F(\xi)) \) is the Euler class of \(\xi_i \) and \(c_1^o(\xi_i) = \frac{e(\xi_i)}{1} \in h^*_c(F(\xi)) \) is the first Chern class of \(\xi_i \).

Given an \(n \)-tuple \(\iota = (i_1, \ldots, i_n) \) of non-negative integers, denote by

\[
\sum x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}
\]

the least symmetric polynomial in variables \(x_1, \ldots, x_n \) which contains the term \(x_1^{i_1} \cdots x_n^{i_n} \). The symmetric polynomial can be written as a polynomial \(P(\sigma_1, \ldots, \sigma_n) \) in the elementary symmetric functions \(\sigma_1, \ldots, \sigma_n \) of the variables \(x_1, \ldots, x_n \):
operations associated with the G-equivariant unitary cobordism theory

$P(\sigma_1, \ldots, \sigma_n) = \sum x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$.

As for the coefficient of $t_1 t_2 \cdots t_n$ in the sequence (1), by making use of the splitting principle, we get the equality

$$\sum c_i(\xi_1)^{i_1} c_i(\xi_2)^{i_2} \cdots c_i(\xi_n)^{i_n} = P(\sigma_1, \ldots, \sigma_n) = \pi^* P(c_i(\xi), \ldots, c_n(\xi)).$$

where $\sigma_k = \sigma_k(c_i(\xi_1), \ldots, c_i(\xi_n))$ is the k-th elementary symmetric function of the classes $c_i(\xi_1), \ldots, c_i(\xi_n)$.

Let us define the total Chern class $c(\xi)$ of ξ in the theory $h_\xi^*(\mathbb{C})[[t]]$ by

$$c(\xi) = \sum_i P(c_i(\xi), \ldots, c_n(\xi)) \ t_i \in h_\xi^*(X)[[t]]$$

where $t_i = t_1 t_2 \cdots t_n$. Then, in virtue of the naturality of Euler classes of G-line bundles, the splitting principle and the external product we obtain

Proposition 1.3. The total Chern classes satisfy the following properties:

1. (naturality) $c(\xi^* (\eta)) = f^* (c(\xi))$.

2. (multiplicativity) $c(\xi \times \eta) = c(\xi) \times c(\eta)$.

3. (normality) $c^0(\xi) = 1$.

where $\xi : pt \times C \to pt$ is the trivial G-line bundle over a point.

4. If ξ is a complex G-line bundle, then

$$c(\xi) = 1 + c_i(\xi) t_i + \cdots + c_n(\xi) t_n + \cdots.$$

Let $T(\xi)$ be the Thom space of an n-dimensional complex G-vector bundle ξ over a compact G-space X. Then, by making use of the Thom isomorphism

$$\phi(\xi) : h_\xi^*(X) \to \overline{h}_\xi^{*+2n}(T(\xi)),$$

we obtain the Thom isomorphism

$$\phi(\xi) : h_\xi^*(X)[[t]] \to \overline{h}_\xi^{*+2n}(T(\xi))[[t]],$$

which is defined by

$$\phi(\xi)(\sum a_{i_1 \cdots i_k} t_1^{i_1} \cdots t_k^{i_k}) = \sum \phi(\xi)(a_{i_1 \cdots i_k}) t_1^{i_1} \cdots t_k^{i_k}.$$

Put

$$s_i(\xi) = \phi(\xi)(c_i(\xi)) \in \overline{h}_\xi^*(T(\xi))[[t]].$$
Then we have

Proposition 1.4. The classes \(s_i(\cdot) \) satisfy the following properties:

1. (naturality) \(s_i(f^*(\xi)) = f^*(s_i(\xi)) \).
2. (multiplicativity) \(s_i(\xi \times \eta) = s_i(\xi) \times s_i(\eta) \).
3. (normality) \(s_i(\epsilon) = t_h(\epsilon) \in \mathbb{H}_c^i(S^2) \).
4. If \(\xi \) is a complex \(G \)-line bundle, then

\[
s_i(\xi) = t_h(\xi) + t_h(\xi)^2 t_1 + \cdots + t_h(\xi)^k t_{k-1} + \cdots
\]

where \(t_h(\xi) \) is the Thom class of \(\xi \) in the theory \(h^*_c(\cdot) \).

Let \(\gamma^n_c \) be the universal complex \(G \)-vector bundle and denote by \(M_n(G) \) the Thom space of \(\gamma^n_c \). Let \(W \) be a complex \(G \)-module and \(G_n(W) \) the Grassmann manifold of complex \(n \)-planes. Then \(\gamma^n_c \) and \(M_n(G) \) are the limit of the canonical \(n \)-dimensional \(G \)-vector bundle

\[
\gamma^n_c(W) = (E_n(W), \pi, G_n(W))
\]

and the Thom space \(M_n(W) = T(\gamma^n_c(W)) \), respectively.

Let \(x \in U^n_c(X) \) be represented by \(f: V^c \times X^+ \to M_{1+n}(W) \subset M_{1+n}(G) \), where \(X^+ = X \cup \{ \infty \} \) (disjoint union), \(V^c \) means the one point compactification of a complex \(G \)-module \(V \) and \(\| V \| = \dim_c V \). Defining

\[
s_i: U^n_c(X) \to h^*_c(X)[[t]]
\]

by

\[
s_i(x) = \phi_i(V)^{-1} f^*(s_i(\gamma^n_c(W))),
\]

we obtain a natural transformation

\[
s_i: U^n_c(-) \to h^*_c(-)[[t]]
\]

of \(G \)-equivariant cohomology theories.

Proposition 1.5. The natural transformation \(s_i \), has the following properties:

1. (naturality) \(s_i(g^*(x)) = g^*(s_i(x)) \).
2. (multiplicativity) \(s_i(xy) = s_i(x)s_i(y) \).
3. (normality) i) \(s_i(t(\xi)) = s_i(\xi) \) for the Thom class \(t(\xi) \in \tilde{U}^n_c(T(\xi)) \) of an \(n \)-dimensional complex \(G \)-vector bundle \(\xi \), ii) \(s_i(1) = 1 \), and

\[
iii) s_i(V) = t_h(V).
\]
Let $\omega = (\omega_1, \omega_2, \ldots)$ be a sequence of non-negative integers with $\omega_1 = 0$ except for a finite number of terms. $|\omega| = \sum \omega_i$ and $t^\omega = \prod_i t_i^{\omega_i}$. Put
\[
s_\omega(x) = \sum_{\omega} s_\omega(x) t^\omega
\]
for $x \in \mathcal{U}_C^*(X)$. Then, from the properties of s_ω, it follows

Theorem 1.6. For each sequence $\omega = (\omega_1, \omega_2, \ldots)$ there exists an operation
\[
s_\omega: \mathcal{U}_C^*(-) \to \mathcal{H}_C^{*+2|\omega|-}(*)
\]
with the following properties:

1. (natural) $s_\omega(g^*(x)) = g^*(s_\omega(x))$.
2. (multiplicative) $s_\omega(xy) = \sum_{\alpha + \beta = \omega} s_\alpha(x) s_\beta(y)$

where $\alpha + \beta = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \ldots)$.

3. $s_\omega(x) = \frac{x}{1}$ for $0 = (0, 0, \ldots)$.

4. (stable) $s_\omega(\sigma(V)) = \sigma_\omega(V) s_\omega$, where $\sigma(V)$ and $\sigma_\omega(V)$ are suspension isomorphisms in the theories $\mathcal{U}_C^*(-)$ and $\mathcal{H}_C^*(-)$.

5. If ξ is 1-dimensional, then
\[
s_\omega(t(\xi)) = \begin{cases} t_\alpha(\xi)^{\alpha_{i+1}} & \text{for } \alpha = (0, \ldots, 0, \alpha_i, 0, 0, \ldots) \\ 0 & \text{otherwise.} \end{cases}
\]

2. **Steenrod operations.** In this section we observe the mod p Steenrod operations in the theory $\mathcal{U}_C^*(-)$ and reseach on them in connection with the Landweber-Novikov operations which are introduced in the previous section.

Let G be a compact Lie group and Z_p a cyclic group of order p with a generator ρ. By a (G, Z_p)-space X we mean a Hausdorff space X having both actions of G and Z_p which commute. Let V be a complex G-module. Throughout this section we only treat finite dimensional complex G-modules. We consider the G-module V a (G, Z_p)-space with a Z_p action defined by $\rho^k v = e^{\frac{2\pi i}{k} v} (v \in V)$. Then $S(V)^* = S(V) \cup \{\infty\}$ is a pointed (G, Z_p)-space with a fixed base point ∞, where $S(V)$ is the unit sphere in V.

Example 1. For a pointed G-space X, the p-fold reduced join $\overline{\bigwedge} X = X \wedge \cdots \wedge X$ is a pointed (G, Z_p)-space with a Z_p-action defined by $\rho(x_1 \wedge \cdots \wedge x_p)$.
\(\wedge x_\rho = x_1 \wedge \cdots \wedge x_\rho \wedge x_1 \). We consider the \(p \)-fold product \(\overset{\rho}{\bigotimes} X = X \times \cdots \times X \) a \((G, Z_\rho)\)-space for a \(G \)-space \(X \), too.

Example 2. Let \(\xi : E \to X \) be a complex \(G \)-vector bundle and denote by \(\overset{\rho}{\bigotimes} \xi \) the \(p \)-fold product bundle of \(\xi \). Then the total space \(E(\overset{\rho}{\bigotimes} \xi) = E \times \cdots \times E \) of \(\overset{\rho}{\bigotimes} \xi \) is a \((G, Z_\rho)\)-space with a \(Z_\rho \)-action defined by \(\rho(v_1, \ldots, v_\rho) = (v_2, \ldots, v_\rho, v_1) \).

Let us define a \(G \)-space and a pointed \(G \)-space as follows:

\[E_v(X) = (S(V) \times X)/Z_\rho \quad \text{for \((G, Z_\rho)\)-space} \ X, \]

and

\[\tilde{E}_v(X) = (S(V)^+ \wedge X)/Z_\rho \quad \text{for pointed \((G, Z_\rho)\)-space} \ X. \]

Then we have

Proposition 2.1. For a \((G, Z_\rho)\)-space \(X \), there holds

\[\tilde{E}_v(X^+) = E_v(X)^+. \]

Proposition 2.2. For a complex \(G \)-vector bundle \(\xi \) over a compact \(G \)-space \(X \)

\[E_v(\overset{\rho}{\bigotimes} \xi) : E_v(E(\overset{\rho}{\bigotimes} \xi)) \to E_v(\overset{\rho}{\bigotimes} X) \]

is a complex \(G \)-vector bundle.

Let \(\mathcal{C}(G, Z_\rho) \) be the category of pointed \((G, Z_\rho)\)-spaces and \(\mathcal{C}(G) \) the category of pointed \(G \)-spaces. Then \(\tilde{E}_v : \mathcal{C}(G, Z_\rho) \to \mathcal{C}(G) \) is a covariant functor.

Furthermore we have

Proposition 2.3. If \(\xi \) is a complex \((G, Z_\rho)\)-vector bundle over a compact \((G, Z_\rho)\)-space \(X \), then

\[E_v(\xi) : E_v(E(\xi)) \to E_v(X) \]

is a complex \(G \)-vector bundle. And, as for the Thom spaces of them, it follows that
\[T(E_v(\xi)) = \tilde{E}_v(T(\xi)). \]

Proposition 2.4. For a pair \((X, A)\) of a \((G, Z_p)\)-space and its subspace, there exist \(G\)-homeomorphisms
\[\tilde{E}_v(X/A) \simeq E_v(X)/E_v(A) \simeq \tilde{E}_v(X^+)/\tilde{E}_v(A^+). \]

Proposition 2.5. For a pointed \(G\)-space \(X\) with the trivial \(Z_p\)-action and a pointed \((G, Z_p)\)-space \(Y\), there exists a \(G\)-homeomorphism
\[\tilde{E}_v(Y \wedge X) \simeq \tilde{E}_v(Y) \wedge X. \]

Proposition 2.6. For a pointed \(G\)-space \(X\) with the trivial \(Z_p\)-action and a \(G\)-module \(W\), there exists a \(G\)-homeomorphism
\[\tilde{E}_v((\mathcal{O} W^c) \wedge X) \simeq T(E_v(\mathcal{O} W) \times X)/T(E_v(\mathcal{O} W) \times \ast_x), \]
where \(W^c\) means the one point compactification of \(W\).

Proof. We have the following \(G\)-homeomorphisms
\[
\tilde{E}_v((\mathcal{O} W^c) \wedge X) \simeq \tilde{E}_v((\mathcal{O} W^c) \wedge X) \quad \text{(by 2.5)}
\]
\[\simeq \tilde{E}_v((\mathcal{O} W^c)^+) \wedge X \]
\[\simeq E_v((\mathcal{O} W^c)^+) \wedge X \quad \text{(by 2.1)}
\]
\[\simeq T(E_v(\mathcal{O} W)) \wedge X \quad \text{(by 2.2)}
\]
\[= T(E_v(\mathcal{O} W)) \wedge (X^+/\ast_x)
\]
\[= T(E_v(\mathcal{O} W)) \wedge X^+/T(E_v(\mathcal{O} W)) \wedge \ast_x^\xi
\]
\[= T(E_v(\mathcal{O} W) \times X)/T(E_v(\mathcal{O} W) \times \ast_x). \quad \text{q.e.d.} \]

By the same way as in the non-equivariant case we have the following Thom isomorphism theorem of a pair (cf. [2]):

Theorem 2.7. For an \(n\)-dimensional complex \(G\)-vector bundle \(\xi\) over a compact \(G\)-space \(X\) and a closed \(G\)-subspace \(A\) of \(X\), the Thom homomorphism
\[\phi: U^*_v(X. A) \to U^{*+2n}_v(T(\xi). T(\xi | A)) \]
is an isomorphism.

In virtue of Proposition 2.3, for a \(G\)-module \(W\) and a pointed \(G\)-space
X with the trivial \mathbb{Z}_p-action,

$$\times^\rho W : E_\nu((\times^\rho W) \times X) \to E_\nu((\star, \ldots, \star) \times X)$$

is a G-vector bundle. Therefore, by making use of Theorem 2.7 and Propositions 2.4 and 2.6, we obtain a Thom isomorphism

$$\phi : \bar{U}_G^\rho(\bar{E}_\nu(X)) \to \bar{U}_G^\rho(\bar{E}_\nu((\times^\rho W^c) \wedge X)).$$

We now would like to define the external mod p Steenrod operation

$$P^p_V : \bar{U}_G^{2p}(X) \to \bar{U}_G^{2p}(E_\nu(X))$$

for each G-module V and a pointed G-space X.

Let $x \in U_G^{2p}(X)$ be represented by $f : W^c \wedge X \to M_{1w^*+k} \subset M_{1w^*+k} (G)$. Consider the composition of G-maps

$$\bar{E}_\nu(\times^\rho f) : \bar{E}_\nu((\times^\rho (W^c \wedge X)) \to \bar{E}_\nu((\times^\rho M_{1w^*+k}(U)))$$

$$= \bar{E}_\nu(T(\times^\rho \gamma^{1w^*+k}_G(U)))$$

$$= T(E_\nu(\times^\rho \gamma^{1w^*+k}_G(U))) \quad (\text{by 2.3})$$

$$\mu_p \quad T(\gamma^{1w^*+k}_G) = M_{1w^*+k}(G),$$

where μ_p is the map of Thom spaces induced by the classifying map of the complex G-vector bundle $E_\nu((\times^\rho \gamma^{1w^*+k}_G(U)))$. The map μ_p represents the Thom class

$$[\mu_p] = t(E_\nu(\times^\rho \gamma^{1w^*+k}_G(U))) \in \bar{U}_G^{2p}(T(E_\nu((\times^\rho \gamma^{1w^*+k}_G(U)))).$$

Define a map $\tilde{d} : (\times^\rho W^c) \wedge X \to \times^\rho (W^c \wedge X)$ by $\tilde{d}(w_1, \ldots, w_p) \wedge x = (w_1 \wedge x) \wedge \cdots \wedge (w_p \wedge x)$. Then we get a G-map

$$\bar{E}_\nu(\tilde{d}) : \bar{E}_\nu((\times^\rho W^c) \wedge X) \to \bar{E}_\nu((\times^\rho (W^c \wedge X)).$$

Now we define $P^p_V(x)$ by

$$P^p_V(x) = \phi^{-1}\bar{E}_\nu(\tilde{d}) \star \bar{E}_\nu(\times^\rho f) \star t(E_\nu((\times^\rho \gamma^{1w^*+k}_G(U)))).$$

And we have the following properties:

Proposition 2.8. For a G-module V there exists an operator

http://escholarship.lib.okayama-u.ac.jp/mjou/vol30/iss1/16
\[P_v : U^*_v(-) \to U^*_v(E_v(-)) \]

with the following properties:

1. (naturality) \(P^{2k}_v(*)(x) = E_v(h)^*P^{2k}_v(x) \).

2. (multiplicativity) For \(x \in U^*_v(X) \) and \(y \in U^*_v(Y) \)

\[P^{2k+2l}_v(x \times y) = P^{2k}_v(x) \times P^{2l}_v(y). \]

3. For the Thom class \(t(\xi) \in \widetilde{U}^*_v(T(\xi)) \) of a \(k \)-dimensional \(G \)-vector bundle \(\xi \),

\[P^{2k}_v(t(\xi)) = \tilde{E}_v(\tilde{d})^*(t(E_v(\chi(x)))) = t(E_v(\xi)). \]

Let \(L \) be the canonical 1-dimensional \(Z_\rho \)-module and consider it a trivial \(G \)-module. Put

\[\Delta = L \oplus L^2 \oplus \cdots \oplus L^{p-1}. \]

Then we obtain

Proposition 2.9. Let \(\xi \) be a complex \(G \)-vector bundle over a compact \(G \)-space \(X \). Consider the \(p \)-fold sum \(\xi \oplus \cdots \oplus \xi \) a \((G, Z_\rho) \)-bundle over \(X \) with a \(Z_\rho \)-action defined by \(\rho(v_1, \ldots, v_p) = (v_2, \ldots, v_p, v_1) \) for \((v_1, \ldots, v_p) \in E(\xi \oplus \cdots \oplus \xi) \). Then it follows that

1. the vector bundles \(\xi \oplus \cdots \oplus \xi \) and \(\xi \otimes (C \oplus \Delta) \) are \((G, Z_\rho) \)-isomorphic, and

2. the diagram

\[
\begin{array}{ccc}
\xi & \xrightarrow{\tilde{d}} & \xi \oplus \cdots \oplus \xi \\
\downarrow^i & & \downarrow^{\cong} \\
\xi \otimes (C \oplus \Delta) & \cong & \xi \otimes (C \oplus \Delta)
\end{array}
\]

is \(G \)-homotopy commutative, where \(\tilde{d} \) is the diagonal map and \(i \) is the natural inclusion defined by \(i(v) = v \otimes 1 \in \xi \otimes C \).

Proof. (1) Let us consider a \((p, p)\)-matrix \(A \) and a unitary matrix \(U = (u_{ij}) \) such that

\[
A = \begin{pmatrix}
0 & \cdots & 0 & 1 \\
1 & \cdots & 0 \\
1 & & & \\
0 & \cdots & 1 & 0
\end{pmatrix}, \quad U^{-1}AU = \begin{pmatrix}
1 & 0 \\
\rho & 0 \\
0 & \rho^{p-1}
\end{pmatrix}
\]
Then a $(G, Z_ρ)$-bundle isomorphism
\[h : \xi \oplus \cdots \oplus \xi \to \xi \otimes (C \oplus Δ) = \xi \otimes C \oplus \xi \otimes L \oplus \cdots \oplus \xi \otimes L^{p-1} \]
and its inverse h^{-1} are given by
\[h(v_1, \ldots, v_ρ) = (\sum_{j=1}^{ρ} u_{j1} v_j \otimes 1, \sum_{j=1}^{ρ} u_{j2} v_j \otimes 1, \ldots, \sum_{j=1}^{ρ} u_{jρ} v_j \otimes 1) \]
and
\[h^{-1}(v_1 \otimes z_1, \ldots, v_ρ \otimes z_ρ) = (\sum_{j=1}^{ρ} u'_{j1} z_j v_j, \sum_{j=1}^{ρ} u'_{j2} z_j v_j, \ldots, \sum_{j=1}^{ρ} u'_{jρ} z_j v_j) \]
for $(v_1, \ldots, v_ρ) \in \xi \oplus \cdots \oplus \xi$ and $(v_1 \otimes z_1, \ldots, v_ρ \otimes z_ρ) \in \xi \otimes (C \oplus Δ)$, where $U^{-1} = (u'_{ij})$.

(2) Since there holds $h_ρ = ρh$ for the generator $ρ \in Z_ρ$, it follows that
\[
h_ρ(v) = h_ρ(v_1, \ldots, v_ρ) = (\sum_{j=1}^{ρ} u_{j1} v \otimes 1, \sum_{j=1}^{ρ} u_{jρ} v \otimes 1)
= ρ(\sum_{j=1}^{ρ} u_{j1} v \otimes 1, \sum_{j=1}^{ρ} u_{jρ} v \otimes 1)
= (\sum_{j=1}^{ρ} u_{j1} v \otimes 1, \sum_{j=1}^{ρ} u_{jρ} v \otimes ρ^{-1} \cdot 1).\]
Hence we have
\[
(\sum_{j=1}^{ρ} u_{jk})(v \otimes 1) = ρ^{k-1}(\sum_{j=1}^{ρ} u_{jk})(v \otimes 1) \quad \text{in } \xi \otimes L^{k-1}.
\]
This implies
\[\sum_{j=1}^{ρ} u_{jk} = 0 \quad (k = 2, \ldots, ρ), \] that is,
\[h_ρ(v) = (\sum_{j=1}^{ρ} u_{j1} v \otimes 1, 0, \ldots, 0). \]
Since (u_{ji}) is an eigenvector for 1 of A, we have $u_{i1} = \cdots = u_{iρ}$ and $|u_{i1}| = \frac{1}{\sqrt{ρ}}$. Hence a G-homotopy connecting $h_ρ$ and i is given easily. q.e.d.

Proposition 2.10. For complex G-vector bundles $ξ$ and $η$ over a compact G-space X, let
be an inclusion given by \(i_\xi(v) = (v, 0) \) for \(v \in T(\xi) \). Then there holds
\[
i_\xi^*(t(\xi \oplus \eta)) = \phi_\xi(e(\eta))
\]
for the Thom class \(t(\xi \oplus \eta) \in \tilde{U}_c^*(T(\xi \oplus \eta)) \) and the Euler class \(e(\eta) \in \tilde{U}_c^*(X) \).

Proof. Consider the following commutative diagram
\[
\begin{array}{ccc}
\tilde{U}_c^*(T(\xi)) \otimes \tilde{U}_c^*(T(\eta)) & \xrightarrow{(1 \otimes s)^*} & \tilde{U}_c^*(T(\xi) \wedge T(\eta)) \\
\downarrow & & \downarrow \phi_\xi^* \\
\tilde{U}_c^*(T(\xi)) \otimes \tilde{U}_c^*(X) & \xrightarrow{(1 \otimes s)^*} & \tilde{U}_c^*(T(\xi) \wedge X) \\
\end{array}
\]

where \(s : X^+ \to T(\eta) \) is the 0-section and \(\tilde{d} : T(\xi \oplus \eta) \to T(\xi \times \eta) = T(\xi) \wedge T(\eta) \) is the map induced by the diagonal map. Then it follows that
\[
i_\xi^*(t(\xi \oplus \eta)) = i_\xi^*\tilde{d}^*(t(\xi) \times t(\eta))
= \tilde{d}^*(t(\xi) \times s^*(t(\eta))
= \tilde{d}^*(t(\xi)) \times e(\eta)
= \phi_\xi(e(\eta)).
\]

Proposition 2.11. For an \(n \)-dimensional complex \(G \)-vector bundle \(\xi \) over a compact \(G \)-space \(X \), there holds
\[
P_1^G(t(\xi)) = \phi_{E_{1}e}(e(E_1(\xi \otimes \Delta))).
\]

Proof. By Proposition 2.8 we have
\[
P_1^G(t(\xi)) = \tilde{E}_{1}(d)^*(t(E_1(\oplus \xi))).
\]
Since the commutative diagram
\[
\begin{array}{ccc}
T(\xi) & \xrightarrow{\tilde{d}} & T(\xi \oplus \cdots \oplus \xi) \\
\downarrow \tilde{d} \quad \downarrow \tilde{d} & & \downarrow \tilde{d} \\
T(\xi \times \cdots \times \xi)
\end{array}
\]
induces \(\tilde{E}_{1}(\tilde{d})^* = \tilde{E}_{1}(d)^*\tilde{E}_{1}(\tilde{d})^* \), we get
\[
\bar{E}_v(\bar{d})*(t(E_v(\xi))) = \bar{E}_v(\bar{d})*(t(E_v(\xi \oplus \cdots \oplus \xi))) \\
= \bar{E}_v(i_d)*(t(E_v(\xi \oplus \xi \otimes \Delta))) \quad \text{(by 2.9 (2))} \\
= i_{E_v, v}(t(E_v(\xi) \oplus E_v(\xi \otimes \Delta))) \\
= \phi_{E_v, v}(e(E_v(\xi \otimes \Delta))) \quad \text{(by 2.10)} \quad \text{q.e.d.}
\]

Let us consider a connection of the operations \(P_v \) with the Landweber-Novikov operations introduced in §1. Therefore, let us assume the compact Lie group \(G \) abelian hereafter.

Let \(V = L_1 \oplus \cdots \oplus L_m \) and \(W = L_1 \oplus \cdots \oplus L_n \) be complex \(G \)-modules, where \(L_i \) and \(L_j \) are 1-dimensional complex \(G \)-modules. Let \(P(V) \) be the complex projective space for the \(G \)-module \(V \) and \(\eta(V; C) \) the canonical complex \(G \)-line bundle over \(P(V) \). Then, according to [4, Theorems 4.2 and 4.5] we see that

\[
h^*_G(P(V) \times P(W)) = h^*_G(\text{pt})[x_v, y_w]/(\theta_v(x_v), \theta_w(y_w))
\]

where \(x_v = e_h(\eta(V; C) \otimes 1) \) and \(y_w = e_h(1 \otimes \eta(W; C)) \) are the Euler classes of the \(G \)-line bundles, and \((\theta_v(x_v), \theta_w(y_w)) \) is an ideal generated by polynomials \(\theta_v(x_v) = (x_v - e_h(L_1)) \cdots (x_v - e_h(L_m)) \) and \(\theta_w(y_w) = (y_w - e_h(L_1)) \cdots (y_w - e_h(L_n)) \). As usual we put

\[
h^*_G(P_\infty \times P_\infty) = \lim h^*_G(P(V) \times P(W))
\]

where the limit depends on the inverse system defined by inclusion maps of \(G \)-modules. Then we get

\[
h^*_G(P_\infty \times P_\infty) = h^*_G(\text{pt})[[x, y]].
\]

As usual, by commutativity and associativity of tensor products of \(G \)-vector bundles, we obtain a commutative formal group

\[
F(x, y) = \sum a_{ij}x^iy^j \in h^*_G(P_\infty \times P_\infty)
\]

such that \(F(x, y)|P(V)\times P(W) = e_h(\eta(V; C) \otimes \eta(W; C)) \) and \(a_{10} = a_{01} = 1 \). And, for \(G \)-line bundles \(\xi \) and \(\eta \) over a compact \(G \)-space \(X \), we have

\[
e_h(\xi \otimes \eta) = F(e_h(\xi), e_h(\eta)) = e_h(\xi) + e_h(\eta) + \text{higher terms}.
\]

Lemma 2.12. For an \(n \)-dimensional complex \(G \)-vector bundle \(\xi \) over a compact \(G \)-space \(X \), there holds

\[
s_\xi P^*_\xi(t(\xi)) = \sum_{\alpha, \beta \in \mathbb{N}} e_h(E_v(\Delta))^{n-\alpha-\beta}b_{\alpha}(v)s_\alpha(t(\xi))
\]
where \(v = e_h(E_v(L)) \), \(|a| = \sum a_i \) for each sequence \(a = (a_1, a_2, \ldots) \) and \(b_\alpha(v) \in h_c^*(pt)[[v]] \) is a power series.

Proof. By Proposition 2.11 we have

\[
s_\alpha P_v^{2n}(t(\xi)) = s_\alpha \phi_{E_v}(e(E_v(\xi \otimes \Delta))) = \phi(E_v(\xi))(e_h(E_v(\xi \otimes \Delta))).
\]

1) When \(\xi \) is a sum of \(G \)-line bundles \(\xi_1, \ldots, \xi_n \), it follows that

\[
e_h(E_v(\xi \otimes \Delta)) = e_h(E_v(\xi_1 \otimes \Delta \oplus \ldots \oplus \xi_n \otimes \Delta))
= e_h(\xi_1 \otimes E_v(\Delta) \oplus \ldots \oplus \xi_n \otimes E_v(\Delta))
= e_h(\xi_1 \otimes E_v(\Delta)) \cdots e_h(\xi_n \otimes E_v(\Delta)).
\]

For each \(k \) we have

\[
e_h(\xi_k \otimes E_v(\Delta)) = e_h(\xi_k \otimes E_v(\Delta)) = e_h(\xi_k \otimes E_v(L^p) \oplus \ldots \oplus \xi_k \otimes E_v(L^{p-1}))
= F(e_h(\xi_k), e_h(E_v(L))) \cdots F(e_h(\xi_k), e_h(E_v(L^{p-1})))
= \prod_{k=1}^{p-1} (e_h(E_v(L')) + \sum_{j \geq 1} a_j(v)e_h(\xi_k)^j)
= e_h(E_v(\Delta)) + \sum_{j \geq 1} b_j(v)e_h(\xi_k)^j,
\]

where \(a_j(v) \) and \(b_j(v) \) are formal power series of \(v \). Hence we have

\[
e_h(E_v(\xi \otimes \Delta)) = \prod_{k=1}^{n} (e_h(E_v(\Delta)) + \sum_{j \geq 1} b_j(v)e_h(\xi_k)^j)
= \sum_{\alpha \in \mathbb{A}_n} e_h(E_v(\Delta))^{n-\alpha}b_\alpha(v)c_\alpha(\xi)
\]

where \(c_\alpha(\xi) = \sum e_h(\xi_1)^{\alpha_1} \cdots e_h(\xi_n)^{\alpha_n} \) and \(b_\alpha(v) \) is a formal power series of \(v \). Therefore we have

\[
s_\alpha P_v^{2n}(t(\xi)) = \phi(E_v(\xi))(\sum_{\alpha \in \mathbb{A}_n} e_h(E_v(\Delta))^{n-\alpha}b_\alpha(v)c_\alpha(\xi))
= \sum_{\alpha \in \mathbb{A}_n} e_h(E_v(\Delta))^{n-\alpha}b_\alpha(v)s_\alpha(\xi).
\]

2) General case is shown by making use of the splitting principle in the theory \(h_c^*(-) \). q.e.d.

Now we obtain an \(h_c^* \)-theoretic version of [15, Proposition 3.17].

Theorem 2.13. Let \(x \in \tilde{U}^{\text{fr}}_c(X) \) be represented by a map \(f : W^c \land X \rightarrow M_{\text{fr+}}(U) \subset M_{\text{fr+}}(G) \). Then there holds

\[
\text{\textbf{Theorem 2.13.} Let } x \in \tilde{U}^{\text{fr}}_c(X) \text{ be represented by a map } f : W^c \land X \rightarrow M_{\text{fr+}}(U) \subset M_{\text{fr+}}(G). \text{ Then there holds}
\]
where $b_\alpha(v) \in h_v^*(pt)[[v]]$ is a well defined power series.

Proof. There holds $x = \sigma_{W} f^*(t(\gamma^m_0(U)))$, where $m = \|W\| + n$ and σ_w is the suspension isomorphism. Hence, by the previous lemma, the naturality of s_w and P^{2m}_v and the stability of s_w, we have

$$s_w P^{2m}_v(f^*(t(\gamma^m_0(U)))) = \tilde{E}_v(f)^*(s_w P^{2m}_v(t(\gamma^m_0(U)))) = \tilde{E}_v(f)^*(\sum_{n \leq m} e_h(E_v(\Delta))^{m-n} b_\alpha(v) s_\alpha(t(\gamma^m_0(U))))$$

$$= \sum_{n \leq m} e_h(E_v(\Delta))^{m-n} b_\alpha(v) s_\alpha(f^*(t(\gamma^m_0(U))))$$

$$= \sum_{n \leq m} e_h(E_v(\Delta))^{m-n} b_\alpha(v) s_\alpha(\sigma_w x)$$

$$= \sum_{n \leq m} e_h(E_v(\Delta))^{m-n} b_\alpha(v) s_w s_\alpha(x).$$

On the other hand we have

$$s_w P^{2m}_v(\sigma_w x) = s_w P^{2m}_v(\sigma_w(1) \times x) = s_w P_v(\sigma_w(1)) \times s_w P_v(x).$$

Since $\sigma_w(1) = t(W)$, by the previous lemma, we have

$$s_w P_v(\sigma_w(1)) = \sum_{n \leq m} e_h(E_v(\Delta))^{m-n} b_\alpha(v) s_\alpha(\sigma_w(1)).$$

Here

$$s_\alpha \sigma_w(1) = \sigma_w s_\alpha(1) = \begin{cases} \sigma_w(1) & \text{for } \alpha = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Thus we have

$$s_w P^{2m}_v(\sigma_w x) = e_h(E_v(\Delta))^{m-n} \sigma_w s_\alpha P^{2m}_v(x).$$

This completes the proof.

q.e.d.

Acknowledgement. The author wishes to express his thanks to Professor M. Kamata for his kind advices and discussions.

References

Fujii: Operations associated with the G-equivariant unitary cobordism

OPERATIONS ASSOCIATED WITH THE G-EQUIVARIANT UNITARY COBORDISM THEORY

OKAYAMA UNIVERSITY

(Received February 15, 1988)