On the number of representations of an integer as the sum of a powerful and a squarefree integers

Saburô Uchiyama*
ON THE NUMBER OF REPRESENTATIONS OF
AN INTEGER AS THE SUM OF A POWERFUL
AND A SQUAREFREE INTEGERS

Dedicated to Professor TAKESHI INAGAKI on the occasion
of his sixtieth birthday

SABURÔ UCHIYAMA

The problem of finding the number of representations of a positive
integer as the sum of the square of an integer and a squarefree integer
has been discussed by Th. Estermann [1; § 1]. A positive integer \(n \) is
called squarefree, if \(n \) is not divisible by the square of any prime. He has
shown that if \(G(N) \) denotes the number of ways of representing a positive
integer \(N \) as the sum of a square and a squarefree integer, then we have
for any fixed \(\varepsilon > 0 \)

\[
G(N) = C(N)N^{1/2} \prod_{p \mid N} \left(1 - \frac{1}{p} \right) + O(N^{(1/3)+\varepsilon}),
\]

where

\[
C(N) = \prod_{p \mid N} (1 - \nu_p(N) p^{-1})
\]

with

\[
\nu_p(N) = \begin{cases}
1 + (-1)^{v_p(N)/2} & (p = 2) \\
1 + \left(\frac{N}{p} \right) & (p > 2)
\end{cases}
\]

for primes \(p \) not dividing \(N \), and where the constant implied in the symbol
\(O \) depends only on \(\varepsilon \). In particular, every sufficiently large positive
integer can be represented as the sum of a square and a squarefree integer.

In the present paper we shall consider the number of representations
of a positive integer as the sum of a powerful and a squarefree integers.
A positive integer \(n \) is a powerful integer, by definition, if \(p^2 \) divides \(n \)
whenever the prime \(p \) divides \(n \) (cf. [2]).

We shall denote by \(P \) the set of all powerful integers and by \(S \) the
set of all squarefree integers. It is clear that the intersection $P \cap S$ consists of one element, the unity.

For every positive integer N we denote by $E(N)$ the number of ways of representing N in the form

$$N = a + b$$

with

$$a \in P, \ b \in S \quad \text{and} \quad (a, b) = 1.$$

We shall prove the following

Theorem. For any fixed positive number ε we have

$$E(N) = K(N) N^{\frac{11}{12}} \prod_{p \mid N} \left(1 - \frac{1}{p}\right) + O(N^{\varepsilon^{10^{10}}}) \quad (N > 0),$$

where

$$K(N) = \sum_{m=1}^{\infty} \frac{n_t(m)}{m^{3/2}} - C(mN)$$

and the O-constant may depend only on ε.

In particular, every sufficiently large positive integer N admits a representation of the form

$$N = a + b$$

with

$$1 < a \in P, \ 1 < b \in S \quad \text{and} \quad (a, b) = 1,$$

since we have

$$K(N) \geq \prod_{p} \left(1 - \frac{2}{p^2}\right) > 0$$

and

$$\prod_{p \mid N} \left(1 - \frac{1}{p}\right) \geq \frac{c}{\log \log 3N}$$

for some absolute constant $c > 0$.

1. Lemmata. In order to establish the theorem stated above, we require some auxiliary results.

The letters d, k, m, n, N denote positive integers and p a prime
Uchiyama: On the number of representations of an integer as the sum of a

number, and ε is used to denote an arbitrarily small but fixed positive number. As usual, $\mu(n)$ is the Möbius function, $\varphi(n)$ is the Euler totient function and $\tau(n)$ is the divisor function giving the number of positive divisors of n. Also, $v(n)$ denotes the number of distinct prime divisors of n.

Lemma 1. Let $d \in S$ and suppose that n is a quadratic residue (mod d^3). Then, the number $s(d)$ of the incongruent solutions z of the congruence

$$z^2 \equiv n \pmod{d^3}$$

is given by

$$s(d) = 2^{\varsigma(d)}.$$

For a proof of this lemma one may refer e.g. to [3; Theorem 47]. We note that the integer n is a quadratic residue (mod d^3) if and only if n is a quadratic residue (mod p) for all prime factors p of d, and further $n \equiv 1 \pmod{4}$ when d is even. Thus, if we write

$$e_d(n) = 2^{-\varepsilon(n)} \prod_{p|d} \nu_p(n),$$

then $e_d(n) = 1$ or 0 according as n is or is not a quadratic residue (mod d^3).

Lemma 2. Let a and b be positive integers and let $Q(N; a, b)$ denote the number of pairs of positive integers m, n satisfying

$$am^2 + bn^2 = N.$$

Then, we have

$$Q(N; a, b) \leq 2\tau(N).$$

This is [1; Hilfssatz 1].

2. **Proof of the Theorem.** Using the relation

$$\mu^2(n) = \sum_{d|n} \mu(d)$$

and noticing that $(a, b) = 1$ is equivalent to $(a, N) = 1$ when $N = a + b$, we have

$$E(N) = \sum_{\alpha \in \mathbb{Z}} \mu^2(N - \alpha) = \sum_{\alpha \in \mathbb{Z}} \sum_{d|N - \alpha} \mu(d).$$

$$\text{with } (\alpha, N) = 1.$$
It is not difficult to see that every integer $a \in P$ can be uniquely written in the form

$$a = n^2 m^3$$

with $m \in S$ (cf. [2]). Hence, we may rewrite

$$E(N) = \sum_{d \leq 1} \mu(d) + \sum_{d \leq \sqrt[3]{N}} \mu(d) + \sum_{d \leq \sqrt[3]{N}} \mu(d),$$

where \sum_1, \sum_2, and \sum_3 respectively indicate the summation over the positive integers d, m, n satisfying the conditions

\[
\begin{align*}
\begin{cases}
d \leq t, \quad m \leq x, \quad \mu(m) \neq 0, \quad n^2 m^3 \leq N, \\
(mn, N) = 1, \quad d^2 | N - n^2 m^3,
\end{cases}
\end{align*}
\]

and

\[
\begin{align*}
\begin{cases}
t < d \leq \sqrt[3]{N}, \quad m \leq x, \quad \mu(m) \neq 0, \quad n^2 m^3 \leq N, \\
(mn, N) = 1, \quad d^2 | N - n^2 m^3,
\end{cases}
\end{align*}
\]

where t and x are fixed real numbers such that

$$1 \leq t \leq \sqrt[3]{N} \quad \text{and} \quad 0 < x \leq \sqrt[3]{N}.$$

Firstly we have

$$\sum_1 \mu(d) = \sum_{d \leq x} \mu(d) \cdot T_d,$$

where

$$T_d = \sum_{n \in \mathbb{Z}} \mu^2(m) \sum_{(n, dN) = 1} \sum_{n \in \mathbb{Z}, n \geq \frac{1}{2} \sqrt[3]{N}} \frac{1}{d^2 | N - n^2 m^3}$$

\[
= \sum_{n \in \mathbb{Z}} \mu^2(m) \sum_{x \leq n \leq \frac{1}{2} \sqrt[3]{N}} \left(\left[\frac{1}{Nd^2} \left(\frac{N}{m^3} \right)^{1/3} \right] + 1 \right)
\]

\[
= \sum_{n \in \mathbb{Z}} \mu^2(m) e_n(mN) \frac{\psi(N) s(d)}{Nd^2} \left(\frac{N}{m^3} \right)^{1/3} + O \left(\sum_{n \in \mathbb{Z}} s(d) \right)
\]

\[
= N^{1/3} \frac{\varphi(N)}{N} \frac{s(d)}{d^2} \sum_{n = 1}^{\infty} \mu^2(m) e_n(mN) m^{3/2}
\]
ON THE NUMBER OF REPRESENTATIONS OF AN INTEGER

\[+ O\left(\frac{s(d)}{d^2} \cdot N^{1/2} \cdot x^{-1/2} \right) + O(s(d)x). \]

Hence, noticing that
\[\sum_{d \leq t} \frac{s(d)}{d^3} = O(1) \quad \text{and} \quad \sum_{d \leq t} s(d) = O(t \log 2t), \]
we find
\[
\sum_{d \leq t} \mu(d) = N^{1/2} \frac{\varphi(N)}{N} \sum_{d \leq t} \frac{\mu(d)}{d^3} \sum_{n=1}^{\infty} \frac{\mu^2(m)e_\delta(mN)}{m^{3/2}} \\
+ O\left(N^{1/2} x^{-1/2} \sum_{d \leq t} \frac{s(d)}{d^2} \right) + O(x \sum_{d \leq t} s(d)) \\
= N^{1/2} \frac{\varphi(N)}{N} \sum_{m=1}^{\infty} \frac{\mu^2(m)}{m^{3/2}} \sum_{(d, mN) = 1}^{\infty} \frac{\mu(d)}{d^2} \sum_{n=1}^{\infty} \frac{s(d)e_\delta(mN)}{m^{3/2}} \\
+ O\left(N^{1/2} \sum_{d \leq t} \frac{1}{d^2} \right) + O(N^{1/2} x^{-1/2}) + O(x t \log 2t) \\
= N^{1/2} \frac{\varphi(N)}{N} \sum_{m=1}^{\infty} \frac{\mu^2(m)}{m^{3/2}} \prod_{p \mid mN} \left(1 - \frac{\nu(pN)}{p^2} \right) \\
+ O(N^{1/2} x^{-1/2}) + O(N^{1/2} x^{-1/2}) + O(x t \log 2t),
\]
by Lemma 1.

Next, we have
\[
\sum_{d \leq t} \mu^2(d) = \sum_{x < d \leq t} \mu^2(m) \sum_{n \leq \sqrt{x/Nm^{1/2}}} \sum_{a \leq \sqrt{N-nm^3}} \mu(d) \\
= O\left(\sum_{n \leq x} \sum_{y \leq \sqrt{x/Nm^{1/2}}} \z(N-n^3m^3) \right) \\
= O\left(N^{1/2} \sum_{n \leq x} \sum_{y \leq \sqrt{x/Nm^{1/2}}} 1 \right) \\
= O(N^{(1/2)+e} x^{-1/2}),
\]
since
\[\max_{n \leq x} \z(n) = O(N^e). \]

Finally, writing
for \(d^2 \mid N - n^2 m^3 \), we find
\[
\sum_{u \mid d} u^{\mu}(d) = O\left(\sum_{n \leq N^{1/2}} \sum_{m \leq n} Q(N; k, m^3) \right) = O(N^{1-\varepsilon} t^{-2} x)
\]
by Lemma 2.

We thus obtain
\[
E(N) = K(N) \frac{\varphi(N)}{N} + R(N),
\]
where
\[
R(N) = O(N^{1/2} t^{-1}) + O(x t \log 2t)
\]
\[
= O(N^{(1/2)+\varepsilon}) + O(N^{1+\varepsilon} t^{-2} x)
\]
\[
= O(N^{(2/3)+\varepsilon}),
\]
on taking
\[
t = N^{1/3} \quad \text{and} \quad x = N^{1/9}.
\]
This completes the proof of our theorem, since
\[
\frac{\varphi(N)}{N} = \prod_{p \mid N} \left(1 - \frac{1}{p}\right).
\]

3. A Dual Problem. Estermann [1; § 2] has also given an asymptotic formula for the number \(H(x) \) of squarefree integers not exceeding \(x \) and having the form \(n^3 + l \), where \(l \) is a given non-zero integer. Indeed, he has proved that
\[
H(x) = C(-l) x^{1/2} \prod_{p \mid l} \left(1 - \frac{1}{p}\right) + O(x^{1/2} \log 2x) \quad (x \geq 1),
\]
where the \(O \)-constant is dependent only on \(l \).

An analogous formula can be found for the number \(F(x) \) of positive integers \(a \leq x \) satisfying
\[
a \in P, \quad a + l \in S \quad \text{and} \quad (a, l) = 1,
\]
where \(l \) is again a fixed non-zero integer. By the method employed above, with [1; Hilfssatz 2] in place of Lemma 2, one may easily obtain
ON THE NUMBER OF REPRESENTATIONS OF AN INTEGER

for any positive number ε

$$F(x) = K(-l)x^{\frac{1}{l}} \prod_{p \neq l} \left(1 - \frac{1}{p} \right) + O(x^{\varepsilon(l^{1/2} + r)}) \ (x > 0),$$

where the O-constant depends on l and ε.

REFERENCES

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received April 1, 1971)