On strongly cyclic extensions of commutative rings

Takasi Nagahara* Atsushi Nakajima†

*Okayama University †Okayama University
ON STRONGLY CYCLIC EXTENSIONS OF COMMUTATIVE RINGS

TAKASI NAGAHARA and ATSUSHI NAKAJIMA

In [6], we have studied cyclic extensions of commutative rings which contain the prime field $GF(p)$ $(p \neq 0)$. In this paper, we shall study strongly cyclic extensions of commutative rings and sharpen some results of Kishimoto for strongly abelian extensions [4]. In §1, we shall give some properties of strongly cyclic extensions. We consider first strongly cyclic extensions of an arbitrary commutative ring, and later place some restrictions on the base ring, e.g., without proper idempotents. Applying the results of §1, we shall study in §2 strongly abelian extensions.

In all that follows, B will be assumed to be a commutative ring which contains a primitive n-th root ζ of 1 such that n and $\{1-\zeta^i; \ i=1, 2, \ldots, n-1\}$ are in $U(B)$, the set of all unit elements of B. We set $\Gamma=\{1, \zeta, \ldots, \zeta^{n-1}\}$. Further, all ring extensions of B will be assumed to be commutative and have the identity 1. Moreover, we shall understand by a divisor of n a positive integer which divides n. As to other terminologies used in this paper, we follow [1], [3] and [6].

2. Strongly cyclic extensions. We now begin with lemmas for separable polynomials.

Lemma 1.1. Let m be a divisor of n, and γ a primitive m-th root of 1 in Γ. Let $f(X)=X^n-b \in B[X]$. Then $f(X)$ is separable if and only if b is a unit in B.

Proof. We set $B[x]=B[X]/(X^n-b)$ where $x=X+x^m(X^n-b)$. If $f(X)$ is separable then mx^n-1 is a unit in $B[X]$ by [2, Prop. 1.8]. Therefore x is a unit in $B[x]$. Since $x^n=b$, b is a unit in $B[x]$. Hence noting that $1, x, \ldots, x^{n-1}$ is a free basis of $B[x]$ over B, it is easily seen that b is a unit in B. Conversely, if b is a unit in B then x is a unit in $B[x]$. Since $f(\gamma^i x)=0$ $(0 \leq i \leq m-1)$ and $\gamma^i x - \gamma^j x \in U(B[x])$ $(i \neq j)$, we have $f(X)=(X-x)(X-\gamma x)\cdots(X-\gamma^{n-1} x)$. Then it follows from [5, Th.] that $f(X)$ is separable.

91
Lemma 1.2. Let \(m \) be a divisor of \(n \), and \(\gamma \) a primitive \(m \)-th root of \(1 \) in \(\Gamma \). Let \(f(X) = X^n - b \in B[X] \) be separable. If there is a ring extension \(A \) of \(B \) such that \(f(a) = 0 \) for some \(a \) in \(U(A) \) then \(f(X) = (X-a)(X-\gamma a) \cdots (X-\gamma^{n-1}a) \); and if, in addition, there exists a \(B \)-algebra automorphism \(\sigma \) of \(A \) with \(\sigma(a) = \gamma a \) then there exists an isomorphism \(B[X]/(f(X)) \rightarrow B[a] \) such that

\[
(\text{i}) \quad g(X) + (f(X)) \rightarrow g(a).
\]

Proof. The first assertion is clear by the proof of Lemma 1.1. The latter can be proved by making use of the same method as in the proof of [6, Lemma 1.1].

Definition 1.1. Let \(A \supset T \supset B \) be ring extensions, and \(m \) a divisor of \(n \). If there exists a unit \(a \) in \(A \) and a ring automorphism \(\sigma \) of \(A \) such that

1. \(\sigma \) is of order \(m \),
2. \(T \) is the fixring of \(\sigma \) in \(A \),
3. \(\sigma(a) = \gamma a \) for some primitive \(m \)-th root \(\gamma \) of \(1 \) in \(\Gamma \),

then \(A/T \) is a \((\sigma; m; a) \)-extension (see, the proof of Th.1.2) and is called a strongly cyclic \((\sigma; m; a) \)-extension. Occasionally, a strongly cyclic \((\sigma; m; a) \)-extension will be called simply a strongly cyclic \((\sigma; m) \)-extension or a strongly cyclic \(m \)-extension.

Lemma 1.3. Let \(A \supset T \supset B \) be ring extensions, and \(\sigma \) an automorphism of \(A \) of finite order \(m \). If \(m \) is a divisor of \(n \) and \(T \) is the fixring of \(\sigma \) in \(A \) then the following conditions are equivalent.

1. \(A/T \) is a strongly cyclic \((\sigma; m) \)-extension.
2. There exists a unit \(a \) in \(A \) such that \(a + \gamma \sigma(a) + \cdots + \gamma^{m-1} \sigma^{m-1}(a) \in U(A) \) for some primitive \(m \)-th root \(\gamma \) of \(1 \) in \(\Gamma \).

Proof. Set \(g(a) = a + \gamma \sigma(a) + \cdots + \gamma^{m-1} \sigma^{m-1}(a) \) where \(\gamma^n = 1 \). Then \(\sigma(g(a)) = \gamma^{-1}g(a) \). If \(\sigma(a) = \gamma a \) then \(g(a^{m-1}) = ma^{m-1} \). This proves (1) \(\Leftrightarrow \) (2).

Theorem 1.1. Let \(m \) be a divisor of \(n \), and \(\gamma \) a primitive \(m \)-th root of \(1 \) in \(\Gamma \). Assume \(f(X) = X^n - b \in B[X] \) is separable. Then \(B[X]/(f(X)) \) is a strongly cyclic \((\sigma; m) \)-extension of \(B \) where \(\sigma \) is given by

\[
(\text{ii}) \quad X + (f(X)) \rightarrow \gamma X + (f(X)).
\]
ON STRONGLY CYCLIC EXTENSIONS OF COMMUTATIVE RINGS

Proof. The map $\sum b_i X^i \rightarrow \sum \sigma_i b_i (\gamma X)^i$ defines an automorphism of $B[X]$ sending $f(X) \rightarrow f(\gamma X) = f(X)$, which induces therefore an automorphism σ of $B[X]/(f(X))$ of order m. Set $x = X + (f(X))$. Since x and $1 - \gamma^i$ ($1 \leq i \leq m - 1$) are in $U(B[x])$, the same argument as in the proof of [6, Th. 1.1] enables us to see that B is the fixring of σ in $B[x]$. Therefore $B[x]$ is a strongly cyclic $(\sigma; m)$-extension of B.

Combining Lemma 1.2 and Th. 1.1, we have the following

Corollary 1.1. Let A be a ring extension of B, and σ a B-algebra automorphism of A. If there exists an element a of $U(A)$ such that $a^n \in B$ and $\sigma(a) = \gamma a$ for some primitive m-th root γ of 1 in Γ then the diagram

\[
\begin{array}{c}
B[X]/(f(X)) \rightarrow B[a] \\
\sigma|B[a] \downarrow \quad \downarrow (i) \\
B[X]/(f(X)) \rightarrow B[a]
\end{array}
\]

is commutative, and $B[a]$ is a strongly cyclic $(\sigma|B[a]; m)$-extension of B.

Theorem 1.2. If A is a strongly cyclic $(\sigma; m; a)$-extension of B then $f(X) = X^n - a^n$ is a separable polynomial in $B[X]$, $A = B[a]$ and is isomorphic to $B[X]/(f(X))$ by (i).

Proof. Since A is a strongly cyclic $(\sigma; m; a)$-extension of B, $\sigma(a) = \gamma a$ for some primitive m-th root γ of 1 in Γ. Then $a^n = \sigma(a^n)$ is in $U(B)$ and $f(x)$ is separable by Lemma 1.1. By Lemma 1.2, $B[a]$ is isomorphic to $B[X]/(f(X))$ by (i). Now, it is easily seen that for $0 \leq i, j, k \leq m - 1$, $\partial_{i, j, k} = (\Pi_{i \neq j} (\gamma^i a - \gamma^j a)^{-1} \Pi_{i = j} (\gamma^i a - \sigma^k (\gamma^i a)))$ which is written as $\sum_{i \neq j} x_i \sigma^k(y_i), x_i, y_i \in B[a]$. Then for every $u \in A$, we have $u = \sum x_i T_{c^0}(uy_i) \in B[a]$, where $T_{c^0}(uy_i) = uy_i + \sigma(uy_i) + \cdots + \sigma^{n-1}(uy_i)$. Hence it follows that $B[a] = A$.

As a direct consequence of Th. 1.2, we have the following

Corollary 1.2. Let A and A' be strongly cyclic $(\sigma; m; a)$ and $(\sigma'; m; a')$-extension of B, respectively. If $a^n = a'^n$ then A and A' are B-algebra isomorphic.

Theorem 1.3. Let T/B be a strongly cyclic $(\tau; m; t)$-extension, where $n = ms$. Then there is a strongly cyclic $(\sigma; n; a)$-extension A of B such that
94

T. NAGAHARA and A. NAKAJIMA

(1) A is a strongly cyclic $(\sigma^*: s; a)$-extension of T.
(2) $\sigma|T = \tau^*$ for some positive integer u with $(u, m) = 1$.
(3) $a' = t$.

Proof. By assumption, $\tau(t) = \gamma t$, where $\gamma = (\xi')^i$ and $(i, m) = 1$. There exists then a positive integer u with $(u, m) = 1$ such that $\tau'^u(t) = \xi t$. To be easily seen, $T[X] \cong \sum t, X' \rightarrow \sum \tau'^u(t, \langle \xi X \rangle') \in T[X]$ is an automorphism of order n and it induces an automorphism σ in $A = T[X]/(X' - t)$:

$\sum t, X' + (X' - t) \rightarrow \sum \tau'^u(t, \langle \xi X \rangle') + (X' - t)$.

Then σ^* is a T-algebra automorphism of A:

$X + (X' - t) \rightarrow \xi^* X + (X' - t)$.

Hence by Th. 1.1, A is a strongly cyclic $(\sigma^*; s)$-extension of T. We set $a = X + (X' - t)$. Then, a is a unit of A with $a' = t$ and $\sigma(a) = \xi a$. Combining this with $\sigma|T = \tau^*$, it follows that A is a strongly cyclic $(\sigma; n; a)$-extension of B.

Theorem 1.4. Let A be a strongly cyclic $(\sigma; n; a)$-extension of B, $n = ms$ and $t = a'$. Assume T is the fixring of (σ^*) in A. Then A is a strongly cyclic $(\sigma^*; s; a)$-extension of T and T is a strongly cyclic $(\sigma|T; m; t)$-extension of B, and the following diagram

$\begin{array}{ccc}
T[X]/(X' - t) & \xrightarrow{(i')} & A \\
\downarrow{(iii)} & & \downarrow{\sigma} \\
T[X]/(X' - t) & \xrightarrow{(i')} & A
\end{array}$

is commutative, where (i') is defined as for $B[X]/(f(X))$ in Lemma 1.2.

Proof. It is clear that $\sigma|T$ is of order m and B is the fixring of $\sigma|T$ in T. Since $\sigma^u(t) = t$, t is in $U(T)$. We set $\sigma(a) = \xi'a$, where $(i, n) = 1$. Then $(\sigma|T)(t) = \xi't$, and T is a strongly cyclic $(\sigma|T; m; t)$-extension of B. Now the commutativity of the diagram will be easily seen.

Theorem 1.5. Let A be a strongly cyclic $(\sigma; n)$-extension of B.

(1) If C is a B-algebra with an identity element then $C \otimes_B A$ is a strongly cyclic $(1 \otimes \sigma; n)$-extension of $C \otimes 1 (\equiv C)$.
(2) If N is a proper ideal of B then $AN \cap B = N$ and $A/AN \cong B/N \otimes_{\mathfrak{a}} A$ is a strongly cyclic $(1 \otimes \sigma; n)$-extension of B/N.

(3) If S is a multiplicatively closed subset of B not containing 0 then the quotient ring $A[S^{-1}] \cong B[S^{-1}] \otimes_{\mathfrak{a}} A$ is a strongly cyclic $(1 \otimes \sigma; n)$-extension of $B[S^{-1}]$.

Proof. Since B is a direct summand of A as B-module, $C \cong C \otimes 1 \subset C \otimes_{n} A$, and (1) is almost evident. (2) and (3) are direct consequences of (1).

The next will be easily verified.

Theorem 1.6. Let m_{i}, m_{2} be divisors of n with $(m_{i}, m_{2}) = 1$. If A_{i} are strongly cyclic $(\sigma_{i}; m_{i}; a_{i})$-extensions of B $(i = 1, 2)$ then $A_{1} \otimes_{n} A_{2}$ is a strongly cyclic $(\sigma_{1} \otimes \sigma_{2}; m_{1}m_{2}; a_{1} \otimes a_{2})$-extension of B.

Theorem 1.7. Let A be a strongly cyclic $(\sigma; m; a)$-extension of B, and set $m = q_{1}^{i_{1}} q_{2}^{i_{2}} \cdots q_{i}^{i_{i}}$, where $q_{1}, q_{2}, \cdots, q_{i}$ are the prime divisors of m with $(q_{i}, q_{j}) = 1$ $(i \neq j)$. Then A is isomorphic to $A_{1} \otimes_{n} A_{2} \otimes \cdots \otimes_{n} A_{i}$, where A_{i} is a strongly cyclic q_{i}-extension of B.

Proof. We have $(\sigma) = (\sigma_{1}) \times (\sigma_{2}) \times \cdots \times (\sigma_{i})$, where (σ_{i}) is a cyclic group of order $q_{i}^{i_{i}}$. Let $G_{i} = (\sigma_{i}) \times (\sigma_{i-1}) \times (\sigma_{i-2}) \times \cdots \times (\sigma_{1})$, A_{i} the fixring of G_{i} in A, and $a_{i} = N_{G_{i}}(a) (= \Pi_{1 \leq i \leq q_{i}^{i_{i}}} \tau(a))$. Then $a_{i} \in U(A_{i})$ and $\sigma_{i}(a_{i}) = \sigma_{i} N_{G_{i}}(a) = N_{G_{i}}(\sigma_{i}(a)) = \gamma N_{G_{i}}(a) = \gamma a_{i}$ for some primitive q_{i}-th root γ of 1 in Γ. Therefore A_{i} is a strongly cyclic q_{i}-extension of B and we can prove easily $A \cong A_{1} \otimes_{n} A_{2} \otimes \cdots \otimes_{n} A_{i}$.

Lemma 1.4. Let B be a ring without proper idempotents, and q a prime divisor of n. In order that a separable polynomial $f(X) = X^{n} - c$ is irreducible in $B[X]$ if and only if $f(b) \neq 0$ for every b in B.

Proof. Since q is a prime divisor of n, the proof proceeds in the same way as in the proof of [6, Lemma 1.2].

Lemma 1.5. Let B be a ring without proper idempotents, and $f(X)$ a separable polynomial in $B[X]$. Let $B[X]/(f(X)) = A_{1} \oplus \cdots \oplus A_{k}$, where the A_{i} are ideals with no proper idempotents, and $f(X) = f_{1}(X) \cdots f_{k}(X)$, where the $f_{i}(X)$ are irreducible polynomials in $B[X]$. Then $k = l$.

Produced by The Berkeley Electronic Press, 1971
Theorem 1.8. Let B be a ring without proper idempotents, and m a divisor of n. Then, there is a strongly cyclic $(\tau ; m)$-extension of B without proper idempotents if and only if there exists an element b_0 in $U(B)$ such that $X^n - b_0$ is irreducible in $B[X]$.

Proof. Let A be a strongly cyclic $(\tau ; m)$-extension of B without proper idempotents. Then, by Th. 1.2, we have $a^n \in U(B)$ and a B-algebra isomorphism $B[X]/(X^n - a^n) \cong B[a] = A$. Therefore $X^n - a^n$ is irreducible by Lemma 1.5. Conversely, if we set $A = B[X]/(X^n - b_0)$ then A is a strongly cyclic $(\tau ; m)$-extension of A by Th. 1.1. Since $X^n - b_0$ is irreducible, A has no proper idempotents again by Lemma 1.5.

Now, we shall introduce here the following definition.

Definition 1.2. Let $f(X)$ be a monic polynomial in $B[X]$. A ring extension A of B is called a splitting ring of $f(X)$ if $f(X) = (X - a_1) \cdots (X - a_k)$ and $A = B[a_1, \ldots, a_k]$ with some $a_i \in A$.

Theorem 1.9. Let m be a divisor of n, and A a splitting ring of a separable polynomial $f(X) = X^n - c$ in $B[X]$. Assume that A has no proper idempotents and A is projective as B-module. Then A is a strongly cyclic extension of B. If, in particular, m is prime and $A \supseteq B$ then A is a strongly cyclic m-extension of B.

Proof. Since A is a splitting ring of $X^n - c$, we have $f(X) = (X - a_1) \cdots (X - a_n)$ and $A = B[a_1, \ldots, a_n]$ with some $a_i \in A$. Then by [3, Lemma 2.1], we obtain $\{a_1, \ldots, a_n\} = \{a = a_1, a_2, \ldots, a_n\}$ for a primitive m-th root γ of 1 in Γ, and hence $A = B[a]$. By [5, Cor. 6], A is a Galois extension of B. Let \mathfrak{G} be the Galois group of A/B, and $\sigma, \tau \in \mathfrak{G}$. If $\sigma(a) = \gamma a$ and $\tau(a) = \gamma a$ then $\sigma(a) = \gamma \gamma a$. Hence \mathfrak{G} is isomorphic to a subgroup of the cyclic group generated by γ. This enables us to see that A is a strongly cyclic extension of B.

Lemma 1.6. Let T be a ring extension of B, and τ a B-algebra automorphism of T whose order is a prime divisor q of n. Suppose there exist elements t, t_0 in $U(T)$ such that $\tau(t) = t t_0^q$ and $N_{\mathfrak{O}}(t) = \gamma$ for some primitive q-th root γ of 1 in Γ, where $N_{\mathfrak{O}}(t) = t \tau(t) \cdots \tau^{q-1}(t)$. If T has no proper idempotents then $T[X]/(X^n - t_0)$ has no proper idempotents.
ON STRONGLY CYCLIC EXTENSIONS OF COMMUTATIVE RINGS

Proof. Suppose that T has no proper idempotents and $a^2 = t_0$ for some a in T. Then $\tau(a^i) = (at)^i$, and hence $(\tau(a)a^{-1}t^{-1})^i = 1$. Since $X^q - 1$ is a separable polynomial, it follows that $\tau(a)a^{-1}t^{-1} = \gamma^i$ for some i (cf. [3, Lemma 2.1] and [5, Remark 2]). Then $\gamma^{-1} = N_{C_2}(\tau(a)a^{-1}t^{-1}) = N_{C_2}(\gamma^i) = 1$, which is a contradiction. Hence by Lemma 1.4, $X^q - t_0$ is irreducible in $T[X]$. Therefore $T[X]/(X^q - t_0)$ has no proper idempotents by Lemma 1.5.

Theorem 1.10. Let q be a prime divisor of n, A a ring extension of B, σ a B-algebra automorphism of A of order q^i, and T the fixring of σ^i in A. Assume that A is a strongly cyclic $(\sigma^i; q)$-extension of T. If T has no proper idempotents, then so is A.

Proof. By Th. 1.2, there exists an element $a \in U(A)$ such that $\sigma^i(a) = \gamma^i a$ for some primitive q-th root γ of 1 in Γ. Set $t = a^{-1} \sigma(a)$ and $t_0 = a^i$. Then $\sigma^i(t) = t \in U(T)$, $\sigma^i(t_0) = t_0 \in U(T)$, $t_0 \sigma(t) \cdots \sigma^{-i}(t) = a^{-1} \sigma(a) = \gamma$, $t_0 t^i = a^i a^{-i}(\sigma(a))^i = \sigma(t_0)$, and $\sigma|T$ is an automorphism of T of order q. Moreover, $T[X]/(X^q - t_0)$ is isomorphic to A by Th. 1.2. Hence, if T has no proper idempotents then, by Lemma 1.6, A has no proper idempotents.

Corollary 1.3. Let m be a divisor of n, q a prime divisor of m, and $t > 0$ a multiple of q. Let A be a ring extension of B, σ a B-algebra automorphism of A of order tm, and T the fixring of σ^i in A. Assume A is a strongly cyclic $(\sigma^i; m)$-extension of T. If T has no proper idempotents then the fixring T_1 of σ^m in A has no proper idempotents.

Proof. By Th. 1.4, T_1 is a strongly cyclic $(\sigma^i|T_1, q)$-extension cf T. Clearly $\sigma^{tm}|T_1$ is an automorphism of T_1 whose order is a divisor of q^2. Since $(\sigma^{tm}|T_1)^{q^i} = \sigma|T_1$ is of order q, it follows that $\sigma^{tm}|T_1$ is of order q^2. Hence by Th. 1.10, the result is clear.

In what follows, let q_0 be the product of all different prime divisors of n.

Theorem 1.11. Let m be a divisor of n, and $t > 0$ an integer which is a multiple of q_0. Let A be a ring extension of B, σ a B-algebra automorphism of A of order tm, and T the fixring of σ^i in A. Assume A is a strongly cyclic $(\sigma^i; m)$-extension of T. If T has no proper idempotents,
then so is A.

Proof. By making use of repeated use of Cor. 1.3, one will easily obtain the result.

Theorem 1.12. Let A be a strongly cyclic $(\sigma; n)$-extension of B, and B, the fixring of σ_0 in A. Then

1. A has no proper idempotents if and only if B_1 has no proper idempotents.
2. A is a field if and only if B_1 is a field.
3. A is a domain if and only if B_1 is a domain.
4. A is a local ring if and only if B_1 is a local ring.

Proof. By Th. 1.4, A is a strongly cyclic $(\sigma_0; n/q_0)$-extension of B_1. Hence by Th. 1.11, we obtain (1) and (2). Moreover, (1) enables us to apply the same argument as in the proof of [6, Th. 1.8] to obtain (3) and (4).

Combining Th. 1.12 with Th. 1.5, we have

Corollary 1.4. Let A be a strongly cyclic $(\sigma; n)$-extension of B, and B_1 as in Th. 1.12. Let C be a B-algebra with an identity element, N a proper ideal of B, and S a multiplicatively closed subset of B not containing 0. Then

1. $C \otimes_B A$ (resp. A/AN (resp. $A[S^{-1}]$)) has no proper idempotents if and only if $C \otimes_B B_1$ (resp. B_1/B_1N (resp. $B_1[S^{-1}]$)) has no proper idempotents.
2. $C \otimes_B A$ (resp. A/AN (resp. $A[S^{-1}]$)) is a field if and only if $C \otimes_B B_1$ (resp. B_1/B_1N (resp. $B_1[S^{-1}]$)) is a field.
3. $C \otimes_B A$ (resp. A/AN (resp. $A[S^{-1}]$)) is a domain if and only if $C \otimes_B B_1$ (resp. B_1/B_1N (resp. $B_1[S^{-1}]$)) is a domain.
4. $C \otimes_B A$ (resp. A/AN (resp. $A[S^{-1}]$)) is a local ring if and only if $C \otimes_B B_1$ (resp. B_1/B_1N (resp. $B_1[S^{-1}]$)) is a local ring.

Theorem 1.13. Let A be a ring extension of B, σ a B-algebra automorphism of A of order n' ($s > 0$), and T_i the fixring of σ^t in A ($s \geq i \geq 0$). Assume that for every $i > 0$, T_i is a strongly cyclic $(\sigma^{i-1}; T_1; n)$-extension of T_{i-1}. Then

1. A has no proper idempotents if and only if T_1 has no proper idempotents.
ON STRONGLY CYCLIC EXTENSIONS OF COMMUTATIVE RINGS

(2) \(A \) is a field if and only if \(T_1 \) is a field.
(3) \(A \) is a domain if and only if \(T_1 \) is a domain.
(4) \(A \) is a local ring if and only if \(T_1 \) is a local ring.

Proof. Applying the result of Th. 1.11, the proof proceeds in the same way as in the proof of Th. 1.12.

2. Strongly abelian extensions. If a field \(A \) is a Galois extension of \(B \) with the Galois group \((\sigma_{1})\times(\sigma_{2})\times\cdots\times(\sigma_{e}) \) where the order of \((\sigma_{i}) \) is a divisor of \(n \), then it is seen that the fixing of \((\sigma_{1})\times\cdots\times(\sigma_{i-1})\times(\sigma_{i+1})\times\cdots\times(\sigma_{e}) \) in \(A \) is a strongly cyclic extension of \(B \). We shall introduce here the following definition.

Definition 2.1. Let \(A/B \) be a Galois extension with a Galois group \((\sigma_{1})\times(\sigma_{2})\times\cdots\times(\sigma_{e}) \) and \(G=(\sigma_{1})\times\cdots\times(\sigma_{i-1})\times(\sigma_{i+1})\times\cdots\times(\sigma_{e}) \). If the fixing \(A_{i} \) of \(G \) in \(A \) is a strongly cyclic \((\sigma_{1};A_{i}; n_{i}) \)-extension of \(B \), then \(A/B \) will be called a strongly abelian \((\sigma_{1},\ldots,\sigma_{e}; n_{1},\ldots, n_{e}) \)-extension.

It is easy to prove the following theorems which correspond Th. 1.6 and Th. 1.7 respectively.

Theorem 2.1. Let \(A, (1\leq i\leq e) \) be strongly cyclic \((\sigma_{i}; n_{i}) \)-extensions of \(B \). Then \(A_{1}\otimes_{B} A_{2}\otimes\cdots\otimes_{B} A_{e} \) is a strongly abelian \((\sigma_{1},\ldots,\sigma_{e}; n_{1},\ldots, n_{e}) \)-extension of \(B \).

Theorem 2.2. Let \(A \) be a strongly abelian \((\sigma_{1},\ldots,\sigma_{e}; n_{1},\ldots, n_{e}) \)-extension of \(B \). If \(A_{i} \) is the fixing of \((\sigma_{1})\times\cdots\times(\sigma_{i-1})\times(\sigma_{i+1})\times\cdots\times(\sigma_{e}) \) in \(A \), then \(A \) is isomorphic to \(A_{1}\otimes_{B} A_{2}\otimes\cdots\otimes_{B} A_{e} \).

Next, corresponding to Th. 1.12, we shall present the following

Theorem 2.3. Let \(A \) be a strongly abelian \((\sigma_{1},\ldots,\sigma_{e}; n_{1},\ldots, n_{e}) \)-extension of \(B \). Let \(R_{i} \) be the fixing of \((\sigma_{1}^{k_{1}})\times\cdots\times(\sigma_{i}^{k_{i}}) \) in \(A \), where \(k_{i} \) is the product of all different prime divisors of \(n_{i} \).

(1) \(A \) has no proper idempotents if and only if \(R_{1} \) has no proper idempotents.
(2) \(A \) is a field if and only if \(R_{1} \) is a field.
(3) \(A \) is a domain if and only if \(R_{1} \) is a domain.
(4) \(A \) is a local ring if and only if \(R_{1} \) is a local ring.

By Theorems 1.3, 2.1, 2.2 and 2.3, we have the following
Theorem 2.4. Let $n_i (1 \leq i \leq e)$ be divisors of n and k_i, the product of all different prime divisors of n. Then

1. There is a strongly abelian (n_1, \ldots, n_e)-extension of B which has no proper idempotents if and only if there is a strongly abelian (k_1, \ldots, k_e)-extension of B which has no proper idempotents.

2. There is a strongly abelian (n_1, \ldots, n_e)-extension of B which is a domain if and only if there is a strongly abelian (k_1, \ldots, k_e)-extension of B which is a domain.

3. There is a strongly abelian (n_1, \ldots, n_e)-extension of B which is a local ring if and only if there is a strongly abelian (k_1, \ldots, k_e)-extension of B which is a local ring.

REFERENCES

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received June 30, 1971)