On the bimodule structure of Galois extensions

Sigurd Elliger*
ON THE BIMODULE STRUCTURE OF
GALOIS EXTENSIONS

SIGURD ELLIGER

Throughout the present note, \(A \) will represent an (Artinian) simple ring which is finite Galois over a simple subring \(B \). Then, it is known that \(A \) is \(B \cdot V_s(B) \cdot A \)-irreducible. (See [4]. As to terminologies used without mention, we follow [4].) We use the following notations: \(C=V_s(A), Z=Z_s(B), V=V_s(A), H=V_s(V), C_s=V_s(V)=V \cap H, G = \text{the Galois group of } A/B, \{ \sigma_1, \sigma_2, \ldots, \sigma_n \} \) is a (fixed) representative system of \(G \) modulo the normal subgroup \(I \) consisting of all inner automorphisms, and \(\overline{G} = G/I \), which may and will be regarded as the Galois group of \(H/B \).

We set further \(S=V \cdot V_r \) and \(R=\text{Hom}(\sigma A B, \sigma A B) \), where \(V_i \) (resp. \(V_r \)) the left (resp. right) multiplication of \(V \). To be easily seen, \(R=GV_r=\bigoplus_{i=1}^{\infty} \sigma_i S \) and \(S=V^o \otimes \nu V \) is a Frobenius ring, where \(V^o \) is the opposite of \(V \). (See, for instance [3; Lemma 3].)

In this note, the main theme of our discussion will concern the bimodule structure of \(\sigma A_B \). We shall prove first that \(\sigma A_B \) is a direct sum of local submodules, where a module \(\sigma M_B \) is said to be local if it contains one and only one maximal submodule (Theorem 1). Next, we shall explain when \(\sigma A_B \) is completely reducible (Theorem 2) or local (Theorem 3).

The next lemma will play an essential role in our subsequent study.

Lemma 1. If \(T \) is a \(B \cdot B \)-submodule of \(A \) then the restriction \(T|_R \) of \(R \) to \(T \) contains a free \(V_r \)-basis that forms at the same time a free \(\sigma \)-basis of \(T|_R \cdot \sigma A_B \), \(\{ T|_R : V \} = \{ T|_R : \sigma A_B \} = \{ T : B \} \), and \(T|_R = \text{Hom}(\sigma A_B) \).

Proof. As is well-known, \(T \) is left (resp. right) \(B \)-free. Hence, the lemma is contained in [4; Lemma 5.8].

Theorem 1. \(R \) is a Frobenius ring and \(\sigma A_B \) is a direct sum of local modules.

Proof. To be easily seen, the map \(h \) defined by \(\sum_{i=1}^\infty \sigma_i s \mapsto s_i \) is a Frobenius homomorphism of the ring extension \(R/S \), namely, \(R/S \) is a free Frobenius extension. Since \(S \) is a Frobenius ring, so is \(R \) by [1;
Satz 10]. Next, we shall prove the latter part. To our end, it is enough to show that if \(e \) is a primitive idempotent of \(R \) then \({}_nAe_n \) is local. Let \(T_1 \) and \(T_2 \) be arbitrary proper \(B \)-submodules of \(Ae \). Noting that
\[
[T_1 : R : V_1] = [T_1 : B] < [Ae : B] = [Ae : R : V] \quad \text{(Lemma 1)},
\]
the kernel of the restriction map \(h_1 : Ae \to R \to T_1 \) is non-zero. Since \(R \) is a Frobenius ring, \(\ker h_1 \cap \ker h_2 \) contains a submodule isomorphic to the unique minimal right subideal of \(eR \). Hence, the kernel of the restriction map \(Ae \to R \to T_1 + T_2 \) is non-zero, which implies \(T_1 + T_2 \neq Ae \) and that \({}_nAe_n \) is local.

Theorem 2. The following conditions are equivalent:

1. \({}_nA_B \) is completely reducible.
2. \(R \) is semisimple.
3. a) \(C_0/C \) is separable;
 b) \(\sum_{1}^{n} c_{\sigma_1} = 1 \) for some \(c \in C_0 \).

Proof. (1) \(\Rightarrow \) (2): This is evident by Lemma 1.

(2) \(\Rightarrow \) (1): It suffices to prove that if \(eR(e^2 = e) \) is a minimal right ideal then \({}_nAe_n \) is irreducible. Let \(T' \) be an arbitrary non-zero \(B \)-submodule of \(Ae \). Noting that \(Ae \to R \) is \(R \)-irreducible, we obtain
\[
[T' : B] = [T' : R : V] = [Ae : R : V] = [Ae : B], \quad \text{(Lemma 1)},
\]
namely, \(T' = Ae \).

(2) \(\Rightarrow \) (3): Evidently, the semisimplicity of \(R \) implies the semisimplicity of \(S \), equivalently, the separability of \(C_0/C \). Since \({}_nA_B \) is then completely reducible, so is \({}_nH_B \). Accordingly, \(\text{Hom}(_nH_B, {}_nH_B) = \tilde{G}C_{\sigma} \) is semisimple. Hence, \(C_0 \) is a direct summand of \(H \) as \(\tilde{G}C_{\sigma} \)-module. Now, noting that \(H \) contains an element \(a \) with \(1 = \sum_{x \in R} a \sigma = \sum_{x \in R} a \sigma_1 \), we readily obtain (iii) b).

(3) \(\Rightarrow \) (2): Let \(\sum_{1}^{n} c_{\sigma_1} = 1 \) for some \(c \in C_0 \). To be easily verified,
\[
\sum_{1}^{n} \sigma_i c_{\sigma} = 1 \quad \text{and} \quad \sum_{1}^{n} x_{\sigma} \sigma_i c_{\sigma} = \sum_{1}^{n} \sigma_i x_{\sigma} c_{\sigma} \quad \text{(in} \bigotimes_{R} R \text{)}
\]
for every \(x \in R \). This means that \(R \) is a separable extension of the semisimple ring \(S \). Then, \(R \) is semisimple by [2; Lemma 2.10 (1)].

Corollary 1. If \(C_0 \) is separable over \(C \) and \(n \) is not divisible by \(\text{char} A \), then \({}_nA_B \) is completely reducible.

Theorem 3. The following conditions are equivalent:

1. \({}_nA_B \) is local.
2. \(R \) is a local ring.
3. a) \(V = Z \) and is purely inseparable over \(C \);
b) either \(A/B \) is inner Galois or \(\bar{G} \) is a \(p \)-group and char \(A = p \).

Proof. (1) \(\Rightarrow \) (2): This is evident by Th. 1.

(2) \(\Rightarrow \) (3): Since \(R \) is local, so is the subring \(S \) which is isomorphic to \(V \otimes \sigma V \). Accordingly, \(C_0 \otimes \sigma C_0 \) is a local ring, namely, \(C_0/C \) is purely inseparable. If [\([V : C_0] = m \)] then \((C_0)_m(\cong V \otimes \sigma C_0) \) is a homomorphic image of the local ring \(S \). Hence, it follows \(V = C_0 \). Further, \(C_0/Z \) is Galois with \(C_0|\bar{G} \) as Galois group, and so if \([C_0 : Z] = t \) then \((Z) \), \(\cong (C_0|\bar{G}C_{m}) \) is homomorphic to \(R \). It follows therefore \(Z = C_0 = V \) and \(H|R \) is isomorphic to the group ring of \(\bar{G} \) over \(Z \). Hence, if \(n \geq 1 \) then \(\bar{G} \) is a \(p \)-group and \(p = \text{char} Z \) by [4; Lemma 13.4].

(3) \(\Rightarrow \) (2): Let \(\phi \) be the ring homomorphism of the local ring \(S = \mathbb{Z}_t \cdot \mathbb{Z}_r \) onto \(Z \) given by \(\sum_{i=1}^{n} z_i \cdot z_i' \mapsto \sum_{i=1}^{n} z_i z'_i \). Then, the kernel of \(\phi \) is the radical \(J \) of \(S \). Now, one will easily see that the kernel of the restriction map \(R \to H|R \) is \(\bigoplus_{i=1}^{n} \sigma_i J \) and nilpotent. Since \(H|R = \bar{G}Z \), is a local ring again by [4; Lemma 13.4], we can easily see that \(R \) is a local ring.

Acknowledgement. The author is indebted to Professor H. Tominaga for eliminating some errors and shortening the proofs.

REFERENCES

INSTITUTE FOR MATHEMATICS,
RUHR-UNIVERSITY BOCHUM

(Received October 26, 1971)