An equivalence relation in topology

Norman Levine*

*The Ohio State University
AN EQUIVALENCE RELATION IN TOPOLOGY

NORMAN LEVINE

1. Equivalent sets. Introduction

It seems reasonable to define equality or equivalence of sets in a topological space X in some way which involves the topology. After some experimenting, we came upon the following:

Definition 1.1. In a space X, A is equivalent to B (written $A \equiv B$) iff for each open set O, $A \subseteq O$ iff $B \subseteq O$.

We shall make frequent use of

Lemma 1.2. In a space X, $A \equiv B$ iff $a \in A$ implies that $c(a) \cap B \neq \emptyset$ and $b \in B$ implies that $c(b) \cap A \neq \emptyset$, c denoting the closure operator.

Proof. Let $A \equiv B$ and take $a \in A$. Then $A \subseteq c(a)$ and $c(a)$ is open, C denoting the complement operator. Thus $B \subseteq c(a)$ and hence $B \cap c(a) \neq \emptyset$.

Conversely, suppose that $A \not\equiv B$. We may assume that there exists an open set O such that $A \subseteq O$ and $B \not\subseteq O$; take $b \in B \cap C O$. Then $c(b) \subseteq C O \subseteq C A$ and hence $c(b) \cap A = \emptyset$.

Theorem 1.3. If O and U are open in X, then $O \equiv U$ iff $O = U$.

We shall often refer to

Example 1.4. Let $X = \{a, b\}$ with open sets \emptyset, $\{a\}$, X. Then $\{b\} \equiv X$ and both sets are closed, but equality fails (see Theorem 1.6). Note also that a set equivalent to an open set need not be open.

Definition 1.5. For each set $A \subseteq X$, let $A^* = \cap \{O : A \subseteq O$ and O is open\}.

Theorem 1.6. In a space X, $A \equiv B$ iff $A^* = B^*$.

Proof. Let $A \equiv B$ and take $a^* \in A^*$. If $a^* \not\in B^*$, then $a^* \not\in O$ for some open set which contains B. But then $A \subseteq O$ and hence $a^* \not\in A^*$, a contradiction.

Conversely, let $A^* = B^*$ and suppose that $A \subseteq O$, O being open. Then $B \subseteq B^* = A^* \subseteq O$ and hence $B \subseteq O$. It follows then that $A \equiv B$.

Theorem 1.7. * as defined in Definition 1.5 is a Kuratowski closure
operator.

Proof. $\emptyset^* = \emptyset$ and $A \subseteq A^*$ are clear. If $x \in (A \cup B)^*$, then $x \notin O$ for some open set such that $A \cup B \subseteq O$. Then $x \notin A^* \cup B^*$. Conversely, if $x \notin A^* \cup B^*$, then $x \notin O$ for some open set such that $A \subseteq O$ and $x \notin U$ for some open set such that $B \subseteq U$. Thus $A \cup B \subseteq O \cup U$ and $x \notin O \cup U$. Hence $x \notin (A \cup B)^*$.

It remains to show that $A^{**} \subseteq A^*$; suppose that $x \notin A^*$. Then there exists an open set O such that $x \notin O$, $A \subseteq O$. Then $x \notin O$ and $A^* \subseteq O$ and hence $x \notin A^{**}$.

Theorem 1.8. In a space X, A^* is the largest set which is equivalent to A.

Proof. Clearly, $A = A^*$. Suppose then that $B = A$. Then for each open set O such that $A \subseteq O$, then $B \subseteq O$. It follows then that $B \subseteq A^*$.

In general, there is no smallest set which is equivalent to a given set. However, we have

Theorem 1.9. In a space X, let A be closed and compact. There exists a smallest closed set B which is equivalent to A.

Proof. Let $B = \bigcap \{A': A' \text{ is closed and } A' = A\}$. It suffices to show that $B = A$. Since $B \subseteq A$, it suffices to show that $A \subseteq O$ if $B \subseteq O$ and O is open. $B \subseteq O$ implies that $\bigcap \{A_i: 1 \leq i \leq n\} \subseteq O$ and $A = A \cap \cdots \cap A_n$ (see Corollary 2.4). Thus $A \subseteq O$.

Equivalence of sets is an absolute property as shown in

Theorem 1.10. Let Y be a subspace of X and A, $B \subseteq Y$. Then $A = B$ (in Y) iff $A = B$ (in X).

Theorem 1.11. Let $f: X \to Y$ be continuous and suppose that $A = B$ in X. Then $f[A] = f[B]$ in Y.

Theorem 1.12. In a space X, all nonempty closed sets are equivalent iff $O \neq X$, O open implies that O has no nonempty closed subsets.

Proof. Suppose that $X \neq O$, O open and that $O \supseteq E \neq \emptyset$, with E closed. Then ∂O and E are nonempty closed sets which are not equivalent. Conversely, suppose that $E \notin O \neq F$, E and F being closed and non equivalent sets. We may assume that $E \subseteq O$ and $F \subseteq O$ for some open set O. Then $O \neq X$ and O has a nonempty closed subset.

Corollary 1.13. Let τ be a chain topology for X. Then $E = F$ if E and F are nonempty closed sets.
AN EQUIVALENCE RELATION IN TOPOLOGY

Proof. By Theorem 1.12, it suffices to show that O has no nonempty closed subset if O is open and $O \neq X$. If $O \supseteq E \neq \emptyset$, E closed, then O and CE are non comparable open sets and \mathcal{S} is not a chain topology, a contradiction.

The converse of Corollary 1.13 is false as shown in

Example 1.14. Let $X = \{a, b, c, d\}$ with open sets $\mathcal{S} = \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X$. Then \mathcal{S} is not a chain topology for X, but all nonempty closed sets contain d and the only open set which contains d is X. Thus all nonempty closed sets are equivalent.

2. The algebra of equivalent sets

Theorem 2.1. In a space X, let $A_\alpha \equiv B_\alpha$ for each $\alpha \in \Delta$. Then (1) $\cup \{A_\alpha: \alpha \in \Delta\} \equiv \cup \{B_\alpha: \alpha \in \Delta\}$ and (2) for each $A \subseteq X$, $A^* = \cup \{B: B \equiv A\}$.

We omit the easy proof.

If $A \equiv B$, it does not generally follow that $A \cap C \equiv B \cap C$. However, we have

Theorem 2.2. In a space X, let $A \equiv B$ and let E be a closed subset of X. Then $A \cap E \equiv B \cap E$.

Proof. Let $A \cap E \subseteq O$, O being an open set. Then $A \subseteq O \cup CE$ and hence $B \subseteq O \cup CE$. Thus $B \cap E \subseteq O$.

Theorem 2.3. In a space X, let $A \equiv E$ and $A \equiv F$, E being closed. Then $A \equiv E \cap F$.

Proof. If $A \subseteq O$, O open, then $E \subseteq O$ and hence $E \cap F \subseteq O$. Conversely, let $E \cap F \subseteq O$. Then $F \subseteq O \cup CE$ and since $F \equiv E$, we have $E \subseteq O \cup CE$. Then $E \equiv O$ implies that $A \subseteq O$.

Corollary 2.4. In a space X, let $A \equiv E_i$, $i = 1, \cdots, n$ where each E_i is closed. Then $A \equiv E_1 \cap \cdots \cap E_n$.

Theorem 2.5. Let $X = \times \{X_\alpha: \alpha \in \Delta\}$ and suppose that $A_\alpha \neq \emptyset \neq B_\alpha$ for each $\alpha \in \Delta$. Then $A_\alpha \equiv B_\alpha$ for each $\alpha \in \Delta$ iff $\times \{A_\alpha: \alpha \in \Delta\} \equiv \times \{B_\alpha: \alpha \in \Delta\}$.

Proof. If $\times \{A_\alpha: \alpha \in \Delta\} \equiv \times \{B_\alpha: \alpha \in \Delta\}$, then $A_\alpha \equiv B_\alpha$ for each $\alpha \in \Delta$ by Theorem 1.11. Conversely, let $A_\alpha \equiv B_\alpha$ for each $\alpha \in \Delta$ and suppose that $x \in \times \{A_\alpha: \alpha \in \Delta\}$. Then $x(\alpha) \in A_\alpha$ for all $\alpha \in \Delta$ and hence
c(x(\alpha)) \cap B_\alpha \neq \emptyset \text{ by Lemma 1.2. It follows that } c(x) \cap \{B_\alpha : \alpha \in \Delta\} \neq \emptyset.

3. Separation. R_0, T_0, T_1 spaces

Definition 3.1. A space X is called an R_0 space iff $x \in O$, O open implies that $c(x) \subseteq O$.

Theorem 3.2. A space X is an R_0 space iff $c(x) \subseteq \{x\}^*$ for each $x \in X$ (see Definition 1.5).

Proof. If X is an R_0 space, then $x \in O$, O open implies that $c(x) \subseteq O$ and hence $c(x) \subseteq \{O : x \in O, O \text{ open}\} = \{x\}^*$. Conversely, let $x \in O$, O open. Then $c(x) \subseteq \{x\}^* \subseteq O$ and hence X is an R_0 space.

Theorem 3.3. A space X is a T_0 space iff $x \neq y$ implies that $\{x\}^* \neq \{y\}^*$.

Proof. Let X be a T_0 space and suppose that $x \neq y$. We may assume that $x \in O$, O open and $y \in O$. Then $y \notin \{x\}^*$ and hence $\{y\}^* \neq \{x\}^*$. Conversely, suppose that $x \neq y$ implies that $\{x\}^* \neq \{y\}^*$. Let $x \neq y$ and assume that $\{x\}^* \subseteq \{y\}^*$; take $z \in \{x\}^*$ and $z \notin \{y\}^*$. There exists then an open set O containing y such that $z \notin O$. Then $x \notin O$ and X is a T_0 space.

Theorem 3.4. X is a T_1 space iff equivalence and equality coincide.

Proof. Let X be a T_1 space and suppose that $A = B$, but $A \not\subseteq B$. Let $a \in A$, $a \notin B$; then $B \subseteq C \{a\}$, $\{a\} \subseteq$ is an open set, but $A \not\subseteq C \{a\}$, a contradiction.

Conversely, suppose that equality and equivalence coincide, but that $\{x\} \neq c(x)$ for some $x \in X$. Then $c(x) - \{x\} \neq c(x)$ and hence $c(x) - \{x\} \neq c(x)$. There exists then an open set O such that $c(x) - \{x\} \subseteq O$, but $c(x) \not\subseteq O$ and hence $x \in CO$. It follows then that $c(x) \subseteq CO$, a contradiction.

4. Compactness

Theorem 4.1. In a space X, let $A = B$ and suppose that A is compact (Lindelöf, countably compact). Then B is compact (Lindelöf, countably compact).

Theorem 4.2. In a space X, let $A = B$ and suppose that A is
sequentially compact. Then B is sequentially compact.

Proof. Let $\{b_i\}$ be a sequence in B. By Lemma 1.2, $c(b_i) \cap A \neq \emptyset$ for each i; take $a_i \in c(b_i) \cap A$ for each i. Then there exists an $a \in A$ and a subsequence $\{a_{n_i}\}$ which converges to a. Let $b \in c(a) \cap B$. Then lim $b_{n_i} = b$. If $b \in O$, O open, then $a \in O$ and hence $a_{n_i} \in O$ for all $i \geq N$. Then $b_{n_i} \in O$ for all $i \geq N$.

Theorem 4.3. In a space X, let A be locally compact and CA compact. If $A \equiv B$ and B is closed, then B is locally compact (see Theorem 10.3).

Proof. Let $b \in B$. By Lemma 1.2, $c(b) \cap A \neq \emptyset$; take $a \in c(b) \cap A$. Then $a \in O \cap A \subseteq M \subseteq A$ for some open set O and some compact set M. Then $b \in O \cap B \subseteq B \cap (M \cup CA)$ and $B \cap (M \cup CA)$ is a compact subset of B.

5. Uniform spaces

Theorem 5.1. Let (X, \mathcal{U}) be a uniform space and $A \equiv B$ in X. If A is complete, then B is complete.

Proof. Let $S : D \to B$ be a Cauchy net. Then by Lemma 1.2, $c(S(d)) \cap A \neq \emptyset$ for each $d \in D$; let $a_d \in c(S(d)) \cap A$ for each $d \in D$ and let $T : D \to A$ via $T(d) = a_d$. Then $T : D \to A$ is a Cauchy net. To see this, let $U \in \mathcal{U}$, U closed. Then $(S(d'), S(d'')) \subseteq U$ for all d', $d'' \geq d^*$ and hence $(a_{d'}, a_{d''}) \in c(S(d'))$, $S(d'') \subseteq U$ for all d', $d'' \geq d^*$. Since A is complete, there exists an $a \in A$ such that lim $T = a$. Let $b \in c(a) \cap B$. Then lim $S = b$; for if $b \in O$, O open, then $a \in O$ and hence $T(d) \in O$ for all $d \geq M$. It follows that $S(d) \in O$ for all $d \geq M$.

Theorem 5.2. Let (X, \mathcal{U}) be a uniform space and $A \equiv B$ in X. If A is totally bounded, so is B.

Proof. Let $U \in \mathcal{U}$, U open. Then there exist $a_i \in A$ such that $A \subseteq U[a_1] \cup \cdots \cup U[a_n]$. By Lemma 1.2, $c(a_i) \cap B \neq \emptyset$; take $b_i \in c(a_i) \cap B$. Then $B \subseteq U[a_1] \cup \cdots \cup U[a_n]$ since $U[a_i]$ is open. $U[a_i] \subseteq U[b_i]$ implies that $B \subseteq U[b_1] \cup \cdots \cup U[b_n]$.

6. R_e-spaces. Introduction

Theorem 6.1. Let X be an R_e-space (see Example 3.1). If $A \equiv B$
and A and B are closed, then $A=B$ (see Example 1.4).

Proof. Let $a \in A$ and suppose that $a \notin B$. Then $a \in CB$ and hence $c(a) \subseteq CB$. Thus $c(a) \cap B = \emptyset$, contrary to Lemma 1.2.

Theorem 6.2. Let X be an R_e-space and $A=B$ in X. If A is dense, then B is dense.

Proof. Let O be a nonempty open set. Then $A \cap O \neq \emptyset$. Take $a \in A \cap O$. Then $c(a) \cap B \neq \emptyset$ by Lemma 1.2 and $c(a) \subseteq O$. Thus $O \cap B \subseteq c(a) \cap B \neq \emptyset$.

In Example 1.4, $\{b\} = X$, but $\{b\}$ is not dense.

Theorem 6.3. Let X be an R_e-space and $A=B$ in X. If O is an open set, then $A \cap O \equiv B \cap O$ (see Theorem 2.2).

Proof. Let $a \in A \cap O$. Then $c(a) \cap B \neq \emptyset$ by Lemma 1.2. But $c(a) \cap B \cap O = c(a) \cap B \cap O$. Using Lemma 1.2 again, $A \cap O \equiv B \cap O$.

In Example 1.4, let $O = \{a\}$. Then $\{b\} = X$, but $\{b\} \cap O \not\subseteq X \cap O$ and O is open.

Theorem 6.4. Let X be an R_e-space and $A=B$ in X. If each closed set in A is a G_δ in A, then each closed set in B is a G_δ in B.

Proof. Consider $B \cap E$ where E is closed in X. Then $A \cap E$ is closed in A and hence $A \cap E = \cap \{A \cap O_i : i \geq 1\}$ where each O_i is open in X. It suffices to show that $B \cap E = \cap \{B \cap O_i : i \geq 1\}$. By Theorem 2.2, $B \cap E = A \cap E$ and since $A \cap E \subseteq O_i$ for each i, it follows that $B \cap E \subseteq O_i$ for each i and thus $B \cap E \subseteq \cap \{B \cap O_i : i \geq 1\}$. Conversely, let $b \in B \cap O_i$, for each i; it suffices to show that $b \in E$. By Lemma 1.2, $c(b) \cap A \neq \emptyset$; take $a \in c(b) \cap A$. Then $a \in c(b) \subseteq O_i$, and hence $a \in A \cap E$. But $b \in c(a) \subseteq E$ and hence $b \in E$ (in an R_e-space, $a \in c(b)$ implies that $b \in c(a)$).

In Example 1.4, $\{b\} = X$ and $\{b\}$ has the property that each closed set in $\{b\}$ is a G_δ in $\{b\}$. In X, $\{b\}$ is a closed set which is not a G_δ.

Theorem 6.5. Let X be an R_e-space and $A \subseteq X$. Then $\cap \{c(a) : a \in A\}$ is the largest set which is equivalent to A (see Theorem 1.8).

Proof. By Theorem 1.8, it suffices to show that $\cup \{c(a) : a \in A\} = A^*$ (see Definition 1.5). Now $a \in A$ implies $c(a) \subseteq O$ when $A \subseteq O$ and O is open. Thus $\cup \{c(a) : a \in A\} \subseteq \cap \{O : A \subseteq O, O$ open$\} = A^*$. Suppose next that $x \not\in \cup \{c(a) : a \in A\}$. Then $x \in Oc(a)$ for each $a \in A$ and hence $c(x) \subseteq Oc(a)$ since $Oc(a)$ is an open set. It follows then that $c(x) \cap A = \emptyset$.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol15/iss2/3
and $A \subseteq Cc(x)$ and $Cc(x)$ is an open set such that $x \not\in Cc(x)$. Thus $x \not\in A^*$.

In Example 1.4, $\{b\} \equiv X$, and $\bigcup \{ c(b) : b \in B \} = B$; but B is not the largest set equivalent to B.

7. R_e-spaces. Connectedness

Theorem 7.1. Let X be an R_e-space and let $A \equiv B$. If A is connected, then B is connected.

Proof. Suppose B is disconnected. Then there exist open sets O_1 and O_2 such that $B = (O_1 \cap B) \cup (O_2 \cap B)$, $B \cap O_1 \cap O_2 = \emptyset$ and $B \cap O_1 \neq \emptyset \neq B \cap O_2$. Since $B \subseteq O_1 \cup O_2$, it follows that $A \subseteq O_1 \cup O_2$ and hence $A = (A \cap O_1) \cup (A \cap O_2)$. If $A \cap O_1 = \emptyset$, then $A \subseteq O_2$ which implies that $B \subseteq O_2$. Then $\emptyset \neq B \cap O_1 = B \cap O_1 \cap O_1$ and $B \cap O_1 \cap O_2 \neq \emptyset$, a contradiction. Thus $A \cap O_1 \neq \emptyset \neq A \cap O_2$. Since A is connected, it follows that $A \cap O_1 \cap O_2 = \emptyset$; let $a \in A \cap O_1 \cap O_2$. Since X is an R_e-space, $c(a) \cap B \subseteq O_1 \cap O_2 \cap B = \emptyset$ and thus $c(a) \cap B = \emptyset$. Thus $A \not\equiv B$ by Lemma 1.2, a contradiction.

Example 7.2. Let $X = \{ a, b, c \}$ with open sets \emptyset, $\{ a \}$, $\{ a, b \}$, $\{ a, c \}$, X. Then $\{ b, c \} \equiv X$, X is connected and $\{ b, c \}$ is disconnected. Thus the R_e condition cannot be removed from Theorem 7.1.

Theorem 7.3. Let X be a space (R_e not assumed here) and $A \equiv B$ with $A \subseteq B$. If A is connected, so is B.

Proof. Suppose that $B = (B \cap O_1) \cup (B \cap O_2)$ where O_1 is open and $B \cap O_1 \neq \emptyset \neq B \cap O_2$ and $B \cap O_1 \cap O_2 = \emptyset$. Now $A \subseteq B \subseteq O_1 \cup O_2$ and hence $A = (A \cap O_1) \cup (A \cap O_2)$. If $A \cap O_1 = \emptyset$, then $A \subseteq O_2$ and hence $B \subseteq O_2$; thus $B \cap O_1 \cap O_2 = B \cap O_1 \neq \emptyset \neq B \cap O_1 \cap O_2$, a contradiction. Thus $A \cap O_1 \neq \emptyset \neq A \cap O_2$. But $A \cap O_1 \cap O_2 \subseteq A \cap O_2 = \emptyset$ and hence A is disconnected, a contradiction.

Note that in Theorem 7.3, if we assume that B is connected, we cannot deduce that A is connected (see Example 7.2). Note also in Example 7.2 that X is path connected while $\{ b, c \}$ is not.

Lemma 7.4. Let X be an R_e-space and suppose that $f : [0, 1] \rightarrow X$ is continuous. Then $g : [0, 1] \rightarrow X$ is continuous if $g(t) \in c(f(t))$ for all $t \in [0, 1]$.

Proof. Let $E \subseteq X$, E closed. It suffices to show that $g^{-1}[E] = f^{-1}[E]$. Now $t \in g^{-1}[E]$ if $g(t) \in E$ iff $c(g(t)) \subseteq E$ iff $c(f(t)) \subseteq E$ iff $f(t) \in E$.

Produced by The Berkeley Electronic Press, 1971
iff \(t \in f^{-1}[E] \). Note that in an \(R_\varepsilon \)-space \(X \), \(x \in c(y) \) implies that \(y \in c(x) \).

Theorem 7.5. Let \(X \) be an \(R_\varepsilon \)-space and let \(A \equiv B \). If \(A \) is path connected, then \(B \) is path connected.

Proof. Let \(b_1, b_2 \in B \). Take \(a_1 \in c(b_1) \cap A \) and \(a_2 \in c(b_2) \cap A \). There exists a continuous map \(f : [0, 1] \to A \) such that \(f(0) = a_1 \) and \(f(1) = a_2 \). Let \(g : [0, 1] \to B \) as follows: \(g(0) = b_1 \) and \(g(1) = b_2 \). \(g(t) \in c(f(t)) \cap B \) for \(0 < t < 1 \). By Lemma 7.4, \(g \) is continuous on \(B \).

Theorem 7.6. In an \(R_\varepsilon \)-space \(X \), let \(A \equiv B \). If \(A \) is locally connected, then \(B \) is locally connected.

Proof. Let \(b \in O \cap B \), \(O \) being open in \(X \). By Lemma 1.2, \(c(b) \cap A \neq \emptyset \); let \(a \in c(b) \cap A \). Then \(a \in c(b) \cap A \subseteq O \cap A \). Hence there exists a set \(O^* \) open in \(X \) such that \(a \in O^* \cap A \subseteq O \cap A \) and \(O^* \cap A \) is connected. Now \(b \in O^* \cap B \) and \(O^* \cap A \equiv O^* \cap B \) by Theorem 6.3 and hence \(O^* \cap B \) is connected by Theorem 7.1. It suffices then to show that \(O^* \cap B \subseteq O \cap B \). Let \(x \in O^* \cap B \); then \(c(x) \subseteq O^* \) and \(c(x) \cap A \neq \emptyset \). Let \(y \in c(x) \cap A \). Then \(y \in O^* \cap A \subseteq O \cap A \) and hence \(x \in c(y) \subseteq O \). Thus \(x \in O \cap B \).

Example 7.7. Let \((X, \mathcal{T}) \) be the rationals with the usual topology and \(y \notin X \); let \(Y = X \cup \{ y \} \). Let \(\mathcal{U} = \mathcal{T} \cup \{ Y \} \). Then \(\{ y \} \equiv Y, \{ y \} \) is locally connected, but \(Y \) is not. Note that \(Y \) is not an \(R_\varepsilon \)-space.

8. \(R_\varepsilon \) separation

Theorem 8.1. Let \(X \) be an \(R_\varepsilon \)-space and suppose that \(A \equiv B \). If \(A \) is regular, then \(B \) is regular.

Proof. Let \(b \in O \cap B \), \(O \) being open in \(X \). Then \(c(b) \cap A \neq \emptyset \) by Lemma 1.2; take \(a \in c(b) \cap A \). Then \(a \in O \cap A \) and hence there exists an open set \(O^* \) and a closed set \(E \) such that \(a \in O^* \cap A \subseteq E \cap A \subseteq O \cap A \). It is easy to show that \(b \in O^* \cap B \subseteq E \cap B \subseteq O \cap B \).

Lemma 8.2. Let \(X \) and \(Y \) be spaces, \(X \) being an \(R_\varepsilon \)-space. Suppose that \(A \equiv B \) in \(X \) and that \(f : A \to Y \) is continuous. Let \(g : B \to Y \) be defined as follows: for \(b \in B \), let \(g(b) \in f[c(b) \cap A] \). Then \(g : B \to Y \) is continuous.

Proof. Let \(E \subseteq Y \), \(E \) closed. Then \(f^{-1}[E] = A \cap F \) for some closed set \(F \). It suffices to show that \(g^{-1}[E] = B \cap F \) or that \(g^{-1}[E] \subseteq F \). Let \(b \in g^{-1}[E] \). Then \(g(b) \in E \) and \(g(b) \in f[c(b) \cap A] \) or \(g(b) = f(a) \) where \(a \in c(b) \cap A \). Then \(f(a) \in E \) and hence \(a \in f^{-1}[E] \subseteq F \). \(b \in c(a) \subseteq F \).
Theorem 8.3. Let \(A \equiv B \) in an \(R_0 \)-space \(X \). If \(A \) is completely regular, then \(B \) is completely regular.

Proof. Let \(b \in O \cap B \), \(O \) being open in \(X \). By Lemma 1.2, \(c(b) \cap A \neq \emptyset \); take \(a \in c(b) \cap A \). It follows that \(a \in O \cap A \). Since \(A \) is completely regular, there exists a continuous map \(f : A \to [0, 1] \) such that \(f(a) = 0 \) and \(f(a^*) = 1 \) for all \(a^* \in A - O \). Let \(g : B \to [0, 1] \) be as in Lemma 8.2, \(g(b) \) being taken as \(f(a) \). Then \(g(b) = f(a) = 0 \). Now let \(b^* \in B - O \). Then \(c(b^*) \subseteq O \) and \(a^* \in c(b^*) \cap A \) which implies that \(a^* \in A - O \) and thus \(g(b^*) = f(a^*) = 1 \). \(g : B \to [0, 1] \) is continuous by Lemma 8.2.

In Example 1.4, \(\{ b \} \equiv X \), \(\{ b \} \) is completely regular, but \(X \) is not completely regular.

Theorem 8.4. Let \(A \equiv B \) in an \(R_0 \)-space \(X \). If \(A \) is normal, then \(B \) is normal.

Proof. Let \(B \cap F \cap E = \emptyset \), \(E \) and \(F \) being closed in \(X \). Then \(B \subseteq C(E \cap F) \), an open set, and hence \(A \subseteq C(E \cap F) \) and \(A \cap E \cap F = \emptyset \).

Since \(A \) is normal, there exist open sets \(O_i \) and \(O_2 \) in \(X \) such that \(A \cap E \subseteq A \cap O_1 \) and \(A \cap E \cap A \cap O_2 \) and \(A \cap O_1 \cap O_2 = \emptyset \). Applying Theorem 2.2, it follows that \(B \cap E \subseteq B \cap O_1 \) and \(B \cap F \subseteq B \cap O_2 \). It remains to show that \(B \cap O_1 \cap O_2 = \emptyset \). Suppose \(b \in B \cap O_1 \cap O_2 \), then \(a \in c(b) \cap A \); \(a \in O_i \cap O_2 \cap A \), a contradiction.

In Example 7.2, \(\{ b, c \} \equiv X \), \(\{ b, c \} \) is normal, but \(X \) is not.

Theorem 8.5. Let \(A \) be a completely normal subspace of an \(R_0 \)-space \(X \). Then \(\cup \{ c(a) : a \in A \} \) is completely normal.

Proof. Let \(B \subseteq \cup \{ c(a) : a \in A \} \). We must show that \(B \) is normal. Let \(A^k = \{ a : c(a) \cap B = \emptyset , \ a \in A \} \). It suffices to show that \(\cup \{ c(b) : b \in B \} = \cup \{ c(a) : a \in A^k \} \) since \(A^k \) is normal and is equivalent to \(\cup \{ c(a) : a \in A^k \} \) and \(B \) is equivalent to \(\cup \{ c(b) : b \in B \} \) (see Theorem 8.4). Let \(x \in c(b) \) for some \(b \in B \). Then \(b \in c(a) \) for some \(a \in A \). Then \(x \in c(b) \subseteq c(a) \) and hence \(a \in A^k \). Thus \(x \in \cup \{ c(a) : a \in A^k \} \). Conversely, let \(y \in c(a) \) for some \(a \in A^k \). Then \(c(a) \cap B = \emptyset \); let \(b \in c(a) \cap B \). They \(y \in c(a) \subseteq c(b) \).

Corollary 8.6. In an \(R_0 \)-space \(X \), let \(A \equiv B \), \(A \) being completely normal. Then \(B \) is completely normal.

Proof. By Theorem 8.5, \(\cup \{ c(a) : a \in A \} \) is completely normal and by Theorem 6.5, \(B \subseteq \cup \{ c(a) : a \in A \} \). Hence \(B \) is completely normal.
9. R_0 and conutability

Theorem 9.1. Let $A \equiv B$ in an R_0-space X. If A is separable, then B is separable.

Proof. Let $\{a_n : n \geq 1\}$ be dense in A. Take $b_n \in c(a_n) \cap B$ for each $n \geq 1$. Then $\{b_n : n \geq 1\}$ is dense in B; let $\emptyset \neq O \cap B$ were O is open in X. Choose $b \in O \cap B$ and let $a \in c(b) \cap A$. Then $a \in O \cap A$. Since $O \cap A \neq \emptyset$, $a_n \in O \cap A$ for some n. It follows then that $b_n \in O \cap B$.

Example 9.2. Let (X, \mathcal{S}) be an uncountable discrete space and $y \notin X$; let $Y = X \cup \{y\}$ and $U = \mathcal{S} \cup \{Y\}$. Then $\{y\} \equiv Y$, $\{y\}$ is separable, but Y is not separable.

Theorem 9.3. In an R_0-space X, let $A \equiv B$ and let A be a second axiom space. Then B is second axiom.

Proof. If $\{A \cap O_i : i \geq 1, O_i \text{open in } X\}$ is a base for $A \cap \mathcal{S}$, then $\{B \cap O_i : i \geq 1\}$ is a base for $B \cap \mathcal{S}$.

In Example 9.2, $\{y\}$ is second axiom, but Y is not.

10. R_0 and local compactness, paracompactness

Lemma 10.1. In an R_0-space X, let A be locally compact. Then $\bigcup \{c(a) : a \in A\}$ is locally compact.

Proof. Let $x \in \bigcup \{c(a) : a \in A\}$. Then $x \in c(a^*)$ for some $a^* \in A$ and hence there exists an open set O and a compact set M such that $a^* \in O \cap A \subseteq M \subseteq A$. Then $x \in O \cup \{c(a) : a \in A\} \subseteq \bigcup \{c(m) : m \in M\} \subseteq \bigcup \{c(a) : a \in A\}$. Now $M = \bigcup \{c(m) : m \in M\}$ and since M is compact, so is $\bigcup \{c(m) : m \in M\}$ (see Theorems 6.5 and 4.1).

Lemma 10.2. In an R_0-space X, A is locally compact if $\bigcup \{c(a) : a \in A\}$ is locally compact.

Proof. Let $a^* \in A$; there exists an open set O and a compact set M such that $a^* \in O \cup \{c(a) : a \in A\} \subseteq M \subseteq \bigcup \{c(a) : a \in A\}$. Then $a^* \in O \cap A \subseteq A \cup \{c(m) : m \in M\} \subseteq A$. We need only show that $A \cap \bigcup \{c(m) : m \in M\}$ is compact. By Theorem 4.1 and Theorem 6.5, it suffices to show that $\bigcup \{c(a') : a' \in A \cap \bigcup \{c(m) : m \in M\}\}$ is compact. The reader can easily verify that this set is merely $\bigcup \{c(m) : m \in M\}$ which is compact.

Theorem 10.3. In an R_0-space, let $A \equiv B$. If A is locally compact, then B is locally compact (see Theorem 4.3).
Theorem 10.4. In an R-space X, let $A \equiv B$ and suppose that A is paracompact. Then B is paracompact.

Proof. Suppose that $B = B \cap \bigcup \{O_\alpha : \alpha \in \Delta\}$ where each O_α is open in X. Then $B \subseteq \bigcup \{O_\alpha : \alpha \in \Delta\}$ and hence $A \subseteq \bigcup \{O_\alpha : \alpha \in \Delta\}$. There exists then a family of open sets $\{O_\gamma : \gamma \in \Gamma\}$ such that $A = \bigcup \{A \cap O_\gamma : \gamma \in \Gamma\}$, $\{A \cap O_\gamma : \gamma \in \Gamma\}$ is locally finite in A and $\{A \cap O_\gamma : \gamma \in \Gamma\}$ refines $\{A \cap O_\alpha : \alpha \in \Delta\}$. Thus $B = \bigcup \{B \cap O_\gamma : \gamma \in \Gamma\}$, $\{B \cap O_\gamma : \gamma \in \Gamma\}$ is locally finite in B and $\{B \cap O_\gamma : \gamma \in \Gamma\}$ refines $\{B \cap O_\alpha : \alpha \in \Delta\}$. The details are left to the reader.

REFERENCES