Note on results of K. Motose

Yasushi Ninomiya*
NOTE ON RESULTS OF K. MOTOSE

YASUSHI NINOMIYA

Throughout the present note, R will represent a ring with 1, and \overline{R} the residue class ring of R modulo its (Jacobson) radical $J(R)$. Further, G will represent a group, and RG the group ring of G over R. Occasionally, we consider the following ring epimorphisms:

$$
\phi_\sigma : RG \rightarrow R \left(\sum_{\sigma \in G} r_\sigma \sigma \rightarrow \sum_{\sigma \in G} r_\sigma \right),
$$

$$
\psi_\sigma : RG \rightarrow \overline{R} \left(\sum_{\sigma \in G} r_\sigma \sigma \rightarrow \sum_{\sigma \in G} \overline{r_\sigma} \sigma \right).
$$

More generally, if H is a normal subgroup and $G^* = G/H$ then we can consider the following ring epimorphisms:

$$
\phi^*_\sigma : RG \rightarrow RG^* \left(\sum_{\sigma \in G} r_\sigma \sigma \rightarrow \sum_{\sigma \in G} r_\sigma \sigma^* \right),
$$

$$
\psi^*_\sigma : RG \rightarrow \overline{RG}^* \left(\sum_{\sigma \in G} r_\sigma \sigma \rightarrow \sum_{\sigma \in G} \overline{r_\sigma} \sigma^* \right),
$$

where σ^* is the residue class of σ modulo H.

In what follows, we shall show that all the results in [3] are still valid without assuming that R is semi-primary. As to notations and terminologies used here without mention, we follow [3].

First, we shall prove a slight modification of [2; Lemma 2].

Lemma 1. Let G be a finite p-group $|G|=p^n$. If $J(R)=0$ and $pR=0$ then $J(RG)=\text{Ker} \phi_\sigma$ and $(J(RG))^{p^n}=0$.

Proof. Evidently, $\text{Ker} \phi_\sigma \supseteq J(RG)$. It remains therefore to prove $(\text{Ker} \phi_\sigma)^{p^n}=0$. We shall prove this by making use of the induction with respect to n. In case $n=1$, it is easy to see that $(\text{Ker} \phi_\sigma)^p=(\sum_{\sigma \in G} R(1-\sigma))^p=0$. Next, suppose $n>1$ and that our assertion is true for $n-1$. Choose a normal subgroup H of G such that $(G:H)=p$, and set $G^*=G/H$. Then, by the case $n=1$, we have $\phi^{p^n}_H(\text{Ker} \phi_\sigma)^p=(\text{Ker} \phi_\sigma)^{p^n}=0$, whence it follows $(\text{Ker} \phi_\sigma)^{p^n}=\text{Ker} \phi^{p^n}_H$. Accordingly, by the induction hypothesis, $(\text{Ker} \phi_H)^{p^n}=(\text{Ker} \phi_H)^{p^n-1}=\overline{(\text{Ker} \phi_H)^{p^n-1} G}=0$.

Now, by the light of Lemma 1, we can prove [3; Th. 2] without assuming that R is semi-primary.

Theorem 1. Let G be a locally finite p-group. If $p\overline{R}=0$ then $J(RG)=\text{Ker} \phi_H$.
Proof. It is enough to prove that \(\text{Ker } \psi_C \subseteq J(\mathcal{R}G) \). Let \(x = \sum r_i \sigma_i \) be an arbitrary element of \(\text{Ker } \psi_C \), where \(r_i \in \mathcal{R} \) and \(\sigma_i \in G \). We set \(K = \langle \sigma_1, \ldots, \sigma_n \rangle \). Then, \(K \) is a finite \(p \)-group and \(x \) is in \(\text{Ker } \psi_K \). By Lemma 1, we have \(\psi_K(\text{Ker } \psi_K) \subseteq J(\mathcal{R}K) \). Hence, \((\text{Ker } \psi_K)^{\mathcal{R}1} \subseteq \text{Ker } \psi_K = J(\mathcal{R}K) \subseteq J(\mathcal{R}K) \), whence it follows that \(x \) is quasi-regular.

Finally, we shall present the following which contains [3; Ths. 1 and 3] and [2; Th. 2].

Theorem 2. Let \(pR = 0 \). If \(H \) is a normal subgroup of \(G \) such that \(G/H \) is a locally finite \(p' \)-group then \(J(\mathcal{R}G) = J(\mathcal{R}H) G \).

Proof. As \(J(\mathcal{R}H) G \subseteq J(\mathcal{R}G) \) by [3; Lemma 1], it remains only to prove the converse inclusion. Let \(x = \sum a_i \sigma_i \) be an arbitrary element of \(J(\mathcal{R}G) \), where \(a_i \in RH \) and \(\sigma_i \in G \). Let \(K = \langle H, \sigma_1, \ldots, \sigma_n \rangle \). Then, it is evident that \(K/H \) is a finite \(p' \)-group. Now, patternning after the proof of [4; Prop. 1.5], one will easily see that \(J(\mathcal{R}K) = J(\mathcal{R}H) K \). Combining this with [1; Prop. 9], we obtain

\[x \in J(\mathcal{R}G) \cap \mathcal{R}K \subseteq J(\mathcal{R}K) = J(\mathcal{R}H) K \subseteq J(\mathcal{R}H) G, \]

completing the proof.

References

Department of Mathematics,
Hokkaido University

(Received April 15, 1972)