On an AACDMZ Question

Ryuki Matsuda* Akira Okabe†

*Ibaraki University
†Oyama National College
ON AN AACDMZ QUESTION

RYUKI MATSUDA and AKIRA OKABE

Let D be a (commutative) integral domain with quotient field K. Let $F(D)$ denote the set of nonzero fractional ideals of D and let $f(D)$ be the subset of finitely generated members of $F(D)$. For each $A \in F(D)$, we set $D_i A = A^{-1}$ and $(A^{-1})^{-1} = A_v$. The function on $F(D)$ defined by $A \mapsto A_v$ is called the v-operation on D. If for each $A \in f(D)$, there exists a $B \in F(D)$ with $(AB)_v = D$, then D is called a v-domain. If there is a set of prime ideals $\{P_i | i \in I\}$ of D such that $D = \bigcap_{i \in I} D_{P_i}$ and each D_{P_i} is a valuation domain, then D is called an essential domain. [1] investigated characterizations of v-domains and related properties. Among other Theorems it proved the following,

Theorem 1 ([1, Theorem 7]).
(1) If D is an essential domain, then

$$(A_1 \cap \cdots \cap A_n)_v = (A_1)_v \cap \cdots \cap (A_n)_v$$

for all $A_1, \ldots, A_n \in f(D)$.

(2) If D is integrally closed and

$$(A_1 \cap \cdots \cap A_n)_v = (A_1)_v \cap \cdots \cap (A_n)_v$$

for all $A_1, \ldots, A_n \in f(D)$, then D is a v-domain.

Relating with Theorem 1 it posed the following,

Question ([1, p.7]). Does any v-domain D satisfy

$$(A_1 \cap \cdots \cap A_n)_v = (A_1)_v \cap \cdots \cap (A_n)_v$$

for all $A_i \in f(D)$?

The aim of this paper is to give an affirmative answer to the question. We will prove the following,

Theorem 2. Let D be a v-domain. Then we have

$$(A_1 \cap \cdots \cap A_n)_v = (A_1)_v \cap \cdots \cap (A_n)_v$$
for all $A_i \in f(D)$.

First we recall the definition and some properties of the Kronecker function ring of D with respect to the v-operation. Let $D[X]$ be the polynomial ring of an indeterminate X over D. For each $f \in K[X]$, we denote the fractional ideal of D generated by the coefficients of f by $c(f)$.

Lemma 3 (cf. [2,(32.7)]). Let D be a v-domain. Set

$$D^v = \{0\} \cup \{f/g \mid f, g \in D[X] - \{0\}\} \quad \text{and} \quad c(f)_v \subseteq c(g)_v.$$

Then,

1. D^v is a domain with quotient field $K(X)$.
2. If A is a nonzero finitely generated ideal of D, then $AD^v \cap K = A_v$.

D^v is called the Kronecker function ring of D with respect to the v-operation.

Lemma 4. Let D be a v-domain. Let $a \in K - \{0\}$ and $C \in F(D)$. If $aA_v \subseteq B_v$ and $BA^{-1} \subseteq C$ are satisfied for some $A \in f(D)$ and some $B \in F(D)$, then $a \in C_v$.

Proof. We note that $(AA^{-1})_v = D$, since D is a v-domain. Then we have

$$a \in a(AA^{-1})_v = (aA_v A^{-1})_v \subseteq (B_v A^{-1})_v = (BA^{-1})_v \subseteq C_v.$$

Proof of Theorem 2. Let D be a v-domain with quotient field K. Let D^v be the Kronecker function ring of D with respect to the v-operation. Let $A_1, \ldots, A_n \in f(D)$. Choose elements $a_{i1}, \ldots, a_{ik(i)}$ of $K - \{0\}$ such that $A_i = (a_{i1}, \ldots, a_{ik(i)})D$ for $1 \leq i \leq n$. We set

$$f_i = a_{i1}X + a_{i2}X^2 + \cdots + a_{ik(i)}X^{k(i)}$$

for $1 \leq i \leq n$. Since, for each j, $a_{ij}/f_i \in D^v$, we have $A_i D^v = f_i D^v$ for $1 \leq i \leq n$. Set $h_i = f_1 \cdots f_{i-1}f_{i+1} \cdots f_n$, and let $d(i)$ denote the degree of h_i for $1 \leq i \leq n$. We set

$$h_1 + h_2 X^{d(1)} + h_3 X^{d(1)+d(2)} + \cdots + h_n X^{d(1)+\cdots+d(n-1)} = g.$$

Since, for each $j, h_j/g \in D^v$, it immediately follows that $(h_1, \ldots, h_n)D^v = gD^v$, and so

$$(1/f_1, \ldots, 1/f_n)D^v = (g/(f_1 \cdots f_n))D^v.$$
ON AN AACDMZ QUESTION

By taking the inverses, we see that

\[f_1 D^u \cap \cdots \cap f_n D^u = ((f_1 \cdots f_n)/g)D^u. \]

Now let \(0 \neq a \in (A_1)_v \cap \cdots \cap (A_n)_v \). Then we have

\[a \in f_1 D^u \cap \cdots \cap f_n D^u = ((f_1 \cdots f_n)/g)D^u. \]

It follows \(ag/(f_1 \cdots f_n) \in D^u \). Hence we have \(ac(g)_v \subset c(f_1 \cdots f_n)_v \). On the other hand, we have

\[c(f_1, \cdots, f_n) c(g)^{-1} \subset A_1 \cap \cdots \cap A_n, \]

since for each \(i \),

\[
\begin{align*}
 c(f_1, \cdots, f_n) c(g)^{-1} &= c(f_i h_i)(c(h_1) + \cdots + c(h_n))^{-1} \\
 &\subset c(f_i h_i) c(h_i)^{-1} \subset c(f_i) \\
 &= A_i.
\end{align*}
\]

Then Lemma 4 can be applied to obtain \(a \in (A_1 \cap \cdots \cap A_n)_v \). Thus

\[(A_1)_v \cap \cdots \cap (A_n)_v \subset (A_1 \cap \cdots \cap A_n)_v. \]

Since the reverse containment is obvious, the proof is now complete.

REFERENCES

RYUKI MATSUDA
DEPARTMENT OF MATHEMATICS
IBARAKI UNIVERSITY
MITO, IBARAKI 310, JAPAN
AKIRA OKABE
OYAMA NATIONAL COLLEGE OF TECHNOLOGY

(Received August 17, 1992)