On a result of Ribenboim

Hisao Tominaga*

*Okayama University

ON A RESULT OF RIBENBOIM

HISAO TOMINAGA

Throughout the present note, A will represent a ring with 1, B a
subring of A with the same 1, σ a B-ring automorphism of A, and T
the subset $\{y \in A; y \sigma \neq y\}$. If $\sigma \neq 1$ then it is easy to see that $A = T \cup
\{T \sigma - T\} = B[T]$. The extension A/B is called left locally finite if $B[F]$ is
left finite over B (finitely generated as a left B-module) for every finite
subset F of A. In below, we shall give a generalization of the result

Proposition. Let B be left Noetherian, and A/B a left locally finite
extension that is not left finite. If $\sigma \neq 1$ then there exists a subset Q of
A such that $Q \cap Q \sigma = \emptyset$ (empty set) and $B[Q, Q \sigma]$ is not left finite over
B.

Proof. Let Q' be an arbitrary finite subset of T with $Q' \cap Q' \sigma = \emptyset$,
and set $B' = B[Q', Q' \sigma^{-1}]$, $B^* = B[Q', Q' \sigma, Q' \sigma^{-1}]$, $T' = T \setminus B'$ (complement
of B' in T) and $T^* = T \setminus B^*$. Since $A = B[T] = B'[T']$, we readily see
that $B[T']$ is not left finite. Accordingly, $B^*[T^*] = B^*[T'] \supseteq B[T']$
implies that $B[T^*] / B$ is not left finite. In particular T^* contains an
element x. Since $x \notin B^*$, $B^* \sigma^{-1} \subseteq B^*$ implies $x \sigma \notin B'$, and then we can
easily see that $(x) \cup Q' \cap (x) \cup Q' \sigma = \emptyset$. Repeating the above argument,
we obtain an infinite ascending chain $Q_1 \subseteq Q_2 \subseteq \ldots$ of finite subsets Q_n of
T such that $Q_n \cap Q_n \sigma = \emptyset$ and $B \subseteq B[Q_n, Q_n \sigma] \subseteq B(Q_n, Q_n \sigma) \subseteq \ldots$. If we set
$Q = \bigcup_{n=1}^{\infty} Q_n$ then $Q \cap Q \sigma = \emptyset$ and $B[Q, Q \sigma] = \bigcup_{n=1}^{\infty} B[Q_n, Q_n \sigma]$, that is
not left finite over B.

REFERENCE

Annalen 166 (1966), 54—55.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received April 1, 1968)