ExtA(Z2[y]/Z2,Z2), A being the mod 2 Steenrod algebra

Tetsuya Aikawa*
Aikawa: ExtA(Z2\[y]/Z2, Z2), A being the mod 2 Steenrod algebra

§ 1. Introduction.

Let A be the mod 2 Steenrod algebra, Z be a ring of integers, Zm = Z/mZ, (m: a positive integer). Let M^k be a polynomial algebra with one generator y of degree 2^k, (k: a non-negative integer) over Z. Let x be the generator of M^0. Let M^i be a A-submodule of M^j generated by y^j, q\geq i, and M^i/p be a quotient module of M^i by an A-submodule generated by y^j, p<q. Particularly we denote M^x=M^0, M_1=M^1, M_i=x=M^i/p.

Let RP^i, CP^i, HP^i be i-dimensional real (complex, quaternion) projective space, respectively. Then reduced cohomology groups of them with coefficient group Z are

\[H^k(RP^n) = M^0, \quad H^k(CP^n) = M^1, \quad H^k(HP^n) = M^2. \]

There is no space such that H^k(X) = M^k, for k\geq 3. (see [10] Chapter 1, Theorem 4.5; [3] Theorem 4.6.1.) But we can naturally make M^k (and M^i) a left A-module algebraically such that the axiom [10] by Steenrod hold on M^0. This definition has no contradiction since in the case k=0 there is a space X (=RP^n) such that H^k(X) = M^0 and since we have Proposition 2.3 in this paper.

The determination of Ext_i(M^k, Z), k=0, 1, 2, is used to the determination of 2-primary components of stable homotopy of S^o to RP^n/PP^{n-1}, CP^n/CP^{n-1}, HP^n/HP^{n-1}, respectively by [1] and [2].

After the author determined Ext^4_i(M^0, Z), t-s\leq 27, the author fined that M. Mahowald [6] had determined Ext^4_i(M^0, Z), t-s\leq 29, by his own method different to my method. Since his representation of generators is different to mine and the relationship between generators of Ext_i(M^0, Z) and those of Ext_i(Z_2, Z_2) is more clear at a glance by my method, we will offer the table of Ext_i(M^0, Z) in the last of this parer, for reference. So the main purpose of this paper is the determination of generators and relations of Ext^4_i(M^0, Z) in general (without restriction on t-s).

We conjecture by our table of Ext_i(M^0, Z), t-s\leq 27, that Ext_i(Z_2, Z_2)[h_0] is isomorphic to a direct summand of Ext_i(M^0, Z) by an appropriate correspondence. But we have not found the effective method to prove this.
The author is grateful to Professor H. Toda and Professor N. Shimada for their kind advices.

§ 2. \(\text{Ext}^0_A(M_i^k, Z_2) \).

If 2-adic expansion of a positive integer \(i \) is
\[
(2.1) \quad i = 2^{i_1} + \cdots + 2^{i_m}, \quad i_1 > \cdots > i_m \geq 0,
\]
then we define \(2\text{-th set} \([i]\) \) and \(2\text{-th number} \#[i] \) of \(i \) in the following;
\[
[i] = \{i_1, \ldots, i_m\}, \quad \#[i] = m.
\]

If 2-adic expansion of another positive integer \(j \) is
\[
(2.2) \quad j = 2^{j_1} + \cdots + 2^{j_n}, \quad j_1 > \cdots > j_n \geq 0,
\]
then \([i] \supseteq [j]\) means the condition that
\[
m \geq n, \quad i_1 \geq j_{m-n+1}, \ldots, i_m \geq j_n:
\]
or
\[
m \leq n, \quad i_\ell \geq j_{m+n-1}, \ldots, i_m \geq j_n.
\]

The following lemma on binomial coefficients is an alternative representation of Lemma 2.6 Chapter 1 in [10] and plays an essential part of proving many propositions and lemmas in this paper.

Lemma 2.1
\[
\binom{i}{j} \equiv \begin{cases} 1, & [j] \subseteq [i] \\ 0, & [j] \not\subseteq [i] \end{cases} \pmod{2}
\]

Remark. \([j] \subseteq [i]\) means that the set \([j]\) is contained in the set \([i]\).

Proposition 2.2

If \(k \geq 0, \ a < 2b \), then as operations on \(M_i^k \),
\[
\text{Sq}^a \text{Sq}^b = \sum_{t=0}^{\frac{1}{2}\binom{a}{b}} (2^t - 1) \text{Sq}^{a+t} \text{Sq}^t
\]
where \(\binom{a}{b} \) stands for the maximal integer which does not exceed \(i \) only in this proposition.

Proof. By the following equality and congruence:
\[
\text{Sq}^a \text{Sq}^b = \sum_{t=0}^{\frac{1}{2}\binom{a}{b}} (2^t - 1) \text{Sq}^{a+t} \text{Sq}^t
\]
\[
\left(2^b - 2^t - 1\right) = \left(2^t \left(b-t-1\right) + 2^s - 1\right) \equiv \left(2^t \left(b-t-1\right)\right) \equiv (b-t-1) \pmod{2}
\]

Proposition 2.3
\[
\text{Sq}^r y' = \begin{cases} y'^{r+t}, & j = 2^k y' \text{ and } [j'] \subseteq [i] \\ 0, & \text{otherwise} \end{cases}
\]
Proof. By Cartan formula. This proposition is a generalization of Lemma 2.4 Chapter 1 in [10].

Theorem 2.4

\[A \cdot y^j = Z_2[y^j; i \geq j, [i] \geq [j], \#[i] \leq \#[j]], \text{ where } Z_2\{a : C(a)\} \text{ means } \]

a \text{ Z}_2\text{-module generated by } a \text{ satisfying the condition } C(a).

Proof. We denote by \(C \) the right hand side of the equality to prove. By Proposition 2.2 and 2.3, it is sufficient to prove this Theorem in the case \(k = 0 \). Since \(A \cdot x' \subseteq C \) easily follows from Proposition 2.3, we will only prove \(A \cdot x' \supset C \).

If \(e \) is a positive integer such that

\[(2.3) \quad e > j, [e] \geq [j], \#[e] \leq \#[i], \]

then we denote

\[B = Z_2[x^i \in C; e > i]. \]

We will show by induction on \(e \) that if \(B \subseteq A \cdot x' \), then

\[x' = a \cdot x', \text{ for some } a \in A, x' \in B, a \neq 1. \]

If 2-adic expansion of \(e \) is

\[e = 2^a_11 \cdot \cdots \cdot 2^a_n, e \geq 0 \]

and that of \(i, j \) is the same as in (2.1) and (2.2), then by \(j < e \), there is an integer \(a \) satisfying conditions (2.4) and, either (2.5), (2.6), (2.7) or (2.8):

\[(2.4) \quad j_i = e_1, \cdots, j_{a-1} = e_{a-1}, j_a < e_a, 0 \leq a \leq q; \]

\[(2.5) \quad e_a = e_{a+1} = 1, a \leq b < q, e_b > e_{a+1} + 1, \text{ for some } b; \]

\[(2.6) \quad e_a = e_{a+1} = 0, a \leq b < q; \]

\[(2.7) \quad a = q. \]

In all cases, \([e] \geq [j] \) implies \([e] \geq [j_{a-\varphi+b}] \). We have \(e_a > j_{a-q+b} \).

(If \(e_a = j_{a-q+b} \), then by \(e_a > j_a \)

\[\# \left[\sum_{i=a}^{2^b} 2^i \right] > \# \left[\sum_{i=a+q+b}^{2^b} 2^i \right]. \]

Therefore \(\#[e] > \#[j] \). This is contrary to (2.3).)

In the case (2.5), set \(e' = 2^{a+1} \), then (2.4) implies \(e - e' > j, e > j_{a-\varphi+b} \)

implies \([e - e'] \geq [j] \), and we have

\[\# [e - e'] = \# [e] \leq \# [j]. \]

Therefore by the inductive hypothesis,

\[x' = \text{Sq}^{e-e'} x'^{e-e'}, x'^{e-e'} \in B. \]

In the cases (2.6), (2.8), we have \(e_a > 0 \).
TETSUYA AIKAWA

(If otherwise, then we have not both \(e > j \), and \(\#[e] \leq \#[j] \).) The proof in the case is the same as in the case (2.5), after replacing \(b \) with \(q \).

In the case (2.7) or (2.8), if \(e_0 > j_{n+1} \), then the proof is similar to that in the case (2.5), after replacing \(b \) with \(a \).

In the case (2.5), set \(e' = 2^a - 1 \) then (2.4) implies \(e - e' > j \), \(e_a > j_{n+1} \) implies \([e - e'] \geq [j] \), and we have

\[
\# [e - e'] = \# [e] \leq \# [j].
\]

Therefore by the inductive hypothesis,

\[x^e = \text{Sq}^{e - e'} \circ x^{e - e'} \in B. \]

In the case (2.7), if

\[
e_0 = j_a + 1; j_u = j_{a+1} + 1, a \leq u < n \quad \text{or} \quad a = e = q,
\]

then \(\# [e] \leq \# [j] \) implies \([j] - [e] \neq \emptyset \) and we take

\[c = \min ([j] - [e]), \]

where signature "-" means a subtraction of two sets \([j] \) and \([e] \). Take

\[e' = 2^e + \sum_{u=a}^{n} 2^u. \]

Clearly \([e'] \subset [j] \), and \(x^e = \text{Sq}^{e} \circ x', x^e \in B \).

In the case (2.7), let

\[e_a = j_a + 1; j_u = j_{a+1} + 1, a \leq u < b, j_b > j_{b+1} + 1, \quad \text{or} \quad j_a > j_{a+1} + 1
\]

(If \(j_a > j_{a+1} + 1 \), take \(b = a \).)

If \(e_{a+1} = j_b - 1 \), then we take

\[
c = \min \{ j_a, \ldots, j_b, j_b - 1 - [e] \},
\]

\[
d = \min \{ u; e_u \geq j_b - 1 \},
\]

\[e' = 2^e + \sum_{u=a+1}^{b} 2^u, \]

\[j' = j + 2^{b-1} - 2^{b+1}. \]

\[j' > j, \quad [j'] \geq [j], \quad \# [j'] = \# [j]
\]

implies by the inductive hypothesis

(2.9) \[x' = g \circ x^{e'} \in C, \quad \text{for some} \quad g \in A, \quad x^e \in B. \]

Clearly \([e'] \subset [j'] \), and

\[x^e = \text{Sq}^{e} \circ x'. \]

If \(e_{a+1} < j_b - 1 \), then we have (2.9). Clearly \(j_b - 1 \in [j'] \), and

\[x^e = \text{Sq}^{j_b - 1} \circ x'. \]

In the case (2.8), if

\[
e_a = j_a + 1; j_u = j_{a+1} + 1, a \leq u < n \quad \text{or} \quad a = q = n,
\]

then \(j_u \in [j] \) implies
\[x' = \text{Sq}' x^j, \quad x' \in B. \]

(We write \(j' = 2^i u \). In this case \(j = e - j' \).

In the case (2.8), if, for some \(b \),
\[e_b = j_a + 1, \quad j_u = j_{u+1} + 1, \quad a \leq u < b < n, \quad j_b > j_{b+1} + 1, \]
and we take \(j' = 2^b - 1 \), then
\[j_b - 1 \in [e - j'] \]

implies
\[x' = \text{Sq}' x^{e-j'}, \quad x' \leq j', \in B \]

[Q. E. D. of Theorem 2.4]

For the next theorem we give the following notation:

If \(i \) is such an integer as (2.1), and \(u \) is such an integer that \(i > \)
\(u > i + 1 \), or \(i > u \geq 0 \), we define (in the last case, we set \(v = m \))
\[(i, u) = 2^{i+1} + \cdots + 2^{i+2} + 2^{u+1}. \]

Theorem 2.5

(1) If \(2^{i-1} < i \leq 2^{i+1} - 1 \), then
\[\text{Ext}^0_0(M_i^b, Z_2) = Z_1 \left\{ h_u, \ max[p, \ u \geq j+k, \ h_u, \ j \geq 0, \ u \notin [i], \ p \geq (i, u) \right\} \]
\[\text{Ext}^0_0(M_i^b, Z_2) = Z_1 \left\{ h_u, \ u \geq j+k, \ h_u, \ j \geq 0, \ u \notin [i] \right\} \]

(2) In the particular case \(i = 2^i - 1 \),
\[\text{Ext}^0_0(M_i^b, Z_2) = Z_1 \left\{ h_u, \ u \geq j+k \right\}. \]

Remark. where \(Z_1 \{ a ; C(a) \} \) stand for a \(Z_2 \)-free module
genrated by \(a \) satisfying the condition \(C(a) ; h_u, h_u \) stands for the cohomology
classes of \([\] y_{p-k}, [\] y_{(i, u)} \) of degrees \(2^u - 2^k \), \((i, u) \) in the coher construction \(\overline{F}(A^*, M_i^b) \) of \(M_i^b \) over \(A^* \), and \(y_u \) stands for the element in \(M_i^b \) dual to \(y_u \) in \(M_i^b \).

Proof. By Proposition 2.3, it is sufficient to prove the proposition in the case \(k = 0 \) and \(p = \infty \).

First we show that
\[x^{u-1} > j; \ x^{(i, u)}, \ j > u \geq 0, \ u \notin [i], \]
genenerate \(M_i \) as a left \(A \)-module. If \(2^{j-1} < e < 2^{j+1} - 1 \), then
\[#[e] = j = #\left[2^j - 1 \right], \quad [e] \geq \left[2^j - 1 \right], \]
so by Theorem 2.4,
\[x' = a \cdot x^{j-1}, \text{ for some } a \in A. \]

If \(i < e < 2^{j+1} - 1 \), and \(e \) cannot be expressed in the form of \((i, u) \), we denote
\[u = \max([e] - [i]). \]

Clearly \(u \notin [i] \), \(e > i, u \), and \(e \neq (i, u) \) implies \(\{u - 1, \ldots, 1, 0\} - [e] \neq \emptyset \).

Therefore
\[[e] \geq [(i, u)], \quad \#(e) \leq \#((i, u)). \]

Then by Theorem 2.4,
\[x = a \cdot x^{(i, u)} \text{ for some } a \in A. \]

Secondly we show that (2.10) is a minimal generating set of \(M \) as a left \(A \)-module. If \(u > v > j \), then
\[\#([2^n - 1] = u > v = \#([2^n - 1]), 2^n - 1 > 2^n - 1 \]

implies by Theorem 2.4 that \(x^{2^n - 1} \) and \(x^{2^v - 1} \) are linearly independent. If \(j > u > v \geq 0, u \notin [i], v \notin [i], \)

then
\[\#((i, u)) - \#((i, v)) = \#([2^n - 1]) - \#([2^v - 1]) = v - v > 0, \]
\[(i, u) - (i, v) = (2^n - 1) - (2^v - 1) > 0, \]

implies by Theorem 2.4 that \(x^{(i, u)} \) and \(x^{(i, v)} \) are linearly independent. If \(u > j > v \geq 0, v \notin [i], \)

then
\[2^n - 1 > 2^j + 1, \]
\[\#([2^n - 1]) = u > j \geq \#((i, v)) \]

implies by Theorem 2.4 that \(x^{2^n - 1} \) and \(x^{(i, v)} \) are linearly independent. Thus the proof is completed.

For the next alternative Proof of Theorem 2.5 (2), we give the following definition.

Definition 2.6

We define \(A \)-maps
\[f_k : \overline{A} \rightarrow M^k, \quad \overline{A} = A/Z_n, \]
\[f_k : \overline{A} \rightarrow M^k \]

for an admissible monomial \(S^1 S^2 \cdots S^n \) in the following:

\[f_k (S^1 S^2 \cdots S^n) = \begin{cases} y^{i-1}, i = 2^k, i \geq 1, n = 1, \\ 0, \text{ otherwise}. \end{cases} \]

\[f_k (S^1 S^2 \cdots S^n) = \begin{cases} y^{i-1}, i = 2^k, i \geq 1, n = 1, \\ 0, \text{ otherwise}. \end{cases} \]

We denote
\[f = f_{\emptyset}, \quad f = f_{\emptyset}, \quad L^k = \ker f_k, \quad K = \ker f. \]

Remark. Adem relations ensure that \(f_k \) and \(f_k \) are \(A \)-maps in the following: If \(0 < i < 2^j \), then
(We show only in the case \(k=0 \) by Proposition 2.2 and 2.3.)

\[
\begin{align*}
\mathcal{J}(\text{Sq}^i \text{Sq}^j) &= \sum_{t} \binom{i-t-1}{2t} \mathcal{J}(\text{Sq}^{i+j-t} \text{Sq}^j) \\
&= \binom{i-1}{i} \mathcal{J}(\text{Sq}^{i+j}) = \binom{i-1}{i} x^{i+j-1},
\end{align*}
\]

\[
\text{Sq}^i \mathcal{J}(\text{Sq}^j) = \text{Sq}^i x^{j-1} = \binom{j-1}{i} x^{i+j-1}.
\]

[Alternative proof of (2) in Proposition 2.5]

Since \(f_k \) is an \(A \)-map, and by Lemma 4.2, Chapter 1 in [10], and \(\text{Sq}^i \) is indecomposable if and only if \(i \) is a power of 2, if \(y' \notin A \cdot M^k \), then \(i=2^u-1 \), for some \(u \geq k \).

If \(y^{i-1} = a \cdot y^j \), for some \(j \) and \(a \in A \), then

\[
\mathcal{J}(\text{Sq}^{u+k}) = y^{i-1} = a \cdot y^j = a \cdot \mathcal{J}(\text{Sq}^{(j+k)}) = \mathcal{J}(a \cdot \text{Sq}^{(j+k)})
\]

Therefore

\[
\text{Sq}^{u+k} + a \cdot \text{Sq}^{(j+k)} = b, \text{ for some } b \in \ker f_k
\]

This is contrary to the fact that \(\text{Sq}^{u+k} \) is indecomposable.

\section{3. Relations in \(\text{Ext}_d(M^*_t, Z_2) \).}

We determine some typical relations in \(\text{Ext}_d(M^*_t, Z_2) \) by using the cobar construction \(F(A^*, M^*_t) \) of \(M^*_t \) over \(A^* \) in this section.

We denote by \(\alpha \beta \) the image of \(\alpha \otimes \beta \) by the composition map

\[
\text{Ext}_d(M^*_t, Z_2) \otimes \text{Ext}_d^*(Z_2, Z_2) \longrightarrow \text{Ext}^{*+*+*}_d(M^*_t, Z_2)
\]

Let \(h_n \) be the generator in \(\text{Ext}_d^{*+*}(Z_2, Z_2) \) corresponding to \(\text{Sq}^{n} \).

\textbf{Theorem 3.1}

If \(n \geq 0, i \) is such as (2.1), then in \(\text{Ext}_d(M^*_t, Z_2) \),

\[
\begin{align*}
h_{n+1}h_{n} &= 0, \quad n+1 \geq i_1 + k, \\
h_{n+2}h_{n} &= h_{n+1}h_{n+1}, \quad n+1 \geq i_1 + k, \\
h_{n+2}h_{n+2}h_{n} &= 0, \quad n+2 \geq i_1 + k.
\end{align*}
\]

\textbf{Remark.} Similar relations holds in \(\text{Ext}_d(Z_2, Z_2) \), but the following relations are not true:

\[
h_nh_{n+1} = 0, \quad h_nh_{n+2} = 0.
\]

The remainder of this section is devoted to the proof of this theorem. The direct proof is remained in the last of this section.

\textbf{Lemma 3.2}

\[
a < 2b, \quad c \geq 2d,
\]

\[
\text{Sq}^a \text{Sq}^b = \text{Sq}^a \text{Sq}^b + \cdots (\text{Adem relation})
\]
implies \(a, b \equiv 0 \pmod{2^n} \).

Proof. If \(a = a_2 2^n + a_1 \), \(0 < a_1 < 2^n \), then
\[
\left(2^n - a_1 - 1 \right) a_2 \equiv 0 \pmod{2}
\]
Therefore
\[
\left(b - 2^d d - 1 \right) a_2 = \left(2^n (a_1 - 2d) + a_2 - 1 \right) = \left(c - a_1 - 2d \right) \left(2^n - a_2 - 1 \right) \equiv 0 \pmod{2}
\]

Proposition 3.3

\(r \geq 2s \),
\[
\{(a, b) : a < 2b, \text{Sq}^a \text{Sq}^b = \text{Sq}^b \text{Sq}^a + \cdots (\text{Adem relation})\}
\]
\(g \rightarrow \{(c, d) : c < 2d, \text{Sq}^c \text{Sq}^d = \text{Sq}^c \text{Sq}^d + \cdots (\text{Adem relation})\}
\]
This map is a bijection by defining
\(g(a, b) = (2^n a, 2^n b) \)

Proof. The latter equality in the proof of Proposition 2.2 implies that \(g \) is a map and the definition of \(g \) implies that \(g \) is a monomorphism. If the latter Adem relation in this proposition holds, then by Lemma 3.2
\(c = 2^n c', d = 2^n d', c' < 2d'. \)

Therefore by the latter equality in the proof of Proposition 2.2, \(g \) is an epimorphism.

Proposition 3.4

Let \(B \) be a module over a field \(R \), \(\{b_u, u \in U\} \) be a basis for \(B \), \(b^u \) be the element in the dual \(R \)-module \(B^* \) dual to \(b_u \).

1. If \(B \) is an algebra with product \(\varphi \), and
\[
\varphi(b_u \otimes b_v) = \sum c_{u,v}^w b_w, \quad c_{u,v}^w \in R
\]
then \(B^* \) is a coalgebra with coproduct \(\varphi^* \) such that
\[
\varphi^* (b^v) = \sum (-1)^e c_{u,v}^w b^u \otimes b^v, \quad e = \deg b_u \times \deg b_v
\]
2. If \(B \) is a coalgebra with coproduct \(\psi \) and
\[
\psi(b_u) = \sum c_{u,v}^w b_u \otimes b_v, \quad c_{u,v}^w \in R,
\]
then \(B^* \) is an algebra with product \(\psi^* \) such that
\[
\psi^* (b^u \otimes b^v) = \sum (-1)^e c_{u,v}^w b^w.
\]

Proof. standard.

Lemma 3.5

If \(\text{Sq}^a \neq \text{Sq}^b \), then \((\text{Sq}^a)^* \) has not \(\xi_1^a \) as a summand.

The proof is left to my paper to appear. This lemma is used only to prove Proposition 3.6 in the case of \(\deg (f) = 2^n \), \(q \geq 0 \), and this is not

http://escholarship.lib.okayama-u.ac.jp/mjou/vol13/iss2/7
necessary to prove Theorem 3.1.

Proposition 3.6

\[(\text{Sq}^j)^* = \sum \xi^j\]

implies

\[(\text{Sq}^{n+j})^* = \sum \xi^{n+j},\]

where \(J\) runs over the same set in the two summations above and if \(I = (i_1, \ldots, i_n)\), then we denote

\[2^n \cdot I = (2^n i_1, \ldots, 2^n i_n).\]

Proof. By induction on \(\text{deg}(I)\).

\[\varphi^*(\sum \xi^{n+j}) = \varphi^*[(\text{Sq}^{n})^*] = \sum (\text{Sq}^{j})^* \otimes (\text{Sq}^{j})^*,\]

where the last summation runs over all pairs \(I_1, I_2\) such that

\[\text{Sq}^{I_1} \text{Sq}^{I_2} = \text{Sq}^j + \ldots.\]

By inductive hypothesis

\[\varphi^*[(\sum \xi^{n+j})] = \varphi^*[(\sum \xi^{j})]^n = \sum (\text{Sq}^{j_1})^* \otimes (\text{Sq}^{j_2})^* + (\text{Sq}^{j})^* \otimes 1 + 1 \otimes (\text{Sq}^{j})^*;\]

On the other hand, by Proposition 3.4 (1),

\[\varphi^*[(\text{Sq}^{n+j})^*] = \sum (\text{Sq}^{n+j})^* \otimes (\text{Sq}^{n+j})^*.\]

Using Lemma 3.5, we have the conclusion.

For the next proposition we denote \(\text{Sq}^j = \text{Sq}(i_1, i_2, \ldots, i_n)\), for convenience’ sake, if \(I = (i_1, i_2, \ldots, i_n)\) is complicated.

Proposition 3.8

1. \(\text{Sq}(2^n + \ldots, 2^{n+1}, 2^n)^* = \xi_j^{2^n+1}, j \geq 0\)
2. \(\text{Sq}(2^n(2^j + 2^{m+n}), \ldots, 2^n(2^j + 2^{m+n}), 2^{n+j-q-1}, \ldots, 2^{n+1}, 2^n)^* = \xi_j^{2^n+1}, 0 \leq m \leq j, 0 \leq q \leq j.\)
3. \(\text{Sq}(2^n(2^{n+q} - j^1 + 2^j), \ldots, 2^n(2^{n+q} - j^1 + 2^j), 2^n(2^n - j^1 + 1), 2^n - m + q - j^1, \ldotsj, 2^{n+1}, 2^n)^* = \xi_j^{2^n+1}, 0 \leq m \leq j \leq q.\)
4. \(\text{Sq}(2^n + j^1, \ldots, 2^n + j^1, 2^{j^1}, \ldots, 2^{n+1}, 2^n)^* = \xi_j^{2^n+1}, m \geq 2, j \geq 0.\)
5. \(\text{Sq}(2^n(2^m + 1), \ldots, 2^{n+j-m+1}(2^m + 1), 2^n - m, \ldots, 2^{n+1}, 2^n)^* = \xi_j^{2^n+1}, j \geq m - 1 \geq 0.\)
(6) \(\text{Sq}(2^{n+1} + 1, \ldots, 2^n, 2^{n+1} + 1, 2^n, 2^{n+m-1}, \ldots, 2^n, 2^{n+j}, \ldots, 2^n) = \xi_m^{n+j} + \xi_{j+1}^n + \xi_{j+m+1}^n, m \geq j \geq 0.\)

(7) \(\text{Sq}(2^{n+j+m} + 2^n, \ldots, 2^n, 2^{n+j+m} + 2^n, \ldots, 2^n, 2^n, \ldots) = \xi_m^{n+j} + \xi_{j+m+1}^n + \xi_{j+m}^n, 2 \leq m \leq j + 2.\)

(8) \(\text{Sq}(2^{n+j+m} + 2^n, \ldots, 2^n, 2^n, \ldots, 2^n) = \xi_m^{n+j} + \xi_{j+1}^n + \xi_{j+m+1}^n, m \geq j + 2.\)

Proof. It is sufficient by Proposition 3.6 to prove this proposition in the case \(n=0.\)

Proof of (5); If
\[
\psi(\text{Sq}^i) = \text{Sq}(2^{i+m}, \ldots, 2^{i+j}, 2^{i+1}) \otimes \text{Sq}(2^i, \ldots, 2, 1) + \ldots,
\]
then \(I\) is either
\[
I_1 = (2^{i+m}, \ldots, 2, 1)
\]
or
\[
I_2 = (2^{i+m} + 2^i, \ldots, 2^{i+j} + 2^{i-1} + 2^{i-m+1}, 2^{i-m}, \ldots, 2, 1)
\]

Applying Proposition 3.4 (2),
\[
\xi_m^{j+1} \xi_{j+1} = \text{Sq}(2^{i+m}, \ldots, 2^{i+j}) \otimes \text{Sq}(2^i, \ldots, 2, 1) + \ldots
\]
then (4) is a special case of (2).

Proof of (7); If
\[
\psi(\text{Sq}^i) = \text{Sq}(2^{i+m}, \ldots, 2^{i+j} \otimes \text{Sq}(2^i, \ldots, 2, 1) + \ldots
\]
then \(I\) is either
\[
I_1 = (2^{i+m}, \ldots, 2^{i+j}, 2^i, \ldots, 2, 1)
\]
or
\[
I_2 = (2^{i+m} + 2^i, \ldots, 2^{i+j} + 2^{i-m+1}, 2^{i-m}, \ldots, 2, 1)
\]

Applying Proposition 3.4 (2) and the formula (4),
\[
\xi_m^{j+1} \xi_{j+1} = \text{Sq}(2^{i+m}, \ldots, 2^{i+j}) \otimes \text{Sq}(2^i, \ldots, 2, 1) + \ldots
\]

Thus the proof is completed.

The proofs of other formulas are similar.

Remark. The following formula is expected to be true:

http://escholarship.lib.okayama-u.ac.jp/mjou/vol13/iss2/7
\((\text{Sq})^* = \sum b(J) \xi^J, \ \text{deg}(J) = j,\)

where if \(J = (j_1, \ldots, j_n)\), then we denote
\[
b(J) = \frac{(j_1 + \ldots + j_n)!}{j_1! \ldots j_n!}.
\]

In particular
\((\text{Sq}^{n-1})^* = \sum \xi^I, \ \text{deg}(I) = 2^n - 1.\)

For the proof of Theorem 3.1, we use only the following special cases
of the formulas above:
\[
\begin{align*}
\text{Sq}(2^{n+1}, 2^n)^* &= \xi_1^{n+1} \xi_2^n \\
\text{Sq}(2^{n+1} + 2^k)^* &= \xi_1^{n+1} \xi_2^n + \xi_2^1.
\end{align*}
\]

We denote the \(A^\ast\)-comodule map of \(M_i^*\) by
\(\Delta : M_i^* \to A^* \otimes M_i^*\)

There are some properties of this map.

Proposition 3.9

\(\Delta x_{j} = \sum \xi^J \otimes x_{n}\)

implies
\(\Delta y_{j} = \sum \xi^{J+1} \otimes y_{n}.\)

Proof. If \(\text{Sq}^j x^u = x^i, j \geq u \geq i\), in \(M_i\), then by Proposition 2.3, \(\text{Sq}^j y^u = y^i\) in \(M_i\). If \(\text{Sq}^i y^u = y^i, j \geq u \geq i\), then by Proposition 2.3, \(J = 2^n \cdot I\)
for some \(I\), and \(\text{Sq}^i x^u = x^i\). Therefore by Proposition 3.6, we have the proposition.

Lemma 3.10

\[
\begin{align*}
\{(I, q); \text{Sq}^j y^u = y^m\} &\xrightarrow{g} \{(J, j); \text{Sq}^j y^l = y^{m+1} - 1\}
\end{align*}
\]

This map \(g\) is a bijection by defining
\(g(I, q) = (2^n \cdot I, 2^n q + 2^n - 1)\)

Proof. By Proposition 2.3, \(g\) is a monomorphism. If
\(\text{Sq}^j y^l = y^m + 1\),
then by Theorem 2.4, \([j] \leq [2^n m + 2^n - 1]\), that is, \([j] \leq [2^n - 1]\).
Therefore \(j = 2^n q + 2^n - 1\) for some \(q\) and \(\text{Sq}^j\) is such that
\(\text{Sq}^j y^m = y^{m+1}\).

By Proposition 2.3, \(J = 2^n \cdot I\), for some \(I\). Thus \(g\) is an epimorphism
and a bijection.
Proposition 3.11
\[\Delta y_m = \sum \xi^j \otimes y_j \]
implies
\[\Delta y_{n+m+n-1} = \sum \xi^j \otimes y_{n+j+n-1} \cdot \]

Proof. By Lemma 3.10.

Proposition 3.12
\[\Delta x_j = 1 \otimes x_j \]
\[\Delta x_{n+1} = \sum x_{n+1} \]
\[\Delta x_{2n-1} = \sum 2^{n-1} x_{2n-1} \]
\[\Delta x_{3n-1} = \sum 3^{n-1} x_{3n-1} \]
\[\Delta y_{3n-1} = \sum y_{3n-1} \]
\[\Delta y_{4n-1} = \sum y_{4n-1} \]

The formulas replaced \(x_j \) with \(y_j \) and \(\xi^j \) with \(\xi^{j+i} \) above are true.

Proof. It is sufficient by Proposition 3.9 to prove the formulas in the case \(k=0 \). We will prove only the second, for example. The proof of the second is reduced by Proposition 3.11 to that of
\[\Delta x_j = 1 \otimes x_j + \xi^j \otimes x_j \]
which is clearly true.

[The proof of Theorem 3.1]

Let \(\delta \) be the coboundary map of the cobar construction \(\overline{F}(A^*, M^{t*}) \).

Then it is sufficient to calculate
\[\delta \left(\sum x_{3n-1} \right) \]
\[\delta \left(\sum x_{3n-1} + \sum x_{3n-1} \right) \]
\[\delta \left(\sum x_{3n-1} + \sum x_{3n-1} \right) \]

For the next proposition we denote by \(K, L, K, \overline{L} \) a \(Z \)-module generated by the following admissible monomials, respectively:

- \(K \): \(n \geq 2 \)
- \(L \): \(n \geq 2 \)
- \(K \): \(a > b \geq 0 \)
- \(L \): \(a > b \geq 0 \).

Since \(K = \ker f, L = \ker f \), and \(f \) and \(f \) are \(A \)-maps, \(K \) and \(L \) are left \(A \)-modules.
We finally prove in Proposition 5.3 that
\[K = \overline{K} + \overline{A} \cdot K \quad \text{(direct sum)} \]

Proposition 4.1

\[K = \overline{K} + \overline{A} \cdot K \quad \text{(not direct sum)} \]

Proof. It is sufficient to prove that
\[\text{Sq}^a \text{Sq}^b \in \overline{A} \cdot K, \text{ if } a \geq 2b, b > 0 \text{ and unless } a = 2^a, b = 2^b, \text{ for any } a', b'. \]

Let 2-adic expansions of \(a \) and \(b \) are
\[a = 2^{a_1} + \cdots + 2^{a_r}, \quad a_r > \cdots > a_s \geq 0, \]
\[b = 2^{b_1} + \cdots + 2^{b_r}, \quad b_r > \cdots > b_s \geq 0. \]

The set of all cases not satisfying
\[a = 2^a, b = 2^b, \text{ for any } a' \text{ and } b' \]
are classified into following four cases (with no intersection to each other):

1. \[r \geq 2, \quad a_r \geq b_r + 2, \quad (4.1) \]
2. \[r \geq 2, \quad a_r = b_r + 1, \quad q \geq 2, \quad (4.2) \]
3. \[a_r \leq b_r, \quad q \geq 2, \quad (4.3) \]
4. \[r = 1, \quad a_r > b_r, \quad q \geq 2, \quad (4.4) \]

Proof of the case (4.1): Let
\[a = a' 2^{n+2}, \quad b = b' 2^{n+1} + 2^n, \quad a' > b' > 0. \]

Then
\[\text{Sq}(2^{n+1}, a - 2^n, b' 2^{n+1}) = (\text{Sq}^a \text{Sq}^b + \text{Sq}^{a+b}) \text{Sq}^{n+1} \]
\[= \text{Sq}^a \text{Sq}^b + \sum_{i=0}^{n-1} \text{Sq}(a, b - 2^i, 2^i) + \text{Sq}(a + 2^n, b' 2^{n+1}). \]

The last summand is reduced to the case (4.3).

Proof of the case (4.2): Let
\[a = a' 2^{n+2} + 2^{n+1}, \quad b = b' 2^{n+1} + 2^n, \quad a' \geq b' > 0. \]

Then
\[\text{Sq}(2^{n+1}, a' 2^{n+2} + 2^n, b' 2^{n+1}) = \text{Sq}(a, 2^n, b' 2^{n+1}) \]
\[= \text{Sq}^a \text{Sq}^b + \sum_{i=0}^{n-1} \text{Sq}(a, b - 2^i, 2^i). \]

Proof of the case (4.3): Let
\[a = a' 2^{n+1} + 2^n, \quad b = b' 2^n, \quad a' \geq b' > 0. \]

Then we prove it by induction on \(n \). If \(n = 0 \), then
\[\text{Sq}^a \text{Sq}^b = \text{Sq}^b \text{Sq}^{a-1} \text{Sq}^a. \]
Therefore \(\text{Sq}^a \text{Sq}^b \in A \cdot K \). If \(n > 0 \), then
\[(4.5) \quad \text{Sq}(2^n, a^{2n+1}, b) = \text{Sq}^a \cdot \text{Sq}^b + \sum_{i=0}^{n-1} \text{Sq}(a-2^i, b+2^i) + \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \text{Sq}(a-2^i, b+2^j - 2^i, 2^i) \]

\(\text{Sq}(a-2^i, b+2^i)\) is not admissible only in the case \(a' = b', \ t = n-1, \) but if \(n \geq 2, \) then
\[\text{Sq}(a-2^{n-1}, b+2^{n-1}) = \text{Sq}(a'2^{n+1}+2^{n-1}, a'2^n+2^{n-1}) = \sum_{i=0}^{n-1} \text{Sq}(2^{n+1}a'+2^{n-2}, 2^n a'+2^i).\]

Transform the summands of \(n-2 \geq t \geq 0\) in the form as \((4.5)\), and we know that they are contained in \(\overline{A} \cdot K\) by inductive hypothesis. The summand of \(t = n-2\) is
\[\text{Sq}(2^{n-1}c+2^{n-3}, 2^{n-1}c), \ c = 4a'+1.\]

Apply the same method above to this summand, and we know that there remains only one summand
\[\text{Sq}(2^{n-3}d+2^{n-4}, 2^{n-4}d), \ d = 4c+1,\]

which is unknown to be contained in \(\overline{A} \cdot K\), if \(n \geq 4.\)

But by applying this method repeatedly the problem is reduced to either \(\text{Sq}(4e+1, 2e+1)\) or \(\text{Sq}(8e+2, 4e+2)\) according that \(n\) is odd or even. We have
\[\text{Sq}(4e+1, 2e+1) = 0\]
\[\text{Sq}(8e+2, 4e+2) = \text{Sq}(8e+3, 4e+1) = \text{Sq}(1, 8e+2, 4e+1)\]

Then in the cases \((4.1), (4.2), \) and \((4.3), \) by inductive hypothesis, \(\text{Sq}^2 \in \overline{A} \cdot K.\)

Proof of the case \((4.4): \) Let \(b = 2^n.\) Using Proposition 3.2 we can decompose \(\text{Sq}^a\) in the form of
\[\text{Sq}^a = \sum_{u>0} c_u \text{Sq}^{u}, \ c_u \in A.\]

Therefore \(\text{Sq}^a \text{Sq}^u \in \overline{A} \cdot K.\)

Thus the proposition has been proved.

In this proof, we use the following formulas.

Lemma 4.2
\[
\text{Sq}(2^n, 2^{n+1}a+2^i) = \sum_{i=0}^{n-1} \text{Sq}(2^{n+1}a+2^{n+1}-2^i, 2^n)
\]
\[
\text{Sq}(2^n, 2^{n+1}a) = \sum_{i=0}^{n-1} \text{Sq}(2^{n+1}a+2^i-2^i, 2^n) + \text{Sq}(2^{n+1}a+2^n)
\]
\[
\text{Sq}(2^{n+1}, 2^{n+1}a+2^n) = \text{Sq}(2^{n+1}a+2^{n+1}, 2^n)
\]
\[
\text{Sq}(a2^{n+2}+2^i, 2^{n+1}a+2^n) = \sum_{i=0}^{n-1} \text{Sq}(2^{n+2}a+2^{n+1}-2^i, 2^{n+1}a+2^n).
\]

We define an \(A\)-map
Aikawa: $\text{Ext}(\mathbb{Z}_2[y]/\mathbb{Z}_2, \mathbb{Z}_2)$, A being the mod 2 Steenrod algebra

$\overline{\mathcal{f}}: \overline{A}^3 \to N$

$N = \overline{A} \cdot M^0 = \mathbb{Z}_2 \{x^j : j > 0, j \neq 2^n - 1, \text{ for any } n\}$

to be the restriction of $f: A \to M^0$. then

$0 \to K \to \overline{A}^3 \xrightarrow{\mathcal{f}} N \to 0$

is an exact sequence of left A-modules.

Lemma 4.3

$N = \overline{A} \cdot N + \mathbb{Z}_2 \{x^{n+1}y^{n-1}, n \geq 0\}$. (direct sum)

Proof. If

$a = 2^{m+1}a' + 2^m + 2^n - 1, m \geq n + 2, a' \geq 0,$

or $m = n + 1, a' > 0$,

then

$\text{Sq}^{n+1}x^{n-2}y^{n-1} = x^n, x^{n-2}y^{n-1} \in N.$

If $m > n$, set

$m' = 2^{m+1} + 2^m - 1, n' = 2^{m+1} + 2^n - 1,$

then

$m' > n', \#[m'] = m + 1 > n + 1 = \#[n'].$

Therefore $x^{n'}$ and $x^{n'}$ are linearly independent by Theorem 2.4. Thus

the proof is completed.

Proposition 4.4

$L^0 = \overline{L}^0 + \overline{A} \cdot L^0$ (not direct sum).

Proof. By Proposition 4.1,

$L^0 = K + \mathbb{Z}_2 \{\text{Sq}^1\}$

$= \overline{K} + \overline{A} \cdot K + \mathbb{Z}_2 \{\text{Sq}^1\}$

$= \overline{L}^0 + \overline{A} \cdot L^0 + \mathbb{Z}_2 \{\text{Sq}^1, j > 0\} + \mathbb{Z}_2 \{\text{Sq}^1\}$

$= \overline{L}^0 + \overline{A} \cdot L^0$ (not direct sum).

§ 5. Exact sequences for Ext.

The author imagines that somebody has ever proved the following proposition.

Proposition 5.1

Let R be a commutative ring with unit and B be an algebra over R.

(1) Then an short exact sequence of left B-modules

$0 \to L \xrightarrow{i} N \xrightarrow{f} M \to 0$
and a left B-module G induce an exact sequence of right $\text{Ext}_i^s(G, G)$-modules, $r \geq 0$,

\[
\cdots \rightarrow \text{Ext}_i^s(M, G) \rightarrow \text{Ext}_i^s(N, G) \rightarrow \text{Ext}_i^s(L, G) \\
\rightarrow \text{Ext}_i^{s+n}(M, G) \rightarrow \cdots
\]

(2) F_s, I_s and ∂_s are compatible with Massey products; in detail, if $m \in \text{Ext}_i(M, G)$, $l \in \text{Ext}_i(L, G)$, $n \in \text{Ext}_i(N, G)$, $a, b \in \text{Ext}_i(G, G)$, then

- $F_s<m, a, b> \subset <F(m), a, b>$, if $ma = 0 = ab$,
- $I_s<n, a, b> \subset <I(n), a, b>$, if $na = 0 = ab$,
- $\partial_s<l, a, b> \subset <\partial(l), a, b>$, if $la = 0 = ab$.

These properties hold for iterated Massey products. For example,

- $F_s<m, a, b>, a', b'> \subset <F(m), a, b>, a', b'>$,

if $ma = 0 = ab$, $<m, a, b>a' \equiv 0$, and $a'b' = 0$, where F_s, I_s and ∂_s stand for F_s, I_s and ∂_s for an appropriate s.

We apply this proposition to the following short exact sequence of left A-modules:

\[
0 \rightarrow L^k \rightarrow \overline{A} \rightarrow M^k \rightarrow 0
\]

Then the following exact sequence is induced:

\[
\cdots \rightarrow \text{Ext}_i^{s-1}(L^k, Z_2) \rightarrow \text{Ext}_i^{s-2}(M^k, Z_2) \\
\rightarrow \text{Ext}_i^s(\overline{A}, Z_2) \rightarrow \text{Ext}_i^s(L^k, Z_2) \rightarrow \cdots
\]

(5.1)

By comparing the dimensions of generators,

$F_s(h_n) = h_n$, $n > k$.

Proposition 5.2

\[
\text{Ext}_i^s(M^n, Z_2) = Z_2 \{h_n h_b \; : \; a \not\equiv b := 1, a > 0, b \geq 0 \}.
\]

$L^n = \overline{A} \cdot L^n + \overline{L}^b$. (direct sum)

Remark. By Theorem 3.1, we have

$h_n h_{a - 1} = 0$, $a > 0$.

Proof.

\[
\text{Sq}^{a^b} x^{b-1} = 0, \quad a \geq b.
\]

\[
\text{Sq}^{a^b} x^{b-1} = \text{Sq}^{a^b-1} \text{Sq}^{a^b-1}, \quad a + 2 \leq b,
\]

implies
Aikawa: \(\text{Ext}A(\mathbb{Z}_2[y]/\mathbb{Z}_2, \mathbb{Z}_2) \), \(A \) being the mod 2 Steenrod algebra

\[
\begin{align*}
\text{Ext}_* & (\mathbb{Z}_2[y]/\mathbb{Z}_2, \mathbb{Z}_2) \\
& 167 \\
\text{Ext}_*(\mathbb{Z}_2[y]/\mathbb{Z}_2, \mathbb{Z}_2) \\
\end{align*}
\]

\[h_0h_a \neq 0, \ b > 0, \ a \geq 0, \ b \neq a + 1,
\]
\[h_0h_a \neq h_0h_b, \ a \geq b - 2, \ b > 0.
\]

Since
\[F_i(h_0h_{i+1}) = h_0h_{i+1} = 0, \ b > 0 \]
\[F_i(h_0h_a) = h_0h_a = h_a h_a = F_i(h_a h_b), \ a - 2 \geq b > 0 \]
\[I_0(h_0) = h_0
\]

(where \(h'_0 \) is the cohomology class of \([] \xi_1 \) in the cobar construction \(\overline{F}(A^*, L^{**}) \)), we have
\[Z_2 \{h_0h_{i+1}, b > 0; h_0h_a + h_0h_b, a - 2 \geq b > 0\}
\subset \ker F_i = \text{im} \ \partial_a = \text{coker} \ I_0.
\]

coker \(I_0 \) is a \(\mathbb{Z}_2 \)-module generated by \(g_{a,b} \), which is the cohomology class of \([](\text{Sq}^{a}\text{Sq}^{-b})^* \) in the cobar construction \(\overline{F}(A^*, L^{**}) \), for \(a, b \) such that \(a > b > 0 \) and \(\text{Sq}^{a}\text{Sq}^{-b} \notin \overline{A} \cdot L^0 \). (Therefore \(g_{a,b} \neq 0 \), if exists.) By comparing the dimensions,
\[
coker I_0 = Z_2 \{g_{a,b}, a > b > 0\},
\]
\[
\partial_a(g_{a,b}) = h_0h_a + h_0h_b, \ a - 2 \geq b > 0
\]
\[
\partial_a(g_{a+1,b}) = h_a h_{a+1}, \ a > 0
\]

and two sets of generators in the left hand side and right hand side correspond bijectively to each other. Thus the proof is completed.

Proposition 5.3

\[K = \overline{A} \cdot K + \overline{K} \ (\text{direct sum}).
\]

Proof. Let \(S = \mathbb{Z}_2[\text{Sq}^1] \). Then the short exact sequence of left \(A \)-modules:
\[0 \longrightarrow K \longrightarrow L^0 \longrightarrow S \longrightarrow 0
\]
induces the long exact sequence:
\[\cdots \longrightarrow \text{Ext}_i^*(L^0, \mathbb{Z}_2) \overset{I_*}{\longrightarrow} \text{Ext}_i^*(K, \mathbb{Z}_2) \overset{\partial_*}{\longrightarrow} \text{Ext}_{i+1}^{*,1}(S, \mathbb{Z}_2) \longrightarrow \text{Ext}_{i+1}^{*,1}(L^0, \mathbb{Z}_2) \longrightarrow \cdots
\]

By Proposition 5.2 and 4.4, \(\text{Ext}_0^*(K, \mathbb{Z}_2) \) is a \(\mathbb{Z}_2 \)-free module generated by \(g_{a,b} \), which is the cohomology class in the cobar construction \(\overline{F}(A^*, K) \) for \(a, b \), such that \(a > b \geq 0 \) and \(\text{Sq}^{a}\text{Sq}^{-b} \notin \overline{A} \cdot K \). In \(\text{Ext}_*(L^0, \mathbb{Z}_2) \), \(h'_0h_0 \neq 0, \ h'_0h_0 = 0, \ u > 0 \).

By comparing the dimensions of generators, \(g_{u,v}, \ u > v \geq 0 \), are generators in \(\text{Ext}_*(K, \mathbb{Z}_2) \) and \(F_0(1) = h'_0, \ F_1(h_0) = h'_0h_0 \),

Produced by The Berkeley Electronic Press, 1967
\[I_0(g_{u,v}) = g_{u,v}, \quad u > v > 0, \]
\[\partial_0(g_{u,v}) = h_u, \quad u > 0. \]

Corollary 5.4
\[\overline{A} = \overline{A}^0 + Z_2 \{ \text{Sq}^a \text{Sq}^b ; a > b \geq 0, a + 1 = b > 0 \}. \] (direct sum)

Proof. Apply Proposition 5.3 to the exact sequence (4.6) and we have \(I_0(g_{u,v}) = g_{u,v}, \quad a > b \geq 0, \) and \(g_{u,v}, \quad a > b \geq 0, \) are generators of \(\text{Ekt}_0(A^*, Z_2). \)

Let \(N^k \) be a \(Z_2 \)-module generated by \(x^n; n \geq 0 \) and \(n \equiv -1 \pmod{2^k} \) or \(n = 2^k - 1 \)

Lemma 5.5
\[N^k = \overline{A} \cdot N^k + Z_2 \{ x^{j-1}, 0 \leq j \leq k : x^{j-1-2^k-1}, j \geq k + 2 \}. \] (direct sum)

Proof. By Theorem 2.4. We denote by \(h_j, b_{i,j} \) the cohomology classes of \([x_{j-1}] \) and \([x_{j-1}^{j-2^k-1}] \) in \(\overline{F}(A^*, N^k) \), respectively. \(\deg h_j = 2^j - 1, \deg b_{i,j} = 2^j - 2^{k-1}. \)

Proposition 5.6
\[\text{Ext}_1^i(L^k, Z_2) = Z_2 \{ h_u, u \leq k ; g_{u,v}, u > v > k ; b_{i,j}, j \geq k + 2 \}. \]
\[\deg h_u = 2^u, \quad \deg b_{i,j} = 2^i - 2^{k-1}, \quad \deg g_{u,v} = 2^u + 2^v. \]

Proof. There is a morphism of short exact sequences of left \(A \)-modules:

\[
\begin{array}{cccc}
0 & \rightarrow & L^k & \rightarrow & A & \rightarrow & M^0 & \rightarrow & 0 \\
\uparrow & & \uparrow & & \uparrow & & \uparrow & & \\
0 & \rightarrow & K & \rightarrow & L^k & \rightarrow & N^k & \rightarrow & 0 \\
\end{array}
\]

This induces a morphism of long exact sequences for \(\text{Ext} \):

\[
\begin{array}{cccc}
\text{Ext}^{i+1}_1(Z_2, Z_2) & \xrightarrow{r_x} & \text{Ext}^i_1(M^0, Z_2) & \xrightarrow{r_x^1} & \text{Ext}^i_1(A, Z_2) & \xrightarrow{r_x} & \text{Ext}^i_1(L^k, Z_2) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\text{Ext}^{i+1}_1(N^k, Z_2) & \xrightarrow{r_x} & \text{Ext}^i_1(L^k, Z_2) & \xrightarrow{r_x} & \text{Ext}^i_1(K, Z_2) \\
\end{array}
\]

We denote \(F_0'(h_k) = h_j, \quad k \geq j \geq 0, \quad F_0'(b_{i,j}) = b_{i,j}. \) Then \(h_j = F_0'(h_j) = q_j F_0'(h_j) = q_j(h_j). \)
Aikawa: Ext\(_A(Z_2[y]/Z_2,Z_2)\), \(A\) being the mod 2 Steenrod algebra

\[
\partial_\alpha(g_{u,v}) = \begin{cases}
0, & u > v > k \\
h_0h_v, & u - 2 \geq v, \ u > k \geq v \\
h_0h_v + h_0h_{u+1}, & k \geq u \geq v + 2 \\
h_0h_{u+1}, & k \geq v = u-1 \geq 0.
\end{cases}
\]

Therefore \(\ker \partial_\alpha = Z_2\{g_{u,v}, u > v > k\}\). Thus the proof is completed.

Theorem 5.7

If \(k > 0\), then

\[\text{Ext}_4(M^k, Z_2) = Z_2\{h_0h_v, k < u \neq v + 1; b_{k,j}, j \geq k + 2\}.
\]

\[\deg (h_0h_v) = 2^u - 2^v + 2^k, \ \deg b_{k,j} = 2^j - 3 \cdot 2^{k-1}.
\]

Proof. By comparing the dimensions in the exact sequence (5.1),

\[\partial_\alpha(g_{u+1,v}) = h_0h_v + h_0h_{u+1}, \ u > k; \ \partial_\alpha(b_{k,j}) = b_{k,j}, \ j \geq k + 2.
\]

\[\partial_\alpha(g_{u,v}) = h_0h_v, \ u > v > k,
\]

and \(F_0(h_0h_v) = h_0h_v = F_1(h_0h_v)\) implies \(h_0h_v \neq h_0h_v\).

(Also we can show this directly by the method similar to the proof of Proposition 5.2.) Thus the proof is completed.

Proposition 5.8

\(\text{In Ext}_A(L^2, Z_2), g_{a,b}h_a \neq 0, g_{a,b}h_{a-1} = 0, g_{a,b}h_{b-1} = 0,
\)

\(g_{a,b}h_{a+1} = g_{a+1,b}h_a, g_{a,b}h_{b+1} = g_{a+1,b}h_a, a > b > k:
\)

\[g_{a,b}h_a + g_{a,b}h_b + g_{b,b}h_a = 0, a - 4 \geq b - 2 \geq c > k.
\]

\(\text{In Ext}_A(L^0, Z_2), a \geq 0,
\)

\[g_{a+3,a+3}h_a^2 = g_{a+3,a+3}h_{a+1}^2 = g_{a+3,a+3}h_{a+1}^2.
\]

Theorem 5.9

1. If \(\alpha\) and \(\beta\) are non-zero elements of \(\text{Ext}_A(Z_2, Z_2)\), and \(\alpha \beta \neq 0\), then \(\alpha \beta \neq 0\). In particular \(h_0 \beta \neq 0, u > k, \text{ in Ext}_4(M^k, Z_2),
\)

2. If \(\alpha, \beta, \text{ and } \gamma\) are in \(\text{Ext}_A(Z_2, Z_2), \text{ then we denote an iterated Massey product by}
\)

\[M(\alpha) = \langle \langle \cdots \langle \langle \alpha, \beta, \gamma\rangle, \beta, \gamma\rangle, \cdots \rangle, \beta, \gamma\rangle.
\]

If \(M(\alpha)\) and \(M(\alpha)\) are defined and \(M(\alpha) \neq 0\) in \(\text{Ext}_4(M^k, Z_2)\).

Proof. By Proposition 5.1.
Corollary 5.10

(1) \(h_{\alpha}h_{\alpha}h_{\alpha} > k, w \neq v \pm 1, v \neq w \pm 1, u \neq w \pm 1; \)
\(h_{\alpha}h_{\alpha}h_{\alpha} > k \)
are non-zero in \(\text{Ext}_{\alpha}(M^k, Z_2) \).

(2) \(c_{\alpha}, h_{\alpha}c_{\alpha} = c_{\alpha}h_{\alpha}, d_{\alpha}, P'_{\alpha}h_{\alpha}, P'_{\alpha}h_{\alpha}, P'_{\alpha}c_{\alpha}, P'_{\alpha}d_{\alpha} \)
are non-zero in \(\text{Ext}_{\alpha}(M^0, Z_2) \).

Remark. In theorem 5.8 and Corollary 5.9, if \(\alpha \) is an element in \(\text{Ext}_{\alpha}(M^k, Z_2) \) which is mapped to \(\alpha \) by \(F_n \), for an appropriate \(n \), then we denote this element by \(\gamma \). The representation of generators of \(\text{Ext}_{\alpha}(Z_2, Z_2) \) is due to [9] and [7].

§ 6. Tables.

We offer the tables of \(\text{Ext}_{\alpha}^s(L^0, Z_2), t - s \leq 29 \), and \(\text{Ext}_{\alpha}^s(M^0, Z_2), t - s \leq 27 \), in this section.

We first determine the former by determining the partial minimal resolution of \(L^0 \) over \(A \). Secondly we determine the latter by the former and the table of \(\text{Ext}_{\alpha}(Z_2, Z_2) \) in [9], [7] and the exact sequence (5.1) in the case \(k = 0 \). We only remark the fact that \(I_s \) is trivial for all generators in \(\text{Ext}_{\alpha}^s(Z_2, Z_2) \), except for \(h_0^{\alpha + 1} \), when \(F_s(h_0^{\alpha + 1}) = h_0^{\alpha}h_0^{s} \), \(s \geq 0 \), in that range of \(s \), \(t \).

Since \(\alpha_2 = <g_2, h_1, h_2^2>, \alpha_3 = <g_3, h_0, h_2^2>, \)
\(F(\alpha_2) = <F(g_2, i), h_0, h_2> = h_1 <h_3, h_1, h_2^2> = h_1 c_1 \)
\(F(\alpha_3) = <F(g_3, i), h_0, h_2^2> = h_1 h_3 + h_3 h_1 h_0, h_2^2> \)
\(= h_1 h_0, h_2^2> + <h_1, h_0, h_2^2> h_4 = h_1 c_0 + c_0 h_4. \)

By exactness \(h_4 c_0 = c_0 h_4 \). By constructing a minimal resolution \(h_4 c_0 = c_0 h_4 \neq 0 \) and by Theorem 5.8 \(h_4 c_0 h_4 \neq 0 \). By \(F(\alpha_2 h_1) = h_4 c_0 h_1 + c_0 h_4 h_1, h_4 c_0 h_1 \)
\(= c_0 h_4 h_1 = h_4 c_0 h_1. \)

As above \(h_4 c_0 \neq 0 \), but by constructing a minimal resolution \(c_0 h_4 = 0. \)

In Table 6.1 and 6.2, “bar” means “multiplied by \(h_0, h_1 \) or \(h_2 \).”

We imagine that \(bideg (h_0 h_3^2 d_3) = (6, 23), bideg (i) = (7, 23), \)
\(d_s(h_0 h_3^2 d_3) = s P_1 d_3, \pi_s(P_3) = Z_2 \oplus Z_1 \) in Table 8.3, and \((h_0 h_3^2 h_3) h_3 \neq 0 \) in Table 8.2 in [6]
are misprints and we think that they must be corrected in the following:
\(bideg (h_0 h_3^2 d_3) = (7, 23), bideg (i) = (6, 23), \)
\(d_s(i) = s P_1 d_3, \pi_s(P_3) = Z_2 \oplus Z_1, \)
and \((h_0 h_3^2 h_3) h_3 = 0, (c_0 h_4 h_3) h_4 \neq 0. \)

In Table 8.3, \((s P_1 h_3 c_0) h_1 = (s P_1 c_0) h_3^2, \)
\((s P_1 h_1 c_0) h_2 = (s P_1 d_3) h_3, \)
\((s P_1 h_3) h_3 = (s P_1 c_0) h_3^2. \)

In Table 8.4, \((s P_1 h_3) h_3 = (s P_1 c_0) h_3^2. \)
Aikawa: ExtA(Z2[y]/Z2, Z2), A being the mod 2 Steenrod algebra

ExtA(Z2[y]/Z2, Z2)

REFERENCES

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received July 9, 1968)
Table 6.1

<table>
<thead>
<tr>
<th>s</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>h_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$g_{s,1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$g_{s,1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$g_{s,2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>$g_{s,1} h_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>$g_{s,1}$</td>
<td>α_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$g_{s,2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>α_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>α_3</td>
<td>β_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>$g_{s,3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>α_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\alpha_2 = \langle g_{s,1}, h_1, h_3^2 \rangle
\]

\[
\alpha_4 = \langle g_{s,1}, h_0, h_3^2 \rangle
\]

\[
\alpha_3 h_3 = \alpha_1 h_3
\]
Aikawa: $\text{Ext}(\mathbb{Z}_2[y]/\mathbb{Z}_2, \mathbb{Z}_2)$, A being the mod 2 Steenrod algebra

Table 6.2

$\text{Ext}(\mathcal{M}^0, \mathbb{Z}_2)$

Ext of \mathcal{M}^0 with coefficients in \mathbb{Z}_2.