On Certain periodic rings

Isao Mogami*

*Okayama University

Copyright ©1985 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
ON CERTAIN PERIODIC RINGS

Dedicated to Professor Katsumi Numakura on his 60th birthday

ISAO MOGAMI

Let R be a ring (not necessarily with 1), N the set of nilpotent elements in R, and N^* the subset of N consisting of all a with $a^2 = 0$. Let D be the set of right and left zero-divisors in R. Given a positive integer $n > 1$, we set $E_n = \{ x \in R \mid x^n = x \}$; in particular, $E = E_2$. As is well known, if R is periodic then every element x in R can be written in the form $x = e + a$, where $a \in N$ and $e \in E_n$ for some n.

In this paper, we prove the following theorem, which includes all the results in [1].

Theorem. Let R be a periodic ring with N^* commutative.

1. Then N coincides with the Jacobson radical of R and $\overline{R} = R/N$ is a subdirect sum of fields.
2. Let $n > 1$ be a fixed positive integer. If every element d in D can be written in the form $d = e + a$, where $a \in N$ and $e \in E_n$, then \overline{R} is either a field or $\overline{E_n}$.

Proof. (1) Let J be the Jacobson radical of the periodic ring R, which is obviously a nil ideal. First, we claim that every idempotent \overline{e} of $\overline{R} = R/J$ is central. Since J is a nil ideal, we may assume from the beginning that e is an idempotent of R. By hypothesis, $eR(1-e) \cdot (1-e)Re = (1-e)Re \cdot eR(1-e)$, and so $eR(1-e)Re = 0$ (where 1 is used formally). Hence, by the semiprimeness of \overline{R}, we get $\overline{eR}(1-\overline{e}) = 0$, and therefore $\overline{ex} = \overline{exe}$ for all $x \in R$. Furthermore, $\overline{eR}(1-\overline{e})\overline{R} = 0$ yields $(1-\overline{e})\overline{Re} = 0$, and so $\overline{ex} = \overline{exe}$ for all $x \in R$. Thus we have seen that \overline{e} is central. Now, it is easy to see that every nilpotent element of \overline{R} generates a nil right ideal. Hence N coincides with J. As is easily seen, for any element $x \in R$ there exists a non-negative integer k such that $x - x^{k+2} \in N$. Hence \overline{R} is a subdirect sum of fields, by Jacobson’s commutativity theorem.

(2) Let x be an arbitrary element of R. If $x \in D$ then $x = x^{k+1}$ with some non-negative integer k. Then $e = x^{k+1}$ is a right or left unity of R, and therefore \overline{e} is the unity of the commutative ring \overline{R} and \overline{x} is a unit (see (1)). On the other hand, if $x \in D$ then $\overline{x^n} = \overline{x}$, by hypothesis.
In case $R = D$, it is clear that $\bar{R} = \bar{E}_n$. In what follows, we consider the case that $R \neq D$. Then, by the above claim, \bar{R} has the unity \bar{e}. It suffices therefore to show that if \bar{R} contains a non-unit $\bar{x} \neq 0$ then $\bar{R} = \bar{E}_n$. Actually, by the above claim, $\bar{f} = \bar{x}^{n-1}$ is an idempotent with $\bar{x}\bar{f} = 0$ and $\bar{R} = \bar{fR} \oplus (\bar{e} - \bar{f})\bar{R}$, so that $\bar{R} = \bar{E}_n$.

Combining the proof of Theorem (2) with [3, Proposition 2], we can easily see the following.

Corollary. Let R be a periodic ring with N^* commutative. If D is included in the subring $\langle E \cup N \rangle$ generated by $E \cup N$, then \bar{R} is either a field or a subdirect sum of finite prime fields.

Remark. Following [2], a ring R is called an I-ring (resp. I'-ring) if every element of R can be written as a product of elements in E (resp. $E \cup N$). Now, let R be a (not necessarily periodic) I'-ring with N^* commutative. Then, the argument employed in the proof of Theorem (1) enables us to see that every idempotent in the factor ring of R modulo its prime radical P is central. If $E \neq 0$, then R/P is an I-ring by [2, Lemma 1]. Hence R/P is a Boolean ring, and N coincides with P. Also, if N is multiplicatively closed (especially, if N is commutative) then N forms an ideal of R.

Acknowledgement. The author is grateful to Prof. H. Tominaga and Prof. Y. Hirano for their helpful suggestions and valuable comments.

References

Okayama University and Tsuyama College of Technology

(Received June 1, 1985)