On generalized uniserial blocks

Kaoru Motose* Yasushi Ninomiya†

*Shinshu University
†Shinshu University

ON GENERALIZED UNISERIAL BLOCKS

KAORU MOTOSE and YASUSHI NINOMIYA

Throughout R will represent a (unital) Artinian algebra over a field K of characteristic $p > 0$, $J(R)$ the radical of R, and G a finite group whose order is divisible by p. In [7, Theorem 6], M. Osima stated that the group algebra KG is uniserial if and only if G is p-nilpotent and a Sylow p-subgroup of G is cyclic. In §1, by making use of K. Morita [3] we formulate the same for RG (Theorem 1). In §2, we consider KG for a splitting field K. If a block B of KG has a cyclic defect group D then Dade's theorem [1, Theorem 78. 1] and [8, Lemma 4.2] enable us to see that the nilpotency index $t(B)$ of $J(B)$ is not greater than $|D|$ (cf. [4, Remark 1]). In Theorem 2, we shall prove that $t(B) = |D|$ if and only if B is a generalized uniserial ring.

1. At first we consider the case R is a simple algebra over K. As was stated in [5, Theorem 8], by making use of [7, Theorem 1] and [3, Theorem 8] (instead of [7, Theorem 6]) we have the following

Lemma 1. Let R be a simple algebra over K.

1. RG is primary decomposable if and only if G is p-nilpotent.
2. RG is uniserial if and only if G is a p-nilpotent group with a cyclic Sylow p-subgroup.

Now, we can prove our first theorem.

Theorem 1. RG is uniserial if and only if R is semisimple and G is a p-nilpotent group with a cyclic Sylow p-subgroup.

Proof. We assume that RG is uniserial. Since R is a homomorphic image of RG, R is uniserial. Let $R = R_1 \oplus \cdots \oplus R_t$ be a decomposition of R into primary rings, and $R_i = R_i/J(R_i)$. Then, RG being uniserial, G is a p-nilpotent group with a cyclic Sylow p-subgroup (Lemma 1 (2)). Since R_i is primary, R_i is isomorphic to the matrix ring $(S_i)_{n_i}$ with some completely primary ring S_i. Hence, we have $R_iG \cong (S_iG)_{n_i} \cong S_iG \otimes_K (K)_{n_i}$. Then by [5, Lemma 6], S_iG is uniserial. Let P be a Sylow p-subgroup of G. Since S_iP is a homomorphic image of S_iG and $S_iP/J(S_iP) \cong S_i/J(S_i)$, S_iP is a completely primary uniserial ring. If $J(S_j) \neq 0$ for some j, then it is obvious that $J(S_j)$ is not contained in the augmentation ideal J of S_jP. Further, since $g - 1 \in J \setminus J(S_j)P$ for
any \(g \neq 1 \) in \(P \), we see that \(f(S)P \) and \(J \) are incomparable. This yields a contradiction that \(S \) is not uniserial. Thus, \(R \) is semisimple. The converse part is also easy by Lemma 1 (2).

2. Let \(L \) be an extension field of the \(p \)-adic completion of the rationals, and \(R \) the complete local ring whose quotient field is \(L \). Let \(K \) be the residue class field of \(R \). Throughout the present section, we assume that \(L \) is a splitting field for \(G \).

Lemma 2. If \(B \) is a block of \(KG \) with a defect group \(D \), then the following conditions are equivalent:

1. \(D \) is cyclic and the decomposition matrix of \(B \) takes the form

\[
\begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & & \ddots & \\
0 & 0 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & & & \\
1 & 1 & \ldots & 1
\end{pmatrix}
\]

(1)

2. \(D \) is cyclic and the Cartan matrix of \(B \) is of the form

\[
\begin{pmatrix}
s+1 & s & \ldots & s \\
s & s+1 & \ldots & s \\
\vdots & & \ddots & \\
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{pmatrix}
\]

(II)

3. \(B \) is a generalized uniserial ring.

Proof. The implication (1) \(\Rightarrow \) (2) is obvious, and (2) \(\Rightarrow \) (3) is a consequence of [2, Folgerung 4]. (3) \(\Rightarrow \) (2): Since \(B \) is a generalized uniserial ring, by [6, Theorem 17] \(B \) has only a finite number of indecomposable modules. Hence, \(D \) is cyclic. The rest of the proof is evident by [3, Remark, p. 158]. (2) \(\Rightarrow \) (1): By Dade's theorem [1, Theorem 68.1], the Cartan matrix \((c_{ij}) \) of \(B \) is of the form
where the elements in the *-parts are 0 or 1. By (2), we have $s = 1$ or $a = 0$. First we consider the case $s = 1$. Let $\{U_i | 1 \leq i \leq a + b\}$ be a complete set of representatives of isomorphic classes of principal indecomposable B-modules, \overline{U}_i, the principal indecomposable RG-module such that $K \otimes \overline{U}_i \cong U_i$, and ϕ_i the character afforded by \overline{U}_i. Let $\{\chi_j | 1 \leq j \leq a + b + 1\}$ be a complete set of irreducible complex characters of B. Since $s = 1$, each ϕ_i is the sum of distinct two χ_j’s. When $a + b \leq 2$, it is trivial that the decomposition matrix of B takes the form (I). Hence, we suppose $a + b > 2$ and $\phi_1 = \chi_1 + \chi_2$. Since $(\phi_1, \phi_2) = c_{1k} = 1$ for $k \neq 1$, ϕ_k contains χ_1 or χ_2. We may assume here that ϕ_2 contains χ_1. If one of ϕ_i’s ($i \geq 3$), say ϕ_3, does not contain χ_1, then ϕ_3 contains χ_2. Since $(\phi_2, \phi_3) = c_{23} = 1$, ϕ_2 and ϕ_3 contain a character different from χ_1 or χ_2 in common. This yields a contradiction that $\{\chi_j\}$ is not a tree. We have therefore seen that each $\phi_i (1 \leq i \leq a + b)$ contains χ_1. Thus, the decomposition matrix of B takes the form (I). Next, we consider the case $s \neq 1$. Then $a = 0$ and the decomposition matrix of B takes the form (I) by [1, Theorem 68.1].

By Dade’s theorem [1, Theorem 68.1] and [8, Lemma 4.2], it is easy to see that if a defect group D of B is cyclic then $t(B) \leq |D|$. Hence, if a Sylow p-subgroup P of G is cyclic then the nilpotency index $t(G)$ of $f(KG)$ is not greater than $|P|$. Now, our attention will be directed towards the case $t(B) = |D|$ and the case $t(G) = |P|$.

Theorem 2. If a defect group D of a block B of KG is cyclic, then the following conditions are equivalent:

1. $t(B) = |D|$.
2. B is a generalized uniserial ring.
Proof. (1) \implies (2): By [Theorem 68.1], the Cartan matrix \((c_{kl})\) of \(B\) is of the form (II). Therefore we have \(|D| = t(B) \leq \max_i \{\sum_k c_{ik}\} \leq a + bs + 1 \leq (a + b) s + 1 = |D|\), whence it follows that \(a + bs + 1 = (a + b)s + 1 = |D|\). Hence, we have \(s = 1\) or \(a = 0\). First we consider the case \(s = 1\). Then \(a + b = |D| - 1\). Since \(a + b\) divides \(p - 1\), we have \(|D| = p\) and \(t(B) = \sum_i c_{ii} = p\) for some \(k\). Let \(U_i, \tilde{U}_i, \phi_i (1 \leq i \leq a + b), \chi_j (1 \leq j \leq a + b + 1)\) be as in the proof of Lemma 2. Since \(s = 1\), each \(\phi_i\) is the sum of distinct two \(\chi_j's.\) We suppose \(\phi_k = \chi_1 + \chi_2.\) Since \((\phi_k, \phi_l) = c_{kl} = 1\) for \(l \neq k\), \(\phi_k\) contains \(\chi_1\) or \(\chi_2.\) We suppose that \(m \phi_i's\) contain \(\chi_1\) and \(n \phi_i's\) do \(\chi_2.\) Now, let \(M, N\) be RG-submodules of \(\tilde{U}_k\) corresponding to \(\chi_1, \chi_2\) respectively. Since \(K \otimes \tilde{U}_k\) is uniserial by \(t(B) = p\), we may assume \(K \otimes M\) contains \(K \otimes N.\) Then all composition factors of \(K \otimes N\) appear among those of \(K \otimes M.\) Thus, we have \(n = 1.\) Rearranging \(\phi_i's\) and \(\chi_j's,\) the decomposition matrix of \(B\) takes the form (I). Next, we consider the case \(s = 0.\) Then \(a = 0\) and the Cartan matrix of \(B\) is of the form (II). Thus, by Lemma 2, \(B\) is a generalized uniserial ring. (2) \implies (1): Since \(B\) is a generalized uniserial ring, the Cartan matrix of \(B\) is of the form (II) (Lemma 2). Now, let \(f\) be an arbitrary primitive idempotent of \(B.\) Since \(\sum_k c_{ii} = se + 1 = |D|\) for \(1 \leq k \leq e = \) the number of non isomorphic principal indecomposable modules of \(B,\) the length of the unique composition series of \(Bf\) is \(|D|\). Therefore \(J(B)^{\leq 1}f \neq 0\) and \(J(B)^{\leq 0}f = 0.\) Hence \(t(B) = |D|\).

Corollary. If \(G\) has a cyclic Sylow \(p\)-subgroup of order \(p^a,\) then the following conditions are equivalent:

1. \(t(G) = p^a.\)
2. There exists a generalized uniserial block of defect \(a.\)

REFERENCES

1) Recently, S. Koshitani gave a different proof by making use of the result in [H. Kupisch : Projektive Moduln endlicher Gruppen mit zyklischer \(p\)-Sylow Gruppe, J. of Algebra 10 (1968), 1—7].
ON GENERALIZED UNISERIAL BLOCKS

SHINSHU UNIVERSITY

(Received April 30, 1977)