A note on conjugates II

Hisao Tominaga*
A NOTE ON CONJUGATES II

HISAO TOMINAGA

In this note, we use the following conventions: By a ring we mean a ring with an identity, and by a subring we mean one which contains this identity. By a simple ring we shall mean a two-sided simple ring with minimum condition for left ideals, and by a primary ring [a completely primary ring] a ring such that the (Jacobson) radical is nilpotent and the residue class ring modulo the radical is a simple ring [a division ring]. For any non-empty subset B of a ring R, $V_k(B)$ will denote the centralizer of B in R. If, for each element of a subring S of R with an inverse in R, the inverse is always contained in S, then S will be called a π-subring of R. For example, $V_k(B)$ and each subring with minimum condition for left ideals are π-subrings of R. R^* means the multiplicative group consisting of all regular elements of a ring R. And for any set S, $\#(S)$ will signify the cardinal number of S.

Recently, W.R.Scott proved the following powerful lemma [3, p.305]: Let D be an infinite division ring, S a proper division subring of D. Then $(D^* : S^*) = \#(D)$, where $(D^* : S^*)$ is the group index of S^* in D^*. And more recently, in [1], C.C.Faith has pointed out that the following lemma by F.Kasch in [2] is a direct consequence of Scott's lemma: Let S be an infinite division subring of a division ring D not contained in the centre of D. Then every element $d \in D$ which is outside of $V_d(S)$ possesses infinitely many conjugates xdx^{-1} with $x \in S^*$. On the other hand, in the previous note [4], the present author has obtained the following which contains Kasch's: Let R be an infinite simple subring of a ring U, and T the set of conjugates of an element $t \in U$ by all regular elements in R. Then $\#(T) = \#(R)$ or 1.

The purpose of this note is to prove a generalization of Scott's lemma, and to present, as its direct consequence, an extension of [4, Theorem].

Our fundamental lemma is the following:

Lemma 1. Let R be a primary ring with the radical N such that $\bar{R} = R/N$ is infinite, and S a π-subring of R. If $(R^* : S^*) < \#(\bar{R})$, where $(R^* : S^*)$ is the group index of S^* in R^*, then $S = R$.

Proof. Let $R = \sum e_{ij}$, where e_{ij}'s are matric units and $C = V_k(\{e_{ij}\})$ is a completely primary ring. If $n = 1$, then R (whence S) is completely primary, and let $\{\bar{r}_a\}$ be a linearly independent left basis of \bar{R} over $\bar{S} = 1$.
(S + N)/N, where \(\overline{r}_a \) is the residue class of \(r_a \in R \). Then, it is clear that \(r_{a \beta} \notin S^* \) if \(a \neq \beta \). Hence, by our assumption \((R^* : S^*) < \#(\overline{R}) \), we obtain \(\#(S) = \#(\overline{R}) \). And so, for each \(r \in R \), we can choose suitable \(s_1, s_2 \) and \(s \in S^* \) such that \(s_1 \neq s_2 \) (mod \(N \)), \(r \neq s_1 \) (mod \(N \)) for \(i = 1, 2 \), and \(r - s_1 = s(r - s_2) \). We obtain therefore \(r = (1-s)^{-1}(s_1 - ss_2) \in S \), whence it follows \(S = R \). Secondly, we shall prove the case \(n > 1 \). For each \(e_{ij} \) (\(i \neq j \)), \(\{ c + e_{ij} \mid c \text{ runs over a fixed complete representative system of } \overline{C} \} \) forms a subset of \(R^* \) whose cardinal number is \(\#(\overline{C}) = \#(\overline{R}) \). And so, there exist some \(c_1, c_2 \in C^* \) and \(s \in S^* \) such that \(c_1 \neq c_2 \) (mod \(N \)), and \(c_1 + e_{ij} = s(c + e_{ij}) \) is, that is,

\[
(*) \quad s = (c_1 + e_{ij})(c_2 + e_{ij})^{-1} = c_1c_2^{-1} + (1 - c_1c_2^{-1})e_{ij}.
\]

Since, for each \(c, c' \in C^* \), \(c'e^{-1} \notin (C \cap S)^* \) yields \(c'e^{-1} \notin S^* \), we obtain \((C^*: (C \cap S)^*) < \#(\overline{R}) = \#(\overline{C}) \). And then, \(C \cap S \) being evidently a \(\pi \)-subring of \(C \), the proof for the case \(n = 1 \) shows \(C \cap S = C \), that is, \(S \supseteq C \). Hence, noting that \(c_1 \neq c_2 \) (mod \(N \)), from (*) one will readily see that \(e_{ij} \) is contained in \(S \), accordingly so are all \(e_{ij} \)'s. And then, \(S \) being \(\sum \) \((C \cap S) e_{ij} \) necessarily, we obtain our assertion \(S = R \).

As an easy consequence of our theorem, we obtain the following extension of [4, Theorem].

Theorem 1. Let \(R \) be a primary subring of a ring \(U \) such that the residue class ring \(\overline{R} \) modulo its radical is infinite, and \(T \) the set of conjugates of an element \(t \subseteq U \) by all regular elements of \(R \). Then either \(\#(T) \geq \#(R) \) or \(\#(T) = 1 \).

Proof. Since \(\#(T) = (R^*: V_{\pi}(t)^*) \), we can apply Lemma 1 to \(R \) and its \(\pi \)-subring \(V_{\pi}(t) \). Hence our assertion is almost clear.

Of course, our theorem may be restated in the following way.

Theorem 1'. Let \(R \) be a primary subring of \(U \) such that the residue class ring \(R \) modulo its radical is infinite, and \(T \) a subset of \(U \) which is transformed into itself by all regular elements of \(R \). If \(\#(T) < \#(R) \), then \(T \subseteq V_{\pi}(R) \).

Finally, as a special case of Theorem 1, we obtain

Corollary 1. Let \(R \) be a primary subring of \(U \) which is of characteristic zero, and \(T \) the set of conjugates of an element \(t \subseteq U \) by all regular elements of \(R \). Then \(\#(T) \) is either infinite or 1.

Remark. Let \(a \) be an element of a ring \(A \). If \(xax = x \) has no non-zero solutions in \(A \), then \(a \) is called a root element. All the results of
A NOTE ON CONJUGATES II

this note except Corollary 1 are still valid for such R that the set of all root elements of R coincides with the radical N and R/N is an infinite simple ring.

REFERENCES

DEPARTMENT of MATHEMATICS,
OKAYAMA UNIVERSITY

(Received November 5, 1958)