On rings satisfying the identity
\[(x+x^2+\ldots+x^n)(n) = 0\]

Yasuyuki Hirano\(\ast\) Hisao Tominaga\(\dagger\)
Adil Yaqub\(\ddagger\)

\(\ast\)Okayama University
\(\dagger\)Okayama University
\(\ddagger\)University Of California
ON RINGS SATISFYING THE IDENTITY
\[(x + x^2 + \cdots + x^n)^{(n)} = 0\]

YASUYUKI HIRANO, HISAO TOMINAGA and ADIL YAQUB

Throughout the present paper, \(R \) will represent a ring with center \(C \). Let \(N \) be the set of nilpotents in \(R \), \(N^* \) the subset of \(N \) consisting of all \(a \) with \(a^2 = 0 \), \(E \) the set of idempotents in \(R \), and \(D \) the commutator ideal of \(R \). For \(x \in R \), we define inductively \(x^{(1)} = x \), \(x^{(k)} = x^{(k-1)} + x \), where \(x \cdot y = x + y + xy \). We may write formally \(x^{(k)} = (1 + x)^k - 1 \).

Let \(n \) be a positive integer, and consider the following properties:

(i) \((x + x^2 + \cdots + x^n)^{(n)} = 0 \) for all \(x \in R \).

(ii) \(N \) is commutative.

(ii)* \(N^* \) is commutative.

(iii) \([[a,x],x] = 0 \) for all \(a \in N \) and \(x \in R \).

(iv) If \(a \in N \), \(x \in R \) and \([a,x]^2 = 0 \) then \([a,x] \in C \).

(*) For any \(x \), \(y \in R \), \((x + xy)^n(y + yx) = 0 \) if and only if \(x = y \).

If \(R \) has 1, then (i) becomes

(i) \((1 + x + x^2 + \cdots + x^n)^n = 1 \) for all \(x \in R \).

The present objective is to prove the following theorems.

Theorem 1. Let \(R \) be a left s-unital ring satisfying (i). If \(R \) is normal (i.e., \(E \) is central) then \(N \) is a nil ideal and \(R/N \) is commutative.

Theorem 2. Let \(R \) be a left s-unital ring satisfying (i).

1. If \(R \) satisfies (ii)*, then \(N \) is a nil ideal and \(R/N \) is a commutative regular ring.

2. If \(R \) satisfies (ii), then \(N \) is a commutative nil ideal and \(R/N \) is a commutative regular ring.

3. If \(R \) satisfies (ii) and (iii) (or (iv)), then \(R \) is commutative and \(R/N \) is a regular ring.

Theorem 3. Let \(R \) be a left s-unital ring satisfying (i). Then \(N \) is a nil ideal and \(R = R_1 \oplus R_2 \), where \(R_1 \) is either 0 or a commutative regular ring of odd characteristic, \(R_2 \cong N \) and \(R_2/N \) is a Boolean ring.

Theorem 4. If \(R \) is a normal, left s-unital ring satisfying (i) and...
(ii), then \(R \) is commutative and \(R = R_1 \oplus R_2 \), where \(R_1 \) is either 0 or a regular ring of odd characteristic, \(R_2 \cong N \) and \(R_2/N \) is a Boolean ring.

Theorem 5 (cf. [4, Theorem 2]). A left \(s \)-unital ring \(R \) satisfies \((\ast)\) if and only if (a) \(R \) is commutative and \(R/N \) is a Boolean ring and (b) \(a^{2^n} = 0 \) for all \(a \in N \).

We start with the following lemma.

Lemma 1. Suppose that \(R \) satisfies \((i)_n\) and \(p^aR = 0 \), where \(p \) is a prime. Then there exists a positive integer \(m \) such that \(x^m = x^{2m} \) for all \(x \in R \).

Proof. Let \(y = x + x^2 + \cdots + x^n \), and \(n = p^a t \), where \(a \geq 0 \) and \((p, t) = 1 \). Then there exists \(u(\lambda) \in \mathbb{Z}[\lambda] \) such that \(y^{(t)} = (1 + y)^{(t)} - 1 = tx + x^2 u(x) \). Noting here that \((pR)^x = 0 \), we can easily see that \((tx + x^2 u(x))^{p^a} = 0 \). Because \((t, p) = 1 \), we readily obtain \(x^{p^a} - x^{p^a+1} f(x) = 0 \) with some \(f(\lambda) \in \mathbb{Z}[\lambda] \). Now, by making use of the argument employed in the proof of [1, Lemma], we can find a positive integer \(m \) such that \(x^m = x^{2m} \) for all \(x \in R \).

Remark 1. (1) Recently, Komatsu [5] proved that a ring \(R \) with 1 satisfies a polynomial identity \(x^{2m} - x^m = 0 \) for some positive integer \(m \) if and only if the addition of \(R \) is equationally definable in terms of the multiplication and the successor operation.

(2) Let \(p \) be a prime. If \((1+n)^n \equiv 1 \pmod{p} \) and \(p-1 \mid n \), then \(GF(p) \) satisfies \((i)_n\). For instance, \(GF(3) \) satisfies \((i)_n\).

(3) Let \(R \) be a left \(s \)-unital ring satisfying \((i)_n\). Let \(x \) be an arbitrary non-zero element of \(R \), and choose \(e \in R \) such that \(ex = x \). Then, by \((i)_n\),

\[
0 = ((1+e+e^2+\cdots+e^n)^n - 1)x = ((n+1)^n - 1)x.
\]

This means that the characteristic of \(R \) is non-zero. Furthermore, \(n \) has to be even. In fact, if \(n \) is odd, then

\[
0 = ((1-e+e^2-\cdots-e^n)^n - 1)x = -x,
\]

which is a contradiction. In particular, if \(p \) is a prime and \(n = p^b \) then \(p = 2 \).

Proof of Theorem 1. By Remark 1 (3), the characteristic of \(R \) is non-zero. Obviously, the hypothesis \((i)_n\) and the normality are inherited by subrings, so we may assume that the additive group of \(R \) is a \(p \)-group, and
therefore $p^nR = 0$ for some prime p. Then, by Lemma 1, there exists a positive integer m such that $x^m = x^{2m}$ for all $x \in R$, and so R satisfies the polynomial identity $[x^m, y] = 0$. Since $[E_{11}, E_{11} + E_{12}] = E_{12} \neq 0$ in $(GF(q))^2$ (q a prime), D is a nil ideal by [3, Proposition 2].

Remark 2. For $e \in E$, the following are equivalent:

1) $e \in C$.

2) $[e, a] = 0$ for all $a \in N^*$.

3) $[e, [e, a]] = 0$ for all $a \in N^*$.

4) $[(e + a)e, e(e + a)] = 0$ for all $a \in N^*$.

5) $[e, f] = 0$ for all $f \in E$.

In fact, it is clear that 1) implies 2) – 5), and 2) does 3). In order to see that each of 3) – 5) implies 1), given $x \in R$, we set $a = ex(1 - e) \in N^*$. It is easy to see that if 3) or 4) is satisfied then $a = 0$, i.e., $ex = exe$. Similarly, we can see that $xe = exe$. Finally, if 5) is satisfied, then $e + a \in E$ and $e + a = e(e + a) = (e + a)e = e$, whence it follows again $a = 0$, i.e., $ex = exe$; similarly $xe = exe$. In particular, R is normal if and only if E is commutative. and (iii) implies the normality of R. Furthermore, if N^* is central then R is normal and N coincides with the prime radical of R. In fact, if $a^n = 0$ and $a^{n-k}(Ra)^{k+1} = 0$ then $(a^{n-k-1}(Ra)^{k+1})^2 \subseteq a^{n-k-1}Ra^{n-k}(Ra)^{k+1} = 0$. Hence $a^{n-k-1}(Ra)^{k+1} \subseteq C$, and so $a^{n-k-1}(Ra)^{k+2} = Ra^{n-k}(Ra)^{k+1} = 0$. We get eventually $(Ra)^{n+1} = 0$.

In advance of proving Theorem 2, we state the next lemma.

Lemma 2. (1) If R satisfies (ii)* then R/P is normal, where P is the prime radical of R.

(2) If a π-regular ring R satisfies (ii)*, then N coincides with the Jacobson radical of R and R/N is strongly regular.

Proof. (1) Let \bar{e} be an arbitrary idempotent of $\bar{R} = R/P$. Since P is a nil ideal, we may assume from the beginning that e is in E. By hypothesis, $eR(1 - e) = (1 - e)R = (1 - e)R$, and so $eR(1 - e)Re = 0$. Hence $e\bar{R}(1 - e)\bar{R}e = 0$. By the semiprimeness of \bar{R}, we get $e\bar{R}(1 - e) = 0$, and therefore $e\bar{x} = \bar{x}e$ for all $x \in R$. Furthermore, $e\bar{R}(1 - e)\bar{R} = 0$ yields $(1 - e)\bar{R}e = 0$, and therefore $\bar{x}e = e\bar{x}$ for all $x \in R$. Thus, we have seen that \bar{e} is central.

(2) Let J be the Jacobson radical of the π-regular ring R. Obviously, J/P is a nil ideal of R/P. Since $R/J = (R/P)/(J/P)$ and R/P is normal by (1), it is easy to see that R/J is normal and any nilpotent element of
R/J generates a nil right ideal. Hence, R/J is reduced and N coincides with J. The reduced π-regular ring R/N is strongly regular (see, e.g. [2]).

Proof of Theorem 2. (1) As in the proof of Theorem 1, we may assume that $p^a R = 0$ with some prime p. Then, by Lemma 1, there exists a positive integer m such that $x^m = x^{2m}$ for all $x \in R$. Hence, by Lemma 2 (2), N coincides with the Jacobson radical of R and R/N satisfies the identity $x - x^{m+1} = 0$. By Jacobson's commutativity theorem, R/N is commutative.

(2) This is clear by (1).

(3) By the proof of (1) and [6, Theorem 1], R is commutative.

Lemma 3. If R satisfies $(i)_{2^a}$ and $2^a R = 0$, then N is a nil ideal and R/N is a Boolean ring.

Proof. Let $n = 2^k$. Obviously, $y = x + x^2 + \cdots + x^n \in N$, and so $x - x^{n+1} = y - xy \in N$. Then, noting that $x(1-x)^n - (x - x^{n+1}) \in 2R \subseteq N$, we readily see that $x - x^2 = x(1-x) \in N$. Now, we claim that for any prime q, $(\text{GF}(q))_2$ fails to satisfy $(i)_n$. If $q \neq 2$ then $x = E_{12}$ does not satisfy $(i)_n$. On the other hand, if $(\text{GF}(2))_2$ satisfies $(i)_n$ then, as we have seen just above, $x - x^2$ is nilpotent for all $x \in (\text{GF}(2))_2$. But this is not true for $x = E_{11} + E_{12} + E_{21}$. Thus, by [3, Proposition 2], D is a nil ideal, and so R/N is a Boolean ring.

Proof of Theorem 3. By Remark 1 (3), $hR = 0$ for some positive integer $h = 2^a' h'$, $(2, h') = 1$. Then, $R = R_1 \bigoplus R_2$, where $h'R_1 = 0$ and $2^a R_2 = 0$. If a is an element of R_1 with $a^2 = 0$ then, by $(i)_{2^a}$, we can easily see that $2^a a = 0$, and therefore $a = 0$. This proves that R_1 is a reduced ring and $N \subseteq R_2$. Now, the assertion is an easy combination of Theorem 2 (1) and Lemma 3.

Proof of Theorem 4. In view of Theorem 3, it remains only to prove that R_2 is commutative. Obviously, every element of R_2 is of the form $e + a$, where $e \in E \cap R_2$ and $a \in N$. Since E is central and N is commutative, it is immediate that R_2 is commutative.

Remark 3. As the following example shows, Theorem 4 is not true if we replace 2^k by an arbitrary positive integer: Let

$$R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{pmatrix} \mid a, b, c \in \text{GF}(4) \right\}.$$
ON RINGS SATISFYING THE IDENTITY

Then $12R = 0$ and R is a normal ring satisfying (i)$_2$ and (ii). But R is not commutative and R/N is not Boolean either.

Proof of Theorem 5. "Only if": Obviously, (5) implies (i)$_2$. We claim that R is normal. To see this, given $e \in E$ and $x \in R$, we put $a = ex(1-e)$. Since

$$(a-e-e(a-e) \circ (e-e\circ (a-e)) = a \circ (a) = -a^2 = 0,$$

(*) shows that $a-e = e$, and so $a = 0$, i.e., $ex = exe$. A similar argument gives $xe = exe$, and hence $ex = xe$. It is easy to see that $8R = 0$, and therefore R is a normal, left s-unital ring with $2^3 R = 0$ and satisfies (i)$_2$. We shall show that R satisfies (ii). Let x be an arbitrary element of R, and let e be such that $ex = x$. Since $(x+x^2)^{(2)} = 0 = (-x+x^2)^{(2)}$ by (i)$_2$, we readily obtain $4(x+x^2) = 0$. i.e., $4x = 4x^3$. Replacing x by $e+x$ in the last, we get

$$4x+4x^2 = 4(e+x)x = 4(e)x^3x = 4x + 4x^2 + 4x^3 - 4x^4.$$

Combining this with $4x = 4x^3$, we see that $4x = 4x^4 = 4x^3x = 4x^2$. Since $x^4 = -2x^3 - 3x^2 - 2x$ by (i)$_2$, we get

$$x^5 = -2x^4 - 3x^3 - 2x^2 = -2(-2x^3 - 3x^2 - 2x) - 3x^3 - 2x^2 = x^3 + 4x^2 - 4x = x^3.$$

This implies that $a^3 = 0$ for all $a \in N$, and therefore

$$a + a^2 \circ (a + a^2)^{(2)} \circ (-a) = -a, \text{ i.e., } a^{(2)} = 0.$$

Noting that N is a nil ideal by Theorem 1, we get for any $a, b \in N$

$$a \circ b = a \circ (a \circ b)^{(2)} \circ b = b \circ a,$$

which shows that N is commutative. Thus, by Theorem 4, R is commutative and R/N is a Boolean ring.

"If": First, we claim that every quasi-regular element of R is nilpotent. In fact, if a is quasi-regular then the nilpotency of $a + a^2$ yields that of a. Obviously, $(x + x^3)^{(2)} = 0$ for all $x \in R$. Conversely, if $(x + xy)^{(2)}(y + yx) = 0$ then $x + xy$ is nilpotent, and hence $y + xy = (x + xy)^{(2)}(y + yx) = x + xy$, whence it follows that $y = x$.

Remark 4. In order to prove the only if part of Theorem 5, we quoted Theorems 1 and 4. In case R has 1, we can prove it more directly. In fact, $x^5 = x^3$ yields that $u^2 = 1$ for every unit u in R. If u, v are units in R then $uv = (uv)^{-1} = v^{-1}u^{-1} = vu$. In particular, if a and b are in N then $[a, b] = [1 + a, 1 + b] = 0$, and so N is commutative. Now, let $a \in N, x \in R$. Since $(x + x^3) \circ (x^2 + x^4) = -8(x + x^3)^3 = 0$ and $(x^2 + x^4) \circ (x^2 + x^4) = 0$ by (i)$_2$ and x^4
is a central idempotent, we have \([a, x] = [a, x - x^4] = [a, x + x^2] - [a, x^2 + x^4] = 0\), and hence \(N \subseteq C\). Therefore, \(x = (x + x^2) - (x^2 + x^4) + x^4 \in C\) for all \(x\) in \(R\), and hence \(R\) is commutative.

REFERENCES

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN
OKAYAMA UNIVERSITY, OKAYAMA, JAPAN
UNIVERSITY OF CALIFORNIA, SANTA BARBARA, U.S.A.

(Received November 1, 1982)