On generalized p.p. rings

Yasuyuki Hirano*

*Okayama University
ON GENERALIZED P.P. RINGS

YASUYUKI HIRANO

A commutative ring R is called a generalized p.p. ring or for short, a g.p.p. ring if for each a in R there exists a positive integer n (depending on a) such that $a^n R$ is projective. In this paper we shall generalize the works of [1], [2], [4]. For instance, we prove that a commutative ring R is a g.p.p. ring if and only if R has a π-regular classical quotient ring Q and all idempotents in Q belong to R (Theorem 2); R is a g.p.p. ring if and only if R has a π-regular classical quotient ring and for each maximal ideal M of R, $R M$ is primary (Theorem 5). Moreover, we shall treat with formal power series rings over R and their classical quotient rings, and prove that R is a g.p.p. ring (resp. p.p. ring) if and only if some (and every) subring of the classical quotient ring of $R[[X_1, \ldots, X_n]]$ containing R is a g.p.p. ring (resp. p.p. ring) (Theorem 8).

Before stating our results we introduce the notion and terminology used in this paper. Throughout this paper R will denote a commutative ring with 1. R is called π-regular if for each a in R there exists a positive integer n and an element x in R such that $a^n = a^{2n} x$. By $Q(R)$ we denote the classical quotient ring of R. A ring R is said to be quasi-regular (resp. quasi π-regular) provided $Q(R)$ is regular (resp. π-regular). If K is an ideal of R, the radical of K, denoted by \sqrt{K}, consists of all elements a of R such that $a^t \in K$ for some positive integer t. Then K is called primary if $xy \in K$, $x \in K$ implies $y \in \sqrt{K}$, and R is said to be primary if (0) is primary. By $N(R)$ we denote the prime radical of R (i.e., $N(R) = \sqrt{(0)}$), and by $E(R)$ the set of all idempotents in R. Given a subset S of the ring R, $\text{ann}_R(S)$ denotes the annihilator of S in R.

We first consider the conditions for R to have a π-regular classical quotient ring.

Theorem 1. The following are equivalent:

1) R is a quasi π-regular ring.

2) For each zero-divisor $x \in R$, there exists a positive integer n such that $\text{ann}_R(x^n) = \text{ann}_R(x^{n+1})$ and the ring $\text{ann}_R(x^n)$ contains a non-zero-divisor.

3) For each $x \in R$, there exists a positive integer n and a non-zero-divisor $d \in R$ such that $x^n d = x^{2n}$. 7
Proof. 1) \(\Rightarrow 2 \). Let \(x \) be an arbitrary zero-divisor in \(R \). Since \(Q(R) \) is \(\pi \)-regular, \(x^nQ(R) = x^{n+1}Q(R) \) for some positive integer \(n \). Then \(\text{ann}_{R}(x^n) = \text{ann}_{Q(R)}(x^nQ(R)) \cap R = \text{ann}_{Q(R)}(x^{n+1}Q(R)) \cap R = \text{ann}_{R}(x^{n+1}) \). By the above, there is an element \(y \in Q(R) \) such that \(x^n = x^{2^n}y \). Then \(e = 1 - x^{2^n}y \) is a non-zero idempotent and \(\text{ann}_{Q(R)}(x^n) = eQ(R) \). Let \(e = cd^{-1} \), \(c, d \in R \). Then \(c \) is a non-zero-divisor of the ring \(\text{ann}_{R}(x^n) \).

2) \(\Rightarrow 3 \). If \(x \) is a non-zero-divisor in \(R \) then we can take \(x^n \) as \(d \) in 3), and so we assume that \(x \) is a zero-divisor. Choose a non-zero-divisor \(z \) of \(\text{ann}_{R}(x^n) = \text{ann}_{R}(x^{n+1}) \). We shall show that \(x^n + z \) is a non-zero-divisor in \(R \). Let \(a \in \text{ann}_{R}(x^n + z) \). Then \(ax^{2^n} = a(x^n + z)x^n = 0 \). Since \(\text{ann}_{R}(x^n) = \text{ann}_{R}(x^{2^n}) \), we see that \(a \in \text{ann}_{R}(x^n) \) and hence \(az = 0 \). But \(z \) is a non-zero-divisor of \(\text{ann}_{R}(x^n) \), and so \(a = 0 \).

3) \(\Rightarrow 1 \). Since \(d \) is invertible in \(Q(R) \), it holds that \(x^nQ(R) = x^{2^n}Q(R) \). This implies that \(Q(R) \) is \(\pi \)-regular.

Next we shall generalize [2, Theorem 3.4] and [4, Theorem 1.3].

Theorem 2. The following are equivalent :

1) \(R \) is a g.p.p. ring.
2) \(R \) is quasi \(\pi \)-regular and \(E(Q(R)) = E(R) \).

Proof. 1) \(\Rightarrow 2 \). Let \(x \) be an arbitrary zero-divisor in \(R \). Then \(x^nR \) is projective for some positive integer \(n \). It is easy to see that \(x^nR \) is projective if and only if \(\text{ann}_{R}(x^n) = eR \) for some \(e \in E(R) \). We show \(\text{ann}_{R}(x^{n+1}) \). If \(a \in \text{ann}_{R}(x^{n+1}) \), then \(ax \in \text{ann}_{R}(x^n) = eR \), and so \(ax = axe \). Thus \(x^nax = x^{n-1}xae = x^nea = 0 \). Therefore by Theorem 1 \(R \) is quasi \(\pi \)-regular. To prove \(E(Q(R)) = E(R) \), let \(f \in E(Q(R)) \). Then We can write \(f = cd^{-1} \) for some \(c, d \in R \). By hypothesis, \(\text{ann}_{R}(c^m) = gR \) for some \(m \) and for some \(g \in E(R) \). Since \(fQ(R) = c^kQ(R) \) for any positive integer \(k \), we can easily see \(f = 1 - g \in E(R) \).

2) \(\Rightarrow 1 \). Let \(x \in R \). Since \(Q(R) \) is \(\pi \)-regular, there is an element \(y \in Q(R) \) and a positive integer \(n \) such that \(x^n = x^{2^n}y \). Then by hypothesis the idempotent \(e = x^n y \) is in \(R \) and hence \(\text{ann}_{R}(x^n) = \text{ann}_{Q(R)}(x^n) \cap R = (1 - e)Q(R) \cap R = (1 - e)R \).

Corollary 3. The following are equivalent :

1) \(R \) is a g.p.p. ring which contains no infinite set of orthogonal idempotents.
2) \(R \) is a finite direct sum of primary rings.
We now consider the relationship between g.p.p. rings and p.p. rings. It is not difficult to see that \(R \) is a p.p. ring if and only if \(R \) is a reduced g.p.p. ring. More generally we have the following.

Proposition 4. If \(R \) is a g.p.p. ring then \(R/N(R) \) is a p.p. ring.

Proof. Let \(x \) be an arbitrary non-nilpotent element in \(R \). By hypothesis there exists a positive integer \(n \) and a non-zero-divisor of \((1-e)R\). Let us set \(\bar{R} = R/N(R) \). We shall show that \(\bar{x}^n = x^n + N(R) \) is a non-zero-divisor of \((1-e)\bar{R}\). If \(d \in (1-e)R \) and \(dx^n \in N(R) \), then \((dx^n)^m = 0 \) for some positive integer \(m \). Since \(x^n \) is a non-zero-divisor of \((1-e)R\), we see \(d^m = 0 \), that is \(d \in N(R) \). Thus \(\bar{x}^n \) is a non-zero-divisor of \((1-e)\bar{R}\), which implies that \(\text{ann}_R(\bar{x}^n) = \bar{e}\bar{R} \). Since \(\bar{R} \) is reduced, we can easily see that \(\text{ann}_R(\bar{x}) = \text{ann}_R(\bar{x}^n) \). In consequence, we have proved \(\text{ann}_R(\bar{x}) = \bar{e}\bar{R} \).

Remark. Suppose \(R \) is quasi \(\pi \)-regular. Then, using Theorem 1, we can also prove that \(R/N(R) \) is quasi-regular.

The next corresponds to [1, Proposition 1].

Theorem 5. The following are equivalent:

1) \(R \) is a g.p.p. ring.

2) \(R \) is quasi \(\pi \)-regular and for each maximal ideal \(M \) of \(R \), \(R_M \) is a primary ring.

Proof. 1) \(\Rightarrow \) 2). By Theorem 2, \(R \) is quasi \(\pi \)-regular and \(E(Q(R)) = E(R) \). Let \(M \) be a maximal ideal of \(R \), and set \(K = \{ a \in R \mid sa = 0 \text{ for some } s \in R-M \} \). For each \(e \in E(Q(R)) \) \((= E(R))\), either \(e \in R-M \) or \(1-e \in R-M \). Thus either \(1-e \in K \) or \(e \in K \). Since \(Q(R) \) is \(\pi \)-regular, we can easily see that \(KQ(R) \) is a primary ideal of \(Q(R) \). Combining this with \(KQ(R) \cap R = K \), we also see that \(K \) is primary. If \(S \) denotes the canonical image of \(R-M \) in \(\bar{R} = R/K \), each element of \(S \) is a non-zero-divisor and \(R_M \) is isomorphic to the localization of \(\bar{R} \) by \(S \). Therefore, since \(\bar{R} \) is primary, \(R_M \) \((\simeq \bar{R}_S)\) is primary.

2) \(\Rightarrow \) 1). Let \(M \) be a maximal ideal of \(R \), and define \(K \) in the same way as above. We show that \(K \) is a primary ideal of \(R \). Given \(a, b \in R \) such that \(ab \in K \). Then, by the definition of \(K \), we see \(\bar{a}\bar{b} = 0 \) in \(\bar{R}_M \). Since \(R_M \) is primary, either \(\bar{a} = 0 \) or \(\bar{b} \in N(R_M) \), and so either \(a \in K \) or \(b \in \sqrt{K} \). Thus we have shown that \(K \) is primary. Since \(KQ(R) \cap R = K \), we can easily see that \(KQ(R) \) is a primary ideal of \(Q(R) \). Therefore,
for each \(e \in E(Q(R)) \), either \(e \in KQ \) or \(1-e \in KQ \). If \(e \in KQ \), then \(se = 0 \) for some \(s \in R-M \). On the other hand, if \(1-e \in KQ \) then \(s'(1-e) = 0 \) for some \(s' \in R-M \), that is, \(s'e = s' \). Now we show that \(e \) is in \(R \). Let \(T = \{ a \in R \mid ae \in R \} \). As we have just seen above, there is no maximal ideal which contains \(T \). Thus \(T = R \), and hence \(e \in R \), proving our assertion. Therefore, by Thorem 2, \(R \) is a g.p.p. ring.

Finally, we shall investigate formal power series rings and their classical quotient rings. We begin with some preliminary results.

Lemma 6. Let \(R((X)) = \{ \sum_{n=r}^{\infty} a_n X^n \mid a_n \in R, r \in \mathbb{Z} \} \). Then it holds that \(E(R((X))) = E(R) \).

Proof. We first show that if \(e = a_0 + a_1 X + \cdots \) is an idempotent then \(e \in R \). Suppose to the contrary \(e \notin R \), and let \(n \) be the smallest positive integer such that \(a_n \neq 0 \). Then we obtain \(a_0 = a_0 \) and \(a_n = 2a_0a_n \). From these we see that \(2a_0a_n = (2a_0)^2a_n = 4a_0^2a_n \), and hence \(a_n = 2a_0a_n = 0 \), a contradiction.

Next we shall prove that if \(e = a_0X^m + \cdots + a_0 + a_1X + \cdots (m \leq 0) \) is an idempotent then \(e \) is in \(R \). We proceed by induction on \(m \). As we have done, our assertion is true for \(m = 0 \). So we may assume that our assertion is true for \(m \geq k+1 \). In case \(m = k \), we consider the ring \((R/(a_0))(X) \) and the canonical image \(\hat{e} \) of \(e \). Then, by induction hypothesis, we conclude that \(a_i \in (a_k) \) for all \(i \neq 0 \). Since \(e \) is an idempotent, we get \(a_k = 0 \), and hence \(a_k = \sum_{i=k}^{0} a_{k-i} a_i = 2a_0 a_0 \) and \(a_0 = \sum_{i=k}^{0} a_0 a_{k-i} = a_0 \). Therefore we have \(a_k = 2a_k \), namely \(a_k = 0 \), and hence \(a_i = 0 \) for all \(i \neq 0 \).

Lemma 7. If \(R \) is quasi \(\pi \)-regular (resp. quasi-regular), then so is every intermediate ring containing \(E(Q(R)) \) between \(R \) and \(Q(R)((X)) \).

Proof. First we show that \(Q = Q(R)((X)) \) is \(\pi \)-regular. Let \(P \) be an arbitrary proper prime ideal of \(Q \). Then \(P' = P \cap Q(R) \) is a prime ideal of \(Q(R) \) and \(Q(R)/P' \) is a field. Hence, \(Q/P'Q \cong (Q(R)/P')(X) \) is a field, and so \(P \) coincides with the maximal ideal \(P'Q \). Thus, \(Q \) is \(\pi \)-regular (see, e.g., [3, Corollary 4]).

Next, let \(S \) be an intermediate ring between \(R \) and \(Q \). Then for each \(s \in S \) there exists a positive integer \(n \) and \(d \in Q \) such that \(s^{2n}d = s^n \). By Lemma 6, \(e = s^n d \in Q(R) \). Then, \(s^n + 1 - e \) is a non-zero-divisor of \(S \) and \(s^n (s^n + 1 - e) = s^{2n} \). Hence, \(S \) is quasi \(\pi \)-regular by Theorem 1.
We can now prove the following

Theorem 8. Let m be a positive integer. A commutative ring R is a g.p.p. ring (resp. p.p. ring) if and only if $E(Q(R)) = E(R)$ and some (and every) intermediate ring between R and $Q(R)((X_1, \cdots, X_m))$ is a g.p.p. ring (resp. p.p. ring).

Proof. Suppose R is a g.p.p. ring, and let S be an intermediate ring between R and $Q = Q(R)((X_1, \cdots, X_m))$. Then S is quasi-regular by (Theorem 2 and) Lemma 7, and $E(Q(S)) = E(S) (= E(R))$ by Lemma 6. Therefore S is a g.p.p. ring by Theorem 2.

Conversely, assume that a subring S of Q containing R is a g.p.p. ring. Let r be an arbitrary element of R. Then there exists a positive integer n and $e \in E(S)$ such that $\text{ann}_S(r^n) = eS$. Since $e \in E(R)$ by Lemma 6, we have $\text{ann}_R(r^n) = \text{ann}_S(r^n) \cap R = eS \cap R = eR$. Therefore R is a g.p.p. ring.

Acknowledgement. The author wishes to express his thanks to Professor M. Ōhori for his valuable comments in preparing this paper.

References

