Note on strongly M-injective modules

Shoji Morimoto*

*Hagi Koen Gakuin High School

Copyright ©1983 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
NOTE ON STRONGLY M-INJECTIVE MODULES

SHOJI MORIMOTO

Given a unitary left module M over a ring R with identity, G. Azumaya [1] introduced the useful notion of M-projective and M-injective modules; the notion of a strongly M-projective module has subsequently been given by K. Varadarajan [8]. In this note, we investigate strongly M-injective modules. Let t be the left exact preradical (for R-mod) corresponding to the left linear topology which has the smallest element $l_R(M)$, the left annihilator of M. We prove first that a strongly M-injective module is nothing but a t-weakly divisible module (Theorem 1.3); in particular, if M is faithful then every strongly M-injective module is injective which corresponds to [1, Theorem 14]. Next, we give the conditions for t to be a radical and to be stable (Theorems 2.4 and 2.7).

Throughout this note, R denotes a ring with identity, and modules mean unitary left R-modules, unless otherwise specified. The category of all modules is denoted by R-mod, and the injective hull of $A \in R$-mod by $E(A)$. As for terminologies and basic properties concerning preradicals and torsion theories, we refer to [6]. If r is a left exact preradical, then $L(r) = \{ s \in R \mid r(s) = r(s) \}$ is a left linear topology on R. As is well-known, $L(r)$ has the smallest element if and only if $T(r)$ is closed under direct products (see, [3, III. 2. E4]).

In what follows, we fix a module M and denote by t the left exact preradical corresponding to the left linear topology which has the smallest element $T = l_R(M)$. As is easily seen, $t(A) = r_A(T) = \{ a \in A \mid Ta = 0 \}$ ($A \in R$-mod), and so A is t-torsion if and only if $TA = 0$.

1. A module Q is called strongly M-injective if every homomorphism of any submodule of M into Q can be extended to a homomorphism of M' into Q for any index set I. Clearly, every injective module is strongly M-injective and every strongly M-injective module is M-injective. But the converse is not necessarily true (see Examples 1.6 and 1.8). Also, a direct product of modules is strongly M-injective if and only if so are all its factors.

Now, let r be a preradical. A module Q is said to be r-weakly divisible (resp. r-divisible) if for any exact sequence in R-mod $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ with B (resp. C) r-torsion, $\text{Hom}_R(-, Q)$ preserves the exactness. Since M is t-torsion, every t-weakly divisible module is strongly M-injective.
Lemma 1.1. Let Q be a module. Then there holds the following:

1) Q is strongly M-injective if and only if so is $t(Q)$.
2) Q is t-weakly divisible if and only if so is $t(Q)$.

Proof. As the proofs of the both are quite similar, we prove only (1). Suppose first that Q is strongly M-injective, and consider a row-exact diagram in R-mod

$$
\begin{array}{c}
0 \rightarrow N \overset{i}{\rightarrow} M' \\
\downarrow f \\
t(Q) \\
\downarrow j \\
Q
\end{array}
$$

where j is the inclusion. Then there exists $g : M' \rightarrow Q$ such that $g \circ i = j \circ f$, and $g(M') = g(t(M')) \subseteq t(Q)$. Thus $t(Q)$ is strongly M-injective. Conversely, suppose that $t(Q)$ is strongly M-injective and consider a row-exact diagram in R-mod

$$
\begin{array}{c}
0 \rightarrow N \overset{i}{\rightarrow} M' \\
\downarrow f \\
Q
\end{array}
$$

Since N is t-torsion, $f(N) \subseteq t(Q)$, and therefore, by assumption, $g \circ i = f$ with some $g : M' \rightarrow t(Q)$. Thus Q is strongly M-injective.

Lemma 1.2. The following are equivalent for a module Q:

1) $t(Q)$ is strongly M-injective.
2) $t(Q)$ is t-weakly divisible.
3) $t(Q)$ is injective as a left R/T-module.

Proof. Obviously, 2) \Rightarrow 1).

1) \Rightarrow 3). Consider a row-exact diagram in R/T-mod

$$
\begin{array}{c}
0 \rightarrow I/T \overset{i}{\rightarrow} R/T \\
\downarrow f \\
t(Q)
\end{array}
$$

Since R/T can be embedded into a direct product of copies of M and $t(Q)$ is strongly M-injective by assumption, there exists an R-homomorphism $g : R/T \rightarrow t(Q)$ such that $g \circ i = f$.

3) \Rightarrow 2). Consider a row-exact diagram in R-mod

http://escholarship.lib.okayama-u.ac.jp/mjou/vol25/iss2/10
NOTE ON STRONGLY M-INJECTIVE MODULES

\[\begin{array}{c}
0 \longrightarrow A \overset{i}{\longrightarrow} B \\
\downarrow f \\
\downarrow \tau(Q)
\end{array} \]

where B is t-torsion. Then, regarding the above diagram as in R/T-mod., we find an R/T-homomorphism $g : B \twoheadrightarrow \tau(Q)$ such that $g \circ i = f$, and hence $\tau(Q)$ is t-weakly divisible.

Now, combining Lemmas 1.1 and 1.2, we readily obtain

Theorem 1.3. The following conditions are equivalent for a module Q:
1) Q is strongly M-injective.
2) Q is t-weakly divisible.
3) $\tau(Q)$ is injective as a left R/T-module.

In particular, if every t-torsion module is strongly M-injective, then every R/T-module is injective, and hence R/T is semisimple artinian.

As is easily seen, M is faithful if and only if $t=1$. Thus we have

Corollary 1.4. If M is faithful, the following are equivalent:
1) Q is strongly M-injective.
2) Q is t-divisible.
3) Q is injective.

Corollary 1.5. Let Q be a module with $E(Q)$ t-torsion. Then the following are equivalent:
1) Q is strongly M-injective.
2) Q is t-divisible.
3) Q is injective.

Proof: It suffices to show that 1) \Rightarrow 3). Since Q is t-weakly divisible and $E(Q)$ is t-torsion, Q is a direct summand of $E(Q)$. Hence $Q = E(Q)$.

We give here an example of a strongly M-injective module which is not injective.

Example 1.6. Let K be a field, and $R = \begin{pmatrix} K & K \\ 0 & K \end{pmatrix}$. Then $M = \begin{pmatrix} K & K \\ 0 & 0 \end{pmatrix}$ is an idempotent two-sided ideal of R. Now, we let (T_1, T_2, T_3) be the 3-fold torsion theory corresponding to M (see, e.g. [4]). Since R/M is a flat right R-module, T_1 is a TTF-class. Let t be the torsion functor
corresponding to \((T_1, T_2)\). Then, as is well-known, the left Gabriel topology corresponding to \(t\) has the smallest element \(l_t(M)\). Since \(E(R) = \begin{pmatrix} K & K \\ K & K \end{pmatrix}\), \(M\) coincides with \((E(R))\) and is strongly \(M\)-injective. However, \(M\) is not injective, since it is not a direct summand of \(_RR \).

Combining Lemma 1.1 and [7, Theorem 2.8] with the latter part of Theorem 1.3, we readily obtain

Corollary 1.7. The following conditions are equivalent:

1) Every module is strongly \(M\)-injective.

2) Every \(t\)-torsion module is strongly \(M\)-injective.

3) \(R/T\) is semisimple artinian.

4) \(M^J\) is completely reducible for any index set \(J\).

5) Every cyclic module is strongly \(M\)-projective.

6) Every module is strongly \(M\)-projective.

Example 1.8. Let \(M\) be a field, and \(R = M^J\), where \(J\) is an arbitrary infinite set. Then \(M\) is a simple \(R\)-module. Clearly, \(M^J\) is not completely reducible. In view of Corollary 1.7, this shows that there exists an \(M\)-injective module which is not strongly \(M\)-injective.

2. Given a left exact preradical \(r\), we define the following left exact preradicals \(r'\) and \(r_2\) (for \(R\)-mod):

\[
 r'(A) = \{a \in A \mid IJa = 0 \text{ for some } I \text{ and } J \text{ in } L(r)\};
\]

\[
 r_2(A)/r(A) = r(A/r(A)).
\]

Lemma 2.1.

1) \(r(A) \subseteq r'(A) \subseteq r_2(A)\).

2) If \(a \in r_2(A)\), then \(SLa = 0\) for some \(I \in L(r)\), where \(S = \bigcap_{I \in L(r)} I\).

3) \(L(r') = \{rK \subseteq _RR \mid K \supseteq IJ \text{ for some } I \text{ and } J \text{ in } L(r')\}\).

4) \(r = r'\) if and only if \(L(r)\) is closed under finite products.

5) If \(L(r)\) has the smallest element \(S\), then \(L(r_2)\) has the smallest element \(S^2\).

6) \(r = r_2\) if and only if \(r\) is a radical.

7) If \(L(r)\) has the smallest element, then \(r' = r_2\).

Proof. We can easily see (2)—(4) and (6). Moreover, (5) and (7) follow from (2). It suffices therefore to prove (1). Clearly, \(r(A) \subseteq r'(A)\) for any \(A \in R\)-mod. If \(x \in r'(A)\), then there exist \(I\) and \(J\) in \(L(r)\) such
that $\mathcal{U}x=0$. Since $r(A) = \{ y \in A \mid l_y(y) \in L(r) \}$, we have $f x \subseteq r(A)$. Thus, $f \tilde{x} = 0$, where $\tilde{x} = x + r(A) \subseteq r'(A)/r(A)$. This means $\tilde{x} \subseteq r'(A)/r(A) \subseteq r(A/r(A))$, and therefore $x \subseteq r_2(A)$.

The next shows that (1), (2) and (3) in [5, Theorem 6] are still equivalent for $n=1$.

Corollary 2.2 ([3, III. 2. E5]). t is a radical if and only if $T = T^2$.

Proposition 2.3. If r is a left exact preradical, then the following are equivalent:

1) r is a radical.
2) Every r-weakly divisible module is r_2-weakly divisible.
3) Every r-torsion r-weakly divisible module is r-divisible.

Proof. Obviously, 1) implies 2).

2) \Rightarrow 3). Let A be an r-torsion r-weakly divisible module. Then $A = r(A) = r(E(A))$. Since A is r_2-weakly divisible by assumption, it is a direct summand of $r_2(E(A))$. On the other hand, it is essential in $r_2(E(A))$, and so $A = r_2(E(A))$. Hence, $r(E(A)/A) = r(E(A)/r(E(A))) = r_2(E(A))/r(E(A)) = 0$, proving that A is r-divisible.

3) \Rightarrow 1). Let A be a module. Since $r(E(A))$ is r-divisible by assumption, [7, Proposition 1.2] shows that

$$0 = (r(E(A)) + r(E(A)))/r(E(A)) = r(E(A)/r(E(A))) \supseteq r(A + r(E(A))/r(E(A))) = r(A/r(A)),$$

proving that r is a radical.

Combining Proposition 2.3 with Corollary 2.2, we get at once

Theorem 2.4. The following are equivalent:

1) Every t-weakly divisible module is t_2-weakly divisible.
2) Every t-torsion t-weakly divisible module is t-divisible.
3) t is a radical.
4) $T = T^2$.

A preradical r is said to be stable if $T(r)$ is closed under injective hulls. As another application of Proposition 2.3, we have

Lemma 2.5 ([3, Proposition I.3.2]). Every stable left exact preradical r is a radical.
Proof. If A is an r-torsion r-weakly divisible module, then $A = r(A) = r(E(A)) = E(A)$. Hence A is r-divisible, and therefore r is a radical by Proposition 2.3.

Proposition 2.6. Let r be an idempotent preradical. If every r-torsion r-weakly divisible module is injective, then r is stable, and conversely.

Proof. Let $A \in T(r)$. Since $r(E(A))$ is injective by assumption, it is a direct summand of $E(A)$. Furthermore, it is essential in $E(A)$, and therefore $r(E(A)) = E(A)$. The converse is clear.

Now, we can prove the next

Theorem 2.7. The following conditions are equivalent:
1) Every t-torsion strongly M-injective module is injective.
2) Every injective left R/T-module is injective.
3) t is stable.
4) t is a radical and R/T is flat as a right R-module.
5) $T = T^2$ and R/T is flat as a right R-module.
6) $(T(t)^t, T(t), F(t))$ is a hereditary 3-fold torsion theory, where $T(t)^t = \{ A \in R \text{-mod} | \text{Hom}_R(A, X) = 0 \text{ for all } X \in T(t) \}$.

Proof. Obviously, 4) \Rightarrow 5), and it is well-known that 5) \iff 6) \Rightarrow 3). The equivalence of 1) \iff 3) is immediate by Lemma 1.2 and Proposition 2.6. Furthermore, 3) and 4) are equivalent by Lemma 2.5 and [2, Theorem 6].

Acknowledgement. The author would like to thank the referee and Professor Y. Kurata for their helpful suggestions.

REFERENCES

NOTE ON STRONGLY M-INJECTIVE MODULES

HAGI KÖEN GAKUIN HIGH SCHOOL

(Received May 6, 1983)