On rings satisfying the identity \((X - X^n)^2 = 0\)

Hisao Tominaga\(^*\) \hspace{1cm} Adil Yaqub\(^†\)

\(^*\)Okayama University
\(^†\)University Of California
ON RINGS SATISFYING THE IDENTITY
\[(X - X^n)^2 = 0\]

HISAO TOMINAGA and ADIL YAQUB

Throughout, \(R \) will represent a ring with center \(C \), and \(N \) the set of nilpotent elements in \(R \). Let \(n \) be a positive integer greater than 1, and \(E_n \) the set of elements \(x \) in \(R \) such that \(x = x^n \).

We consider the following properties:

(i) \(N \) is commutative.
(ii) \((x - x^n)(y - y^n) = 0 \) for all \(x, y \in R \).
(iii) \((x - x^n)^2 = 0 \) for all \(x \in R \).
(iv) \((x - x^n)^n = 0 \) for all \(x \in R \).
(v) Any \(x \in R \) may be written in at most one way in the form \(x = b + a \), where \(b \in E_n \) and \(a \in N \). (There may be elements \(x \) in \(R \) which cannot be written in the given form.)

If \(R \) satisfies (ii) and (v), then \(R \) is called a generalized \(n \)-ring. Following [4], \(R \) is called a generalized \(n \)-like ring if \((xy)^n - x^n y^n + xy \)

Following [4], \(R \) is called a generalized \(n \)-like ring if \((xy)^n - x^n y^n + xy \)

The major purpose of this paper is to prove the following

Theorem 1. If \(R \) satisfies (i), (ii) and (v), then \(R \) is commutative.

In preparation for proving Theorem 1, we state the next lemma.

Lemma 1. (1) Let \(R \) be a ring satisfying (i) and (ii). Then \(N \) is a commutative nil ideal of bounded index at most 2. If there exists an integer \(m > 1 \) such that \(m^2 x^4 = 0 \) for all \(x \in R \), then \(x^{m^2} \in E_n \) for all \(x \in R \).

(2) If \(R \) satisfies (i) and (ii), then there exists a finite set \(P \) of prime numbers such that \(R = \sum_{p \in P} R^{(p)} \), where \(R^{(p)} = \{ x \in R \mid px \in N \} \).

(3) Let \(R \) be a ring satisfying (i), (ii) and (v). If there exists an integer \(m > 1 \) such that \(m^2 x^4 = 0 \) for all \(x \in R \), then \(x^{m^2} \in E_n \) for all \(x \in R \) and \(a \in N \).

Proof. (1) By (ii), there holds \(x^{2n} = 2x^{n+1} - x^2 \). Hence, \(N \) is a commutative nil ideal of bounded index at most 2 by [2, Lemma 2 (2)]. Furthermore, an easy induction shows that \(x^{m^2 + 2} = \mu x^{n+1} - (\mu - 1)x^2 \), and so \(x^{m^2} = \mu(x^{n+1} - x^2) + x^2 \) for any positive integer \(\mu \); in particular, \(x^{m^2} = 181 \)
Let $m=(2^n-2)^2$. Since N is an ideal of R by (1), we see that
$(2^n-2)x=2^n(x-x^n)-(2x-(2x)^n)\in N$ for all $x \in R$, i.e., $m(R/N)=0$. As is well known, the factor ring R/N satisfying the polynomial identity $X-X^n=0$ is a subdirect sum of finite fields (see, e.g., [1, Theorem 19]). Noting here that $m(R/N)=0$, we can easily see the assertion. Needless to say, every $R^{(p)}$ is an ideal of R containing N.

(3) Let $x \in R$, and $a \in N$. According to (1), we have $(x+a)^m=x^{m^2}+a'+a''$, where $x^{m^2} \in E_n$, $a'=\sum_{t=0}^{n-1} x^{m^2-t} ax^t \in N$, and $a'' \in N^2 \subseteq C$. Since $(x+a)^m$ is also in E_n, (iii)$_n$ shows that $a'+a''=0$. Hence, $[x^{m^2},a]=[x,a']+[x,a'']=0$.

Proof of Theorem 1. In view of Lemma 1 (2), there exists a finite set P of prime numbers such that $R=\sum_{p \in P} R^{(p)}$, where $R^{(p)}$ is the ideal of R containing N defined by $\{x \in R \mid px \in N \}$. Obviously, (i)$_n$, (ii)$_n$ and (iii)$_n$ are inherited by the ideal $R^{(p)}$. Since N is a nil ideal of bounded index at most 2 (Lemma 1 (1)), we see that $p^2x^2=0$ for all $x \in R^{(p)}$, and so $[x^{p^2},a]=0$ for all $x \in R^{(p)}$ and $a \in N$ (Lemma 1 (3)). As is well known, the factor ring $R^{(p)}/N$ satisfying the polynomial identity $X-X^n=0$ is a subdirect sum of finite fields of characteristic p, and hence we can find a positive integer k such that $x^{pk}-x \in N$ for all $x \in R^{(p)}$. Now, let $x \in R^{(p)}$ and $a \in N$. Since $[x^{pk},a]=0$ and $x^{pk}-x \in N$, we get $[x,a]=0$ by (i)$_n$, which shows that N is in the center of $R^{(p)}$. Hence, N is contained in the center of R, and therefore R is commutative by [1, Theorem 19].

If R is a generalized n-ring, it is easy to see that $N^2=0$, and so N is commutative. Thus, as a direct consequence of Theorem 1, we have

Corollary 1. Every generalized n-ring is commutative. In particular, every generalized n-like ring satisfying (iii)$_n$ is commutative.

Corollary 2. Suppose that there exists an integer $m>1$ such that $(m,n-1)=1$ and $mN=0$. Suppose that R satisfies (i)$_n$ and (ii)$_n$. Then, R is commutative if and only if R satisfies (iii)$_n$.

Proof. In view of Theorem 1, it suffices to show that if R is commutative then (iii)$_n$ is satisfied. Suppose that both b and $b+a$ are in E_n with some $a \in N$. Then $b+nab^{n-1}=(b+a)^n=b+a$ (Lemma 1 (1)), and so $nab^{n-1}=a$, whence it follows that $nab=nab^n=ab$. Hence, $na=n^2ab^{n-1}=nab^{n-1}=a$, namely $(n-1)a=0$. Since $ma=0$ and $(m,n-1)=1$, we get $a=0$, proving (iii)$_n$.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol25/iss2/12
ON RINGS SATISFYING THE IDENTITY \((X - X^n)^2 = 0\) 183

Next, motivated by [3, Theorem 1], we prove the following

Theorem 2. Let \(p \) be a prime. If \(R \) satisfies (i), (ii)\(_p\) and \(pR = 0 \), then the following are equivalent:

1) \(R \) is commutative.
2) \(R \) satisfies (iii)\(_p\).
3) \(E_p \) is a subring of \(R \).
4) \(E_p \) is an additive subgroup of \(R \).
5) \(E_p \) is central.

Proof. Obviously, \(x^p \in E_p \) for any \(x \in R \), and \(N \) is a commutative nil ideal of bounded index at most \(p \) by [2, Lemma 2 (2)]. Then, it is easy to see that \(1) \Rightarrow 3) \Rightarrow 4) \Rightarrow 2) \) and \(1) \iff 5) \).

2) \(\Rightarrow 1) \). Let \(x \in R \), and \(a \in N \). Then we have \((x + a)^p = x^p + a' + a''\), where \(x^p \in E_p \), \(a' = \sum \sum a^{p-i-1}ax^i \in N \) and \(a'' \in N^2 \subseteq C \). Since \((x + a)^p\) is also in \(E_p \), (iii)\(_p\) shows that \(a' + a'' = 0 \). Hence, \([x, a'] = [x, a''] = 0\), and therefore \([x, a] = [x^p, a] + [x - x^p, a] = 0\), which shows that \(N \subseteq C \). Now, \(R \) is commutative by [1, Theorem 19].

Examples.

1) The commutative ring \(R = \mathbb{Z}/4\mathbb{Z} \) satisfies (ii)\(_3\), but does not (iii)\(_3\); the commutative ring \(\mathbb{Z}/8\mathbb{Z} \) satisfies (ii)\(_3\), but does neither (ii)\(_3\) nor (iii)\(_3\).

2) Let \(p \) be a prime. Then \(R = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in GF(p) \) is a non-commutative ring satisfying (ii)\(_p\) and \(pR = 0 \).

3) Let \(R = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \mid a, b, c \in GF(3) \). Then \(R \) is a commutative ring satisfying (ii)\(_3\) and \(3R = 0 \), but not (ii)\(_3\).

4) Let \(R = \begin{pmatrix} a & b & c & d \\ 0 & a & 0 & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in GF(2) \). Then \(R \) is a commutative ring satisfying (ii)\(_2\) = (ii)\(_2\) and \(2R = 0 \), but not (ii)\(_2\)*.

These examples give the following table, where (c) signifies the property that \(R \) is commutative.

Produced by The Berkeley Electronic Press, 1983 3
In conclusion, we would like to express our indebtedness and gratitude to the referee for his helpful suggestions and valuable comments.

REFERENCES

O凯亚马大学, O凯亚马, 日本
大学加利福尼亚, 圣芭芭拉, U.S.A.

(Received June 30, 1983)