The Geometry and Topology on Grassmann Manifolds

Zhou Jianwei*
The Geometry and Topology on Grassmann Manifolds

Zhou Jianwei

Abstract

This paper shows that the Grassmann Manifolds GF(n,N) can all be imbedded in an Euclidean space MF(N) naturally and the imbedding can be realized by the eigenfunctions of Laplacian Δ on GF(n,N). They are all minimal submanifolds in some spheres of MF(N) respectively. Using these imbeddings, we construct some degenerate Morse functions on Grassmann Manifolds, show that the homology of the complex and quaternion Grassmann Manifolds can be computed easily.

KEYWORDS: Grassmann manifold, moving frame, minimal immersion, critical submanifold, Morse function, homology
THE GEOMETRY AND TOPOLOGY ON GRASSMANN MANIFOLDS

Zhou JIANWEI

Abstract. This paper shows that the Grassmann Manifolds $G_F(n, N)$ can all be imbedded in an Euclidean space $M_F(N)$ naturally and the imbedding can be realized by the eigenfunctions of Laplacian Δ on $G_F(n, N)$. They are all minimal submanifolds in some spheres of $M_F(N)$ respectively. Using these imbeddings, we construct some degenerate Morse functions on Grassmann Manifolds, show that the homology of the complex and quaternion Grassmann Manifolds can be computed easily.

1. Introduction

Let $G_F(n, N)$ be the Grassmann manifold formed by all n-subspaces in F^N, where F is the set of real numbers, complex numbers or quaternions. The manifold $G_F(n, N)$ is a symmetric space (see [7] or [8]). The Grassmann manifolds are important in the study of the geometry and the topology, especially in the theory of fibre bundles.

Let $\tilde{G}(n, N)$ be the oriented Grassmann manifold formed by all oriented n dimensional subspaces of \mathbb{R}^N. In [3], Chen showed that $\tilde{G}(n, N)$ can be imbedded in the unit sphere of wedge product space $\wedge^n(\mathbb{R}^N)$ as a minimal submanifold. Takahashi [10] proved that a compact homogenous Riemannian manifold with irreducible linear isotropy group admits a minimal immersion into an Euclidean sphere, see also Takeuchi and Kobayashi [11].

Let $M_F(N)$ be the set of $N \times N$ matrices A with values in F such that $A^t = A$. $M_F(N)$ is an Euclidean space. Let $M_F(n, N) = \{A \in M_F(N) \mid A^2 = A, \ r(A) = n\}$ be a subspace of $M_F(N)$, where $r(A)$ be the rank of the matrix A. The matrix $A \in M_F(n, N)$ can be viewed as a projection on Euclidean space F^N.

For any $\pi \in G_F(n, N)$, let e_1, \cdots, e_n be an orthonormal basis of π. Then (e_1, \cdots, e_n) is an $N \times n$ matrix. Define

$$\varphi(\pi) = (e_1, \cdots, e_n)(e_1, \cdots, e_n)^t = \sum_i e_i e_i^t.$$
We show in §2, the map $\varphi : G_{F}(n, N) \to M_{F}(N)$ is an imbedding and we have $\varphi(G_{F}(n, N)) = M_{F}(n, N)$. Then

$$\bigcup_{n=0}^{N} \varphi(G_{F}(n, N)) = \{ A \in M_{F}(N) \mid A^2 = A \}.$$

Let $\{ A \in M_{F}(N) \mid \text{tr} A = n \}$ be a hyperplane in $M_{F}(N)$ and $S(\sqrt{n})$ the sphere of $M_{F}(N)$ with radius \sqrt{n}. In §2, we also show that $M_{F}(n, N)$ is a minimal submanifold in the sphere $S(\sqrt{n}) \cap \{ A \in M_{F}(N) \mid \text{tr} A = n \}$. These minimal submanifolds are the natural generalization of the famous Veronese surface.

Let $G_{F}(N)$ be the group which preserving the inner product on Euclidean space F^{N}. With the spaces $M_{F}(n, N)$, we can show that the Grassmann manifold $G_{F}(n, N)$ can be imbedded in the group $G_{F}(N)$.

In §3, we construct some degenerate Morse functions on Grassmann Manifolds. Show that the Poincaré polynomial of $G_{F}(n, N)$ can be represented by

$$P_{t}(G_{F}(n, N)) = P_{t}(G_{F}(n, N - 1)) + t^{c(N-n)}P_{t}(G_{F}(n - 1, N - 1)),$$

where $F = C$ or $F = H$ and c the dimension of F. Then the homology of the complex and quaternion Grassmann Manifolds can be computed easily in low dimensional cases.

These results are consistent with the results computed by using Schubert variety. As in [4] or [5], we consider the case of $F = C$. Let

$$0 \leq a_{0} \leq a_{1} \leq \cdots \leq a_{n} \leq N - n$$

be a sequence of integers. There is a natural one-one correspondence between the set of $(a_{0}, a_{1}, \cdots, a_{n})$ and the generators of the homology $H_{*}(G_{C}(n, N))$. The dimension of $(a_{0}, a_{1}, \cdots, a_{n})$ is $2(a_{0} + a_{1} + \cdots + a_{n})$. Such elements can be divided into two classes:

1. $(a_{0}, a_{1}, \cdots, a_{n})$, where $a_{n} \leq N - n - 1$;
2. $(a_{0}, a_{1}, \cdots, a_{n-1}, N - n)$, where $a_{n-1} \leq N - n$.

These also show

$$P_{t}(G_{C}(n, N)) = P_{t}(G_{C}(n, N - 1)) + t^{2(N-n)}P_{t}(G_{C}(n - 1, N - 1)).$$

The Poincaré polynomial of $G_{F}(n, N)$ can also be represented by

$$P_{t}(G_{F}(n, N)) = t^{cn}P_{t}(G_{F}(n, N - 2)) + t^{c(N-n)}P_{t}(G_{F}(n - 2, N - 2)) + (1 + t^{c(N-1)})P_{t}(G_{F}(n - 1, N - 2)),$$

where $n, N - n \geq 2$, $F = C$ or H.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol48/iss1/18
2. The minimal imbedding of $G_F(n, N)$ in the sphere

Let F be the set of real numbers \mathbb{R}, complex numbers \mathbb{C} or quaternions \mathbb{H}. The quaternions \mathbb{H} is generated by $i, j, k = ij$. For any $u \in F$, \overline{u} is the conjugation of u ($\overline{u} \cdot \overline{v} = \overline{v} \cdot \overline{u}$ if $u, v \in \mathbb{H}$). For any $\lambda \in F$, λ acts on the right of $u = (u_1, \ldots, u_N)^t \in F^N$. For any $u = (u_1, \ldots, u_N)^t$, $v = (v_1, \ldots, v_N)^t \in F^N$,

$$(u, v) = \bar{v}^t \cdot u = \sum_A \bar{v}_A u_A$$

defines an inner product on F^N. Let $G_F(N)$ be the group acting on the left of F^N which preserving the inner product \langle , \rangle on F^N. If $F = \mathbb{R}$, $G_F(N) = O(N)$ is the orthogonal group; if $F = \mathbb{C}$, $G_F(N) = U(N)$ is the complex unitary group; if $F = \mathbb{H}$, $G_F(N) = Sp(N)$ is the symplectic group.

Let $G_F(n, N) \approx \frac{G_F(N)}{G_F(N) \times G_F(N-n)}$ be the Grassmann manifold formed by all subspaces in F^N of dimension n. Let $e_1, \ldots, e_n, e_{n+1}, \ldots, e_N$ be orthonormal frame fields on $G_F(n, N)$ such that the element of $G_F(n, N)$ is generated by e_1, \ldots, e_n locally. By the method of moving frame, there are local 1-forms ω_A^B defined by

$$d e_A = \sum_B e_B \omega_A^B, \quad \omega_A^B + \bar{\omega}_B^A = 0, \quad A, B = 1, \ldots, N.$$

Restricting the two form $\Phi = \text{Re} \left(\sum_{i, \alpha} \omega_i^\alpha \bar{\omega}_i^\alpha \right)$ on $G_F(n, N)$ defines a Riemannian metric (see [4]). Unless otherwise stated, we agree on the following ranges of the indices:

$$1 \leq i, j, \ldots \leq n, \quad n + 1 \leq \alpha, \beta, \ldots \leq N, \quad 1 \leq A, B, \ldots \leq N.$$

Let $M_F(N)$ be the set of $N \times N$ matrices A with values in F such that $\overline{A}^t = A$. With the inner product defined by

$$\langle A, B \rangle = \text{Re} \text{tr}(AB) = \sum_A x_{AA} y_{AA} + 2 \text{Re} \sum_{A < B} x_{AB} \bar{y}_{AB},$$

$A = (x_{AB}), B = (y_{AB}) \in M_F(N)$, $M_F(N)$ becomes an Euclidean space. The real dimension of $M_F(N)$ is $N + \frac{1}{2} c N(N - 1)$, where c is the real dimension of F.

Lemma 2.1. Let e_1, \ldots, e_N be an orthonormal frame on F^N. The following elements form an orthogonal basis of $M_F(N)$ with respect to the norm \langle , \rangle respectively,

(1) $e_A e_A^t, e_B e_C^t + e_C e_B^t$, when $F = \mathbb{R}$;
(2) $e_A e_A^t, e_B e_C^t + e_C e_B^t, e_B i e_C^t - e_C i e_B^t$, when $F = \mathbb{C}$;
(3) $e_A e_A^t, e_B e_C^t + e_C e_B^t, e_B i e_C^t - e_C i e_B^t, e_B j e_C^t - e_C j e_B^t, e_B k e_C^t - e_C k e_B^t$, when $F = \mathbb{H}$,
where \(A, B, C = 1, \cdots, N, \ B < C. \)

Proof. The proof is a direct computation. For example, we have
\[
\langle e_A e_t^t, e_B e_t^t + e_C e_B^t \rangle = \Re \text{tr}(e_A e_t^t \delta_{AB} + e_A e_B^t \delta_{AC}) = 2 \delta_{AB} \delta_{AC},
\]
and
\[
\langle e_B e_C^t + e_C e_B^t, e_B i e_C^t - e_C i e_B^t \rangle = \Re \text{tr}(e_C i e_C^t - e_B i e_B^t) = 0.
\]

\[\square\]

Note that the basis of \(M_\mathcal{F}(N) \) described in Lemma 2.1 are all real.

For any \(\pi \in G_\mathcal{F}(n, N) \), let \(e_1, \cdots, e_n \) be an orthonormal basis of \(\pi \). Then \((e_1, \cdots, e_n)\) is an \(N \times n \) matrix. Define
\[
\phi : G_\mathcal{F}(n, N) \to M_\mathcal{F}(N),
\]
\[
\phi(\pi) = (e_1, \cdots, e_n)(e_1, \cdots, e_n)^t = \sum_i e_i e_i^t.
\]

It is easy to see that \(\phi(\pi) \) is independent of the choice of the orthonormal basis \(e_1, \cdots, e_n \). Let \(M_\mathcal{F}(n, N) = \{ A \in M_\mathcal{F}(N) \mid A^2 = A, \ r(A) = n \} \) be a subspace of \(M_\mathcal{F}(N) \), where \(r(A) \) be the rank of matrix \(A \).

Lemma 2.2. The map \(\phi : G_\mathcal{F}(n, N) \to M_\mathcal{F}(N) \) is an embedding and we have \(\phi(G_\mathcal{F}(n, N)) = M_\mathcal{F}(n, N) \). The induced metric on \(G_\mathcal{F}(n, N) \) defined by \(\phi \) is
\[
2\Phi = 2\Re \left(\sum_{i,\alpha} \omega_i^\alpha \bar{\omega}_i^\alpha \right).
\]

Proof. It is easy to see that \(\phi(G_\mathcal{F}(n, N)) \subset M_\mathcal{F}(n, N) \). On the other hand, the element \(A \in M_\mathcal{F}(n, N) \) can be viewed as a projection on \(\mathcal{F}^N \). Let \(\pi = \{ Ax \mid x \in \mathcal{F}^N \} \) be a subspace of \(\mathcal{F}^N \) and \(e_1, \cdots, e_n \) be an orthonormal basis of \(\pi \). Therefore \(Ae_i = e_i \). It is easy to see that \(A = \sum_i e_i e_i^t \) and \(\phi(\pi) = A \).

Then we can identify \(M_\mathcal{F}(n, N) \) with \(G_\mathcal{F}(n, N) \). Let \(e_1, \cdots, e_n, e_{n+1}, \cdots, e_N \) be orthonormal frame fields on \(\mathcal{F}^N \) such that \(G_\mathcal{F}(n, N) \) is generated by \(e_1, \cdots, e_n \) locally. Hence
\[
d\phi = d \sum_i e_i e_i^t = \sum_{i,\alpha} e_\alpha \omega_i^\alpha e_i^t + \sum_{i,\alpha} e_i \bar{\omega}_i^\alpha e_\alpha^t.
\]

We compute the case of \(\mathcal{F} = \mathcal{H} \) as an example, the other cases are similar. Let \(\omega_i^\alpha = a_i^\alpha + ib_i^\alpha + je_i^\alpha + kd_i^\alpha \), where \(a_i^\alpha, b_i^\alpha, c_i^\alpha, d_i^\alpha \) are real 1-forms. Then
\[
d\phi = \sum_{i,\alpha} a_i^\alpha (e_\alpha e_i^t + e_i e_\alpha^t) + \sum_{i,\alpha} b_i^\alpha (e_\alpha i e_i^t - e_i i e_\alpha^t)
\]
\[
+ \sum_{i,\alpha} c_i^\alpha (e_\alpha j e_i^t - e_i j e_\alpha^t) + \sum_{i,\alpha} d_i^\alpha (e_\alpha k e_i^t - e_i k e_\alpha^t),
\]
and
\[e_\alpha e^t_i + e_i e^t_\alpha, \quad e_\alpha i e^t_i - e_i i e^t_\alpha, \quad e_\alpha j e^t_i - e_i j e^t_\alpha, \quad e_\alpha k e^t_i - e_i k e^t_\alpha \]
form a basis of tangent space \(TG_H(n, N) \). By Lemma 2.1, these vectors are orthogonal with respect to the inner product \(\langle \cdot, \cdot \rangle \). The norms of these vectors are all \(\sqrt{2} \). Then
\[
\langle d\varphi, d\varphi \rangle = 2 \sum_{i,\alpha} (a^\alpha_i \otimes a^\alpha_i + b^\alpha_i \otimes b^\alpha_i + c^\alpha_i \otimes c^\alpha_i + d^\alpha_i \otimes d^\alpha_i) = 2\Phi.
\]

For any \(A \in M_F(n, N) \),
\[
\langle A, A \rangle = \text{tr} \ A A^t = \text{tr} \ A = \text{tr} \ [(e_1, \ldots, e_n)(e_1, \ldots, e_n)^t] = n,
\]
then \(|A| = \sqrt{n} \). These also show \(r(A) = \text{tr}A \) for any \(A \in M_F(N) \) with \(A^2 = A \). Therefore we also have
\[
M_F(n, N) = \{ A \in M_F(N) \mid A^2 = A, \ \text{tr}A = n \},
\]
and
\[
\bigcup_{n=0}^{N} \varphi(G_F(n, N)) = \{ A \in M_F(N) \mid A^2 = A \}.
\]

Let \(I_N \) be the identity matrix of order \(N \). For \(A \in M_F(n, N) \), we have
\[
(I_N - A)^2 = I_N - A, \quad r(I_N - A) = \text{tr}(I_N - A) = N - n, \quad \text{hence } I_N - A \in M_F(N - n, N).
\]
These show the map \(A \mapsto I_N - A \) gives an isometry between the manifolds \(G_F(n, N) \) and \(G_F(N - n, N) \).

As show above, for any \(A \in M_F(n, N) \), \(|A|^2 = \text{tr}A = n \), then \(M_F(n, N) \) is in the sphere \(S(\sqrt{n}) = \{ B \in M_F(N) \mid |B|^2 = n \} \). By \(\text{tr}A = n \), we know that \(M_F(n, N) \) also in the hyperplane \(\{ B \in M_F(N) \mid \text{tr}B = n \} \). This hyperplane can also be defined by \(\{ B \in M_F(N) \mid \langle B, I_N \rangle = n \} \). Then the normal vector of this hyperplane is \(I_N = \sum_i e_i e_i^t + \sum_\alpha e_\alpha e_\alpha^t \).

When \(F = \mathbb{R} \), any element \(A \in M_R(1, 3) \approx \mathbb{R}P^2 \) can be represented by
\[
A = \begin{pmatrix}
x^2_1 & x_1x_2 & x_1x_3 \\
x_2x_1 & x_2^2 & x_2x_3 \\
x_3x_1 & x_3x_2 & x_3^2
\end{pmatrix}, \quad x^2_1 + x^2_2 + x^2_3 = 1.
\]
The map
\[
B = (x_{AB}) \in M_R(3) \rightarrow (x_{11}, x_{22}, x_{33}, \sqrt{2}x_{12}, \sqrt{2}x_{13}, \sqrt{2}x_{23}) \in \mathbb{R}^6
\]
gives an isometry between these two Euclidean spaces. Then \(M_R(1, 3) \) is the famous Veronese surface.

Theorem 2.3. The manifold \(M_F(n, N) \) is a minimal submanifold in the sphere \(S(\sqrt{n}) \cap \{ B \in M_F(N) \mid \text{tr}B = n \} \).
The mean curvature vector is

\[H = \sum e_\alpha \omega^\alpha_{\beta} \hat{e}_\beta + \sum e_i \hat{\omega}_{\alpha}^i \hat{e}_\alpha, \]

where \(\sum \) is the part of \(d^2 \varphi \) which tangent to \(M_F(n, N) \). Then the second fundamental form of the imbedding \(\varphi \) is

\[II = -\sum [e_j \hat{\omega}^\alpha_{\beta} \hat{e}_\beta + e_i \hat{\omega}_{\alpha}^i e^\alpha_j] + \sum [e_\alpha \omega^\alpha_{\beta} \hat{e}_\beta + e_\beta \hat{\omega}_{\alpha}^i \hat{e}_\alpha]. \]

The mean curvature vector is

\[H = -\frac{N-n}{n(N-n)} \sum_i e_i \hat{e}_i + \frac{n}{n(N-n)} \sum_\alpha e_\alpha \hat{e}_\alpha. \]

On the other hand, \(\sum_i e_i \hat{e}_i \) and \(I_N = \sum_i e_i \hat{e}_i + \sum_\alpha e_\alpha \hat{e}_\alpha \) are the normal vectors on \(S(\sqrt{n}) \) and \(\{ B \in M_F(N) \mid \text{tr} B = n \} \) at \(\sum_i e_i \hat{e}_i \) respectively. These show \(M_F(n, N) \) is a minimal submanifold in the sphere \(S(\sqrt{n}) \cap \{ B \in M_F(N) \mid \text{tr} B = n \} \).

The radius of the sphere \(S(\sqrt{n}) \cap \{ B \in M_F(N) \mid \text{tr} B = n \} \) is \(\frac{\sqrt{n(N-n)}}{N} \).

The above proof also shows, the second fundamental form of \(M_F(n, N) \) has constant length [6]. The isometry group \(G_F(N) \) acts on the Grassmann manifold \(G_F(n, N) \) naturally. For any \(g \in G_F(N) \), \(A \in M_F(N) \), \(Ad(g)A = gAg^t \) defines an action of \(G_F(N) \) on \(M_F(N) \). Furthermore, the following diagram is commutative

\[
\begin{array}{ccc}
G_F(n, N) & \xrightarrow{\varphi} & M_F(N) \\
g \downarrow & & \downarrow Ad(g) \\
G_F(n, N) & \xrightarrow{\varphi} & M_F(N)
\end{array}
\]

Let \(\Delta = (d+\delta)^2 \) be the Laplacian on \(G_F(n, N) \) with respect to the metric \(2\Phi \). For any \(A \in M_F(N) \), \(f(\pi) = \langle \varphi(\pi), A \rangle \) is a function on the Grassmann manifold \(G_F(n, N) \). As is well-known, we have

\[\Delta f = -cn(N-n)\langle H, A \rangle. \]

As show above, \(M_F(n, N) \) is in the hyperplane \(\{ B \in M_F(N) \mid \langle B, I_N \rangle = n \} \) of Euclidean space \(M_F(N) \). For any vector \(A \) parallel to this hyperplane, we have

\[\langle A, I_N \rangle = \langle A, \sum_i e_i \hat{e}_i \rangle + \langle A, \sum_\alpha e_\alpha \hat{e}_\alpha \rangle = 0. \]

Then for such \(A \), we have

\[\Delta f = cN \langle \sum_i e_i \hat{e}_i, A \rangle = cN f. \]
We have proved the following

Theorem 2.4. The imbedding \(\varphi : G_F(n, N) \to \{ B \in M_F(N) \mid \text{tr}B = n \} \) is formed by the eigenfunctions of Laplacian \(\Delta \) on \(G_F(n, N) \) with eigenvalue \(cN \).

For any \(A = \sum e_i e_i^t \in M_F(n, N) \), let \(\tilde{A} = I_N - 2A = I_N - 2\sum e_i e_i^t \). It is easy to see that \(\tilde{A}^t = \tilde{A} \), \(\tilde{A}^2 = I_N \). Then \(A \to \tilde{A} \) gives a map \(\psi : M_F(n, N) \to G_F(N) \).

It is interesting to note that when \(F = R \) be the real numbers, the imbedding of \(G_R(n, N) \) in orthogonal group \(O(N) \) defined above can be obtained by using Clifford algebra. Let \(Cl_N \) be the Clifford algebra associated to the Euclidean space \(R^N \) and \(Pin(N) \) be the Pin group. Any unit vector \(v \) of \(R^N \) defines a reflection \(f_v \) on \(R^N \):

\[
 f_v(e) = v \cdot e \cdot v = e - 2(e, v)v, \quad \forall e \in R^N ,
\]

where ‘.’ denotes the Clifford product. With the standard basis of \(R^N \), the map \(f_v \) can be represented by matrix \(I_N - 2vv^t \in O(N) \).

Let \(\tilde{G}_R(n, N) \) be the oriented Grassmann manifold. For any \(\bar{\pi} \in \tilde{G}_R(n, N) \), we choose an oriented orthonormal basis \(e_1, \cdots, e_n \) of \(\bar{\pi} \). Note that \(f_{e_i}f_{e_j} = f_{e_j}f_{e_i} \) for any \(i, j \). Then \(e_1 \cdot e_2 \cdots e_n \in Pin(N) \) and by the maps \(\tilde{G}_R(n, N) \to Pin(N) \xrightarrow{Ad} O(N) \), we have a map \(\tilde{G}_R(n, N) \to O(N) \):

\[
 f_{e_1}f_{e_2} \cdots f_{e_n} = (I_N - 2e_1e_1^t)(I_N - 2e_2e_2^t) \cdots (I_N - 2e_ne_n^t)
 = I_N - 2\sum_{i=1}^{n} e_i e_i^t.
\]

The map \(\tilde{G}_R(n, N) \to O(N) \) is an immersion. As \(\det(I_N - 2\sum_{i=1}^{n} e_i e_i^t) = (-1)^n \) is constant, we can imbed real Grassmann manifold \(G_R(n, N) \) in \(SO(N) \).

3. The Morse functions on the Grassmann manifolds

In [12], we have constructed many (degenerate or non-degenerate) Morse functions on the real oriented Grassmann manifolds by using calibrations. In the following we construct Morse functions on the Grassmann manifolds \(G_F(n, N) \).

For any \(A \in M_F(N) \), the map \(f : G_F(n, N) \to R, f(\pi) = \langle \varphi(\pi), A \rangle \), defines a function on Grassmann manifolds \(G_F(n, N) \). \(f \) is a Morse function
for almost every vector $A \in M_F(N)$. But in general, it is difficult to find such element. First, we give some known results.

Let E_{AB} be the elements in $M_F(N)$, $A \geq B$, where the entries in row A, column B and row B, column A are 1, the others are zero.

When $F = C$, $n = 1$, $G_C(1, N) \approx CP^{N-1}$ is the complex projective space. Let $A = \sum c_A E_{AA} \in M_C(N)$, $c_1 > c_2 > \cdots > c_N > 0$. For any $\pi \in G_C(1, N)$, $\varphi(\pi) = e_1 \tilde{e}_1^t$, $e_1 = (z_1, z_2, \cdots, z_N)^t$, $\sum_A |z_A|^2 = 1$, then

$$f(\pi) = \langle \varphi(\pi), A \rangle = \sum_A c_A |z_A|^2.$$

As is well-known ([9]), f is a perfect Morse function on CP^{N-1}.

Similar results hold for the real projective space $G_R(1, N) \approx RP^{N-1}$ and the quaternion projective space $G_H(1, N) \approx HP^{N-1}$. In the real case, the functions are not perfect.

The map $f : G_F(n, N) \to R$, $f(\pi) = \langle \varphi(\pi), E_{11} \rangle$, defines a function on $G_F(n, N)$. To study this function, we define two submanifolds of $G_F(n, N)$. Let $G_F(n-1, N-1)$ be a submanifold of $G_F(n, N)$ such that every element of $G_F(n-1, N-1)$ contains the vector $\tilde{e}_1 = (1, 0, \cdots, 0)^t \in F^N$. Let $F^{N-1} = \{u = (0, u_2, \cdots, u_N)^t \in F^N\}$ be a subspace of F^N and $G_F(n, N-1)$ be a submanifold of $G_F(n, N)$ generated by the n-dimensional subspaces of F^{N-1}.

Theorem 3.1. The function $f : G_F(n, N) \to R$ is a degenerate Morse function on $G_F(n, N)$, where $f(\pi) = \langle \varphi(\pi), E_{11} \rangle$. The critical submanifolds are $f^{-1}(0) = G_F(n, N-1)$ and $f^{-1}(1) = G_F(n-1, N-1)$ with indices 0 and $c(N-n)$ respectively.

Proof. Let $e_1, \cdots, e_n, e_{n+1}, \cdots, e_N$ be orthonormal frame fields on F^N such that $G_F(n, N)$ be generated by e_1, \cdots, e_n locally. We have $f(\pi) = \sum_{i=1}^n x_i \tilde{x}_i$, where $e_i = (x_{i1}, \cdots, x_{iN})^t$. Then, $0 \leq f \leq 1$ and π is a critical point of function f if and only if

$$df = \sum_{i, \alpha} \langle e_{\alpha} \omega_i^\alpha \tilde{e}_i^t + e_i \tilde{\omega}_i^\alpha \tilde{e}_\alpha^t, E_{11} \rangle = 0.$$

We prove the theorem for the real case, the other cases can be proved similarly, see the proof of Theorem 3.5. By Lemma 2.2, $df = 0$ if and only if

$$\langle e_{\alpha} e_i^t + e_i e_{\alpha}^t, E_{11} \rangle = 0$$

for any i, α. For $e_A = (x_{A1}, \cdots, x_{AN})$, $A = 1, \cdots, N$, we can assume $x_{i1} = 0$ for $i > 1$ and $x_{\alpha 1} = 0$ for $\alpha > n + 1$. Obviously, we have $x_{11}^2 + x_{n+1 1}^2 = 1$.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol48/iss1/18
is a close relation between Theorem 3.1 and the Schubert varieties: can be computed by means of the Schubert varieties (see [4] or [5]). There
can be a sequence of integers. These give a CW complex structure on the Grass-
mann manifold
such that every element of $G(n, N)$ contains the vector $\tilde{e}_i = (1, 0, \ldots, 0)^t \in \mathbb{R}^N$. It is easy to see that $f^{-1}(0) = G(n, N - 1)$ and $f^{-1}(1) = G(n - 1, N - 1)$.

Now we show that the critical submanifolds $f^{-1}(0)$ and $f^{-1}(1)$ of f are non-degenerate and compute their indices.

On $f^{-1}(0) = G(n, N - 1)$, $x_i = 0, \ i = 1, \cdots, n$, $\tilde{e}_{n+1} = (1, 0, \cdots, 0)^t$, then the tangent space of $f^{-1}(0)$ is generated by
e_i e_i^t + e_a e_a^t, \ \alpha \neq n + 1.
on $f^{-1}(1) = G(n - 1, N - 1)$, $\tilde{e}_1 = (1, 0, \cdots, 0)$, $G(n - 1, N - 1)$ is
generated by e_1, e_2, \cdots, e_n, then the tangent space of $f^{-1}(1)$ is generated by
e_i e_i^t + e_a e_a^t, \ \ i \neq 1.

By simple computation, on the critical submanifolds, we have
\[
d^2 f = -\sum \omega^a_j \omega^b_i \langle e_j e_i^t + e_i e_j^t, E_{11} \rangle + \sum \omega^a_i \omega^b_i \langle e_a e_b^t + e_b e_a^t, E_{11} \rangle.
\]
Then
\[
d^2 f|_{f^{-1}(0)} = 2 \sum \omega_i^{n+1} \omega_i^{n+1} \langle e_{n+1} e_{n+1}^t, E_{11} \rangle = 2 \sum \omega_i^{n+1} \omega_i^{n+1},
d^2 f|_{f^{-1}(1)} = -2 \sum \omega_i^a \omega_i^a \langle e_1 e_1^t, E_{11} \rangle = -2 \sum \omega_i^a \omega_i^a.
\]
By Lemma 2.2, the critical submanifolds of f are all non-degenerate. These complete the proof of the theorem.

By Morse theory, it can be shown that every differentiable manifold has
the homotopy type of a CW complex. As in [4] or [5], let
\[
0 \leq a_0 \leq a_1 \leq \cdots \leq a_n \leq N - n
\]
be a sequence of integers. These give a CW complex structure on the Grass-
mann manifold $G(n, N)$. For every such (a_0, a_1, \cdots, a_n), there is one cell of
dimension $c(a_0 + a_1 + \cdots + a_n)$. The homologies of the Grassmann manifold
can be computed by means of the Schubert varieties (see [4] or [5]). There
is a close relation between Theorem 3.1 and the Schubert varieties:

The elements (a_0, a_1, \cdots, a_n) can be divided into two classes:

(1) (a_0, a_1, \cdots, a_n), where $a_n \leq N - n - 1$;
(2) $(a_0, a_1, \cdots, a_{n-1}, N - n)$, where $a_{n-1} \leq N - n$.
Let \(\{ \rho_1, \rho_2, \rho_3 \} \) be a partition of unity on \([0, 1]\) such that \(\text{supp}(\rho_1) \subseteq [0, \frac{1}{4}] \), \(\text{supp}(\rho_2) \subseteq \left[\frac{1}{5}, \frac{7}{8} \right] \), \(\text{supp}(\rho_3) \subseteq \left[\frac{3}{4}, 1 \right] \) and \(\frac{d\rho_1}{dt} \leq 0 \), \(\frac{d\rho_2}{dt} \geq 0 \). Let \(h_1 \leq 0, h_2 \geq 0 \) be two non-degenerate Morse functions on \(f^{-1}(0) \) and \(f^{-1}(1) \) respectively. The functions \(h_1, h_2 \) can be viewed as functions on neighborhoods of \(f^{-1}(0), f^{-1}(1) \) in \(G_F(n, N) \) respectively, they are constants on the trajectories of \(\text{grad}(f) \). Define a function

\[
\tilde{f} = \tilde{\rho}_1(h_1 + f) + \tilde{\rho}_2(h_2 + f) + \tilde{\rho}_3(h_2 + f) = \tilde{\rho}_1 h_1 + \tilde{\rho}_2 h_2 + f,
\]

where \(\tilde{\rho}_i = \rho_i \circ f, \; i = 1, 2, 3 \).

Theorem 3.2. \(\tilde{f} : G_F(n, N) \to \mathbb{R} \) is a non-degenerate Morse function and the critical points are that of \(h_1 \) and \(h_2 \). If \(p \) is a critical point of \(h_2 \) with index \(k \), then the index of \(p \) is \(k + c(N - n) \) with respect to the function \(\tilde{f} \); if \(q \) is a critical point of \(h_1 \), then the indices of \(q \) with respect to the functions \(h_1 \) and \(\tilde{f} \) are the same.

For the proof, see [12].

When \(F = C \) or \(H \), we can choose perfect Morse functions \(h_1, h_2 \) on \(G_F(n, N - 1) \) and \(G_F(n - 1, N - 1) \) respectively. Then \(\tilde{f} \) is also a perfect Morse function. Let \(P_t(M) \) be the Poincaré polynomial for a manifold \(M \).

Corollary 3.3. For \(F = C \) or \(H \), the Poincaré polynomial of \(G_F(n, N) \) can be represented by

\[
P_t(G_F(n, N)) = P_t(G_F(n, n - 1)) + t^{c(N - n)} P_t(G_F(n - 1, N - 1)).
\]

For example, by simple computation, we have

\[
P_t(G_C(1, N)) = 1 + t^2 + t^4 + \cdots + t^{2(N - 1)},
\]

\[
P_t(G_C(2, 5)) = 1 + t^2 + 2t^4 + 2t^6 + 2t^8 + t^{10} + t^{12},
\]

\[
P_t(G_C(2, 7)) = 1 + t^2 + 2t^4 + 2t^6 + 3t^8 + 3t^{10} + 3t^{12} + 2t^{14} + 2t^{16} + t^{18} + t^{20},
\]

\[
P_t(G_C(2, 8)) = P_t(G_C(2, 7)) + t^{12} P_t(G_C(1, 7)),
\]

\[
P_t(G_C(3, 7)) = (1 + t^6) P_t(G_C(2, 5)) + t^8 P_t(G_C(2, 6)),
\]

\[
P_t(G_C(5, 10)) = (1 + t^{10}) [t^{20} P_t(G_C(2, 7)) + (1 + t^8 + t^{10}) P_t(G_C(3, 7))].
\]

By \(P_t(G_F(n, N)) = P_t(G_F(N - n, N)) \), we have

\[
(t^{cN} - 1) P_t(G_F(n, N - 1)) = (t^{c(N - n)} - 1) P_t(G_F(n - 1, N - 1)).
\]

Now we study the trajectories of gradient vector field of the degenerate Morse function \(f : G_F(n, N) \to \mathbb{R} \) defined in Theorem 3.1. The gradient of the function \(f : G_F(n, N) \to \mathbb{R} \) is

\[
\text{grad}(f) = \frac{1}{2} \sum_{\tau} \langle \xi_\tau, E_{11} \rangle \xi_\tau,
\]
Let \(\gamma \) be a degenerate Morse function with critical submanifolds \(F \) such that \(0 < x_{11} < 1, \) \(x_{11} = 0 \) for \(i > 1. \) Denote \(e_1(t) = (\cos t, \sin t, t)^t, \) where \(x = (x_{12}, \cdots, x_{1N})/\sqrt{|x_{12}|^2 + \cdots + |x_{1N}|^2}. \) Then there is \(t_0 \in (0, \pi/2) \) such that \(e_1(t_0) = e_1. \) Let \(\gamma(t) \) be a curve in \(G_f(n, N) \) generated by orthonormal vectors \(e_1(t), e_2, \cdots, e_n. \) Then
\[
\begin{align*}
 f(\gamma(t)) &= \cos^2 t, \quad \frac{df(\gamma(t))}{dt} = -\sin 2t, \\
 \gamma(0) &\in f^{-1}(1) = G_f(n-1, N-1), \quad \gamma(\pi/2) \in f^{-1}(0) = G_f(n, N-1).
\end{align*}
\]
Note that \(\dim \gamma(0) \cap \gamma(\pi/2) = c(n-1). \) Along the curve \(\gamma(t), \) let
\[
e_{n+1}(t) = (-\sin t, (\cos t) x)^t, \quad e_\alpha = (0, x_{\alpha 2}, \cdots, x_{\alpha N})^t, \quad \alpha > n + 1,
\]
be orthonormal complement of the vectors \(e_1(t), e_2, \cdots, e_n \) in \(F^N. \) Therefore
\[
\begin{align*}
 \nabla f|_{\gamma} &= -\frac{1}{2} \sin 2t(e_{n+1}(t) \partial t + e_1(t) \partial t_{n+1}(t)) = -\frac{1}{2} \sin 2t \frac{d\gamma}{dt}.
\end{align*}
\]
This shows that the curve \(\gamma \) is a trajectory of the vector field \(\nabla f \) on \(G_f(n, N). \)

It is also easy to see that the vector \(\frac{d\gamma}{dt}(0) \) is normal to \(f^{-1}(1) \) and the vector \(\frac{d\gamma}{dt}(\pi/2) \) is normal to \(f^{-1}(0). \) Let \(FP^{N-n-1} = G_f(1, N-n) \) be a subspace of \(f^{-1}(0) \) such that \(e_2, \cdots, e_n \subseteq \pi \) for any \(\pi \in FP^{N-n-1}. \) Let \(FP^{n-1} = G_f(1, n-1) \) be a subspace of \(f^{-1}(1), \) any \(\pi \in FP^{n-1} \) be generated by \(e_1 = (1, 0, \cdots, 0)^t, \bar{e}_2, \cdots, \bar{e}_n, \) where \(\bar{e}_2, \cdots, \bar{e}_n \subseteq \gamma(\pi/2). \)

Theorem 3.4. The trajectories of \(\nabla f \) give the maps from \(FP^{N-n-1} \) to \(\gamma(0) \) and \(FP^{n-1} \) to \(\gamma(\pi/2) \) respectively.

When \(n = 1, \) these gives the following canonical cell decomposition of the projective space \(FP^{N-1} \)
\[
FP^0 \subset FP^1 \subset \cdots \subset FP^{N-2} \subset FP^{N-1}.
\]

In the following we assume \(n, N-n \geq 2. \)

Theorem 3.5. Let \(g : G_f(n, N) \to R, \) \(g(\pi) = \langle \varphi(\pi), E_{12} \rangle. \) The function \(g \) is a degenerate Morse function with critical submanifolds \(g^{-1}(0) = G_f(n-2, N-2) \cup G_f(n, N-2), \) \(g^{-1}(-1) = G_f(n-1, N-2), \) \(g^{-1}(1) = G_f(n-1, N-2). \) The indices on \(G_f(n-2, N-2), G_f(n, N-2), \) \(\widetilde{G}_f(n-1, N-2), G_f(n-1, N-2) \) are \(c(N-n), cn, 0, c(N-1) \) respectively.

Proof. Let \(e_i = (x_{i1}, x_{i2}, \cdots, x_{iN})^t, \) then,
\[
g(\pi) = \Re \sum_i (x_{i1} \bar{x}_{i2} + x_{i2} \bar{x}_{i1}) = 2 \Re \sum_i x_{i1} \bar{x}_{i2}.
\]
We can assume $x_{i1} = 0$ for $i > 1$ and x_{11} a real number, this shows $-1 \leq g(\pi) \leq 1$. The critical points of function g are determined by

$$dg = \sum_{i, \alpha} \langle e_{\alpha} \omega_i^\alpha e_t^i + e_i \bar{\omega}_i^\alpha e_t^\alpha, E_{12} \rangle = 0,$$

where $\varphi(\pi) = \sum e_i e_i^\alpha$.

We prove the theorem for the case of $F = H$. $dg = 0$ if and only if

$$\langle e_{\alpha} e_t^i + e_i e_t^\alpha, E_{12} \rangle = 0, \quad \langle e_{\alpha} i e_t^i - e_i i e_t^\alpha, E_{12} \rangle = 0,$$

$$\langle e_{\alpha} j e_t^i - e_i j e_t^\alpha, E_{12} \rangle = 0, \quad \langle e_{\alpha} k e_t^i - e_i k e_t^\alpha, E_{12} \rangle = 0,$$

for any i, α. Obviously, we have

$$\langle e_{\alpha} e_t^i + e_i e_t^\alpha, E_{12} \rangle = \operatorname{Re} (x_{\alpha 1} x_{i2} + x_{\alpha 2} x_{i1} + x_{i1} x_{\alpha 2} + x_{i2} x_{\alpha 1}),$$

and

$$\langle e_{\alpha} i e_t^i - e_i i e_t^\alpha, E_{12} \rangle = \operatorname{Re} [(x_{\alpha 1} x_{i2} - x_{\alpha 2} x_{i1}) + (x_{\alpha 2} x_{i1} - x_{i1} x_{\alpha 2})],$$

$$\langle e_{\alpha} j e_t^i - e_i j e_t^\alpha, E_{12} \rangle = 2 \operatorname{Re} [x_{\alpha 1} x_{i2} + x_{\alpha 2} x_{i1}],$$

$$\langle e_{\alpha} k e_t^i - e_i k e_t^\alpha, E_{12} \rangle = 2 \operatorname{Re} [x_{\alpha 1} x_{i2} + x_{\alpha 2} x_{i1}].$$

Similarly,

$$\langle e_{\alpha} j e_t^i - e_i j e_t^\alpha, E_{12} \rangle = 2 \operatorname{Re} [x_{\alpha 1} x_{i2} + x_{\alpha 2} x_{i1}],$$

$$\langle e_{\alpha} k e_t^i - e_i k e_t^\alpha, E_{12} \rangle = 2 \operatorname{Re} [x_{\alpha 1} x_{i2} + x_{\alpha 2} x_{i1}].$$

For any $u, v \in H, a \in \operatorname{Im}H$, the following holds

$$\operatorname{Re} (u a \bar{v}) = \operatorname{Re} (-u \bar{v} a) = \operatorname{Re} (-\bar{u} v a).$$

These show π is a critical point of g if and only if

$$x_{\alpha 1} x_{i2} + x_{\alpha 2} x_{i1} = 0, \quad \text{for all } i, \alpha.$$

On the critical submanifolds, we have

$$d^2 g = - \sum_{i, j, \alpha} \langle e_j \omega_j^\alpha e_t^i + e_i \bar{\omega}_j^\alpha e_t^\alpha, E_{12} \rangle + \sum_{i, j, \alpha} \langle e_{\alpha} \omega_i^\beta e_t^\beta + e_i \bar{\omega}_j^\alpha e_t^\alpha, E_{12} \rangle.$$

(1) Let $H^{N-2} = \{(0, 0, x_3, \cdots, x_N)^t \in H^N \}$ be a subspace of H^N and $G_H(n, N - 2) = \{ \pi \in G_H(n, N) \mid \pi \subset H^{N-2} \}$ be submanifold of $G_H(n, N)$. Then $G_H(n, N - 2)$ is a critical submanifold of function g and $g | G_H(n, N - 2) \equiv 0$. In this case, $x_{i1} = x_{i2} = 0$ for $i = 1, \cdots, n$, we can assume

$$e_{n+1} = (1, 0, 0, \cdots, 0)^t, \quad e_{n+2} = (0, 1, 0, \cdots, 0)^t.$$
Then
\[d^2g|_{G_H(n,N-2)} = 2\Re \sum_i (\omega_i^{n+1} \omega_i^{n+2} + \omega_i^{n+2} \omega_i^{n+1}) \]
\[= 2 \sum_i [(a_i^{n+1} + a_i^{n+2})^2 - (a_i^{n+1} - a_i^{n+2})^2 + (b_i^{n+1} + b_i^{n+2})^2 - (b_i^{n+1} - b_i^{n+2})^2 + (c_i^{n+1} + c_i^{n+2})^2 - (c_i^{n+1} - c_i^{n+2})^2 + (d_i^{n+1} + d_i^{n+2})^2 - (d_i^{n+1} - d_i^{n+2})^2], \]
where \(\omega_i^\alpha = a_i^\alpha + ib_i^\alpha + j(c_i^\alpha + kd_i^\alpha). \) As in the proof of Theorem 3.1, we can show that the critical submanifold \(G_H(n, N - 2) \) is non-degenerate with index 4n.

(2) Let \(\tilde{e}_1 = (1, 0, \ldots, 0)^t, \tilde{e}_2 = (0, 1, 0, \ldots, 0)^t \in H^n \) and \(G_H(n-2, N-2) = \{ \pi \in G_H(n,N) \mid \tilde{e}_1, \tilde{e}_2 \in \pi \} \) be a submanifold of \(G_H(n,N) \). Then we have \(x_{\alpha 1} = x_{\alpha 2} = 0, \alpha = n + 1, \ldots, N, \) for any \(\pi \in G_H(n-2, N-2). \) Therefore \(g|_{G_H(n-2,N-2)} = 0 \) and \(G_H(n-2, N-2) \) is a critical submanifold of \(g, \)
\[d^2g|_{G_H(n-2,N-2)} = -2\Re \sum_\alpha (\tilde{\omega}_1^\alpha \omega_2^\alpha + \tilde{\omega}_2^\alpha \omega_1^\alpha). \]
The critical submanifold \(G_H(n-2, N-2) \) is non-degenerate with index 4\((N-n) \).

(3) Now we study the case of the numbers \(x_{i1}, x_{i2} \) are not all zeros and so are the numbers \(x_{\alpha 1}, x_{\alpha 2}. \) Assuming \(x_{i1} = 0 \) for \(i > 1, \) \(x_{j2} = 0 \) for \(j > 2; \) \(x_{\alpha 1} = 0 \) for \(\alpha > n + 1, \) \(x_{\beta 2} = 0 \) for \(\beta > n + 2. \) Then the conditions \(x_{\alpha 1}x_{i2} + x_{\alpha 2}x_{i1} = 0 \) become
\[\frac{x_{i1}}{x_{i2}} = \frac{0}{x_{i2}} = \frac{x_{n+1}^1}{x_{n+1}^2} = \frac{x_{n+1}^2}{x_{n+2}^2}. \]
If \(x_{i1} = 0, \) we can assume \(x_{i2} = 0. \) Then if \(x_{i1} = 0, \) we have \(x_{i2} = 0. \) Therefore \(x_{i1} \neq 0, x_{i2} \neq 0 \) in this case. Similarly, \(x_{n+1}^1 \neq 0, x_{n+1}^2 \neq 0. \) Hence \(x_{n+2} = x_{n+2} = 0. \) By
\[\frac{x_{i1}}{x_{i2}} = \frac{x_{n+1}^1}{x_{n+1}^2}, \quad |x_{i1}|^2 + |x_{n+1}^1|^2 = 1, \quad |x_{i2}|^2 + |x_{n+1}^2|^2 = 1, \]
and the vectors \(e_1 \perp e_{n+1}, \) we have
\[e_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \ldots, 0 \right)^t, \quad e_i = (0, 0, x_{i3}, \ldots, x_{iN})^t, \quad i > 1. \]

Let \(G_H(n-1, N-2) \) be the subset of \(\pi \in G_H(n,N) \) which is generated by \(e_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \ldots, 0 \right)^t, \quad e_i = (0, 0, x_{i3}, \ldots, x_{iN})^t, \quad i > 1. \) Similarly, Let \(G_H(n-1, N-2) \subset G_H(n,N) \) be the subset of \(\pi \) which is generated by \(\tilde{e}_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, \ldots, 0 \right)^t, \quad e_i = (0, 0, x_{i3}, \ldots, x_{iN})^t, \quad i > 1. \) By construction,
$G_H(n-1, N-2)$ and $\tilde{G}_H(n-1, N-2)$ are critical submanifolds of function g,

$g|_{G_H(n-1, N-2)} \equiv 1, \quad g|_{\tilde{G}_H(n-1, N-2)} \equiv -1$.

By our assumption, $g(\pi) = 2\Re (x_1 \bar{x}_2)$ and $|x_1|^2 + |x_2|^2 \leq 1$, this shows

$g^{-1}(1) = G_H(n-1, N-2), \quad g^{-1}(-1) = \tilde{G}_H(n-1, N-2)$.

On $G_H(n-1, N-2)$, we can set $e_{n+1} = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, \ldots, 0)^t$; on $\tilde{G}_H(n-1, N-2)$, we can set $\tilde{e}_{n+1} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \ldots, 0)^t$. Then we have

\[d^2g|_{g^{-1}(-1)} = \Re \left[\sum_{\alpha} \bar{\omega}_1^\alpha \omega_1^\alpha + \sum_i \omega_i^{n+1} \bar{\omega}_i^{n+1} \right], \]

\[d^2g|_{g^{-1}(1)} = -\Re \left[\sum_{\alpha} \bar{\omega}_1^\alpha \omega_1^\alpha + \sum_i \omega_i^{n+1} \bar{\omega}_i^{n+1} \right]. \]

As in the proof of Theorem 3.1, we can show that the critical submanifolds $g^{-1}(-1)$ and $g^{-1}(1)$ are non-degenerate with indices 0 and $4(N-1)$ respectively. \qed

As Corollary 3.3, we have

Corollary 3.6. For $F = C$ or H, the Poincaré polynomial of $G_F(n, N)$ can be represented by

\[P_t(G_F(n, N)) = t^n P_t(G_F(n, N-2)) + t^{c(N-n)} P_t(G_F(n-2, N-2)) \]

\[+ (1 + t^{c(N-1)}) P_t(G_F(n-1, N-2)), \]

where $n, N-n \geq 2$.

References

THE GEOMETRY AND TOPOLOGY ON GRASSMANN MANIFOLDS

ZHOU JIANWEI
DEPARTMENT OF MATHEMATICS
SUZHOU UNIVERSITY
SUZHOU 215006, CHINA

(Received April 12, 2005)