Stickelberger Ideals and Normal Bases of Rings of p-integers

Humio Ichimura*
STICKELBERGER IDEALS AND NORMAL BASES OF
RINGS OF p-INTEGERS

HUMIO ICHIMURA

1. Introduction

Let p be an odd prime number, $K = \mathbb{Q}(\zeta_p)$ the p-cyclotomic field, and
$\Delta = \text{Gal}(K/\mathbb{Q})$. Kummer [16] discovered that the Stickelberger ideal S_Δ of
the group ring $\mathbb{Z}[\Delta]$ annihilates the ideal class group of K. In [7, Theorem
136], Hilbert gave an alternative proof of this important theorem. A new
ingredient of his proof is that it uses the theorem of Hilbert and Speiser on
the ring of integers of a tame abelian extension over \mathbb{Q}. This connection
between the Stickelberger ideal and rings of integers were pursued by Fröhlich
[2], McCulloh [17, 18], Childs [1], etc (cf. Fröhlich [3, Chapter VI]). Let F_p^r be the finite field with
p^r elements, and let $G_r = F_p^+ \times p^r$ and $C_r = F_p^\times$ be the
additive group and the multiplicative group of F_p^r, respectively. Thus, G_r
is an elementary abelian group of exponent p and rank r, and C_r is a cyclic
group of order $p^r - 1$. For a number field F, denote by $\text{Cl} = \text{Cl}(O_F[G_r])$ and
$R = R(O_F[G_r])$ the locally free class group of the group ring $O_F[G_r]$ and
the subset of classes realized by rings of integers of tame G_r-Galois extensions
over F, respectively. Here, O_F is the ring of integers of F. As the group C_r
naturally acts on G_r, the group ring $\mathbb{Z}[C_r]$ acts on Cl. McCulloh [17, 18]
characterized the realizable classes R by the action on Cl of a naturally
defined Stickelberger ideal S_r of $\mathbb{Z}[C_r]$.

In this paper, we introduce another Stickelberger ideal S_H of $\mathbb{Z}[H]$ for
each subgroup H of F_p^\times. Let F be a number field, $K = F(\zeta_p)$ and $\Delta = \text{Gal}(K/F)$. We naturally identify Δ with a subgroup
$H = H_F$ of F_p^\times through the Galois action on ζ_p. Thus, the ideal S_H acts on several objects associated
with K. As a consequence of a p-integer version of McCulloh’s result,
it follows that a number field F has the Hilbert-Speiser type property for
the rings of p-integers of cyclic extensions of degree p if and only if S_H anni-
hilates the p-ideal class group of K (Theorem 1). The purpose of this paper
is to give a direct and simpler proof of this assertion. In place of McCulloh’s
theorem, we use a theorem of Gómez Ayala [5] on normal integral basis and a
Galois descent property of p-NIB ([11, Theorem 1]). The Stickelberger ideal
S_H is a “H-part” of McCulloh’s $S_1 (\subset \mathbb{Z}[F_1^\times])$, and when $H = F_1^\times$, it equals
S_1 and the classical Stickelberger ideal for the extension $\mathbb{Q}(\zeta_p)/\mathbb{Q}$. In some
cases, it is more useful than McCulloh’s one since it depends on H (or the
extension K/F). In a subsequent paper [13] with Hiroki Sumida-Takahashi,
we study some properties of the ideal \(S_H \) and check whether or not a subfield of \(\mathbb{Q}(\zeta_p) \) has the above mentioned Hilbert-Speiser type property.

This paper is organized as follows. In Section 2, we define the Stickelberger ideal \(S_H \) and give the main result (Theorem 1). In Section 3, we show some corollaries. In Section 5, we prove Theorem 1 after some preliminaries in Section 4.

2. Theorem

In all what follows, we fix an odd prime number \(p \). We begin with the definition of the Stickelberger ideal for a subgroup of \(\mathbb{F}_p^\times \). Let \(H \) be a subgroup of \(\mathbb{F}_p^\times \). For an integer \(i \in \mathbb{Z} \), let \(\bar{i} \) be the class in \(\mathbb{F}_p \) represented by \(i \). For an element \(i \in H \), we often write \(\sigma_i = \bar{i} \). We define an element \(\theta \) of \(\mathbb{Q}[H] \) by

\[
\theta = \theta_H = \sum_{i} ' \frac{i}{p} \sigma_i^{-1} \quad (\in \mathbb{Q}[H]).
\]

Here, in the sum \(\sum_i ' \), \(i \) runs over the integers such that \(1 \leq i \leq p - 1 \) and \(\bar{i} \in H \). For an integer \(r \in \mathbb{Z} \), let

\[
\theta_r = \theta_{r,H} = \sum_{i} ' \left\lceil \frac{ri}{p} \right\rceil \sigma_i^{-1} \quad (\in \mathbb{Z}[H]).
\]

Here, for a rational number \(x \), \(\lceil x \rceil \) denotes the largest integer \(\leq x \). For an integer \(x \in \mathbb{Z} \), let \((x)_p \) be the unique integer such that \((x)_p \equiv x \mod p\) and \(0 \leq (x)_p \leq p - 1 \). Then, we have

(1) \(\quad x = \lceil x/p \rceil p + (x)_p \).

For an integer \(r \) with \(\bar{r} \in H \), we easily see by using (1) that

(2) \(\quad (r - \sigma_r)\theta = \theta_r \)

(cf. Washington [19, page 94]). Let \(S_H \) be the submodule of \(\mathbb{Z}[H] \) generated by the elements \(\theta_r \) over \(\mathbb{Z} \):

\[
S_H = \langle \theta_r \mid r \in \mathbb{Z} \rangle \mathbb{Z}.
\]

Using (1), we easily see that \(\sigma_s \theta_r = \theta_{sr} - r \theta_s \) for \(s \) with \(\bar{s} \in H \). Hence, \(S_H \) is an ideal of \(\mathbb{Z}[H] \). Let \(I = I_H \) be the ideal of \(\mathbb{Z}[H] \) generated by the elements \(r - \sigma_r \) for all integers \(r \) with \(\bar{r} \in H \). Then, we have

(3) \(\quad \mathbb{Z}[H] \cap \theta \mathbb{Z}[H] = I \theta \subseteq S_H \).

The equality can be shown similarly to [19, Lemma 6.9], and the inclusion holds by (2).
Let F be a number field, \mathcal{O}_F the ring of integers, and $\mathcal{O}'_F = \mathcal{O}_F[1/p]$ the ring of p-integers of F. Let Cl_F and Cl'_F be the ideal class groups of the Dedekind domains \mathcal{O}_F and \mathcal{O}'_F, respectively. Letting P be the subgroup of Cl_F generated by the classes containing a prime ideal of \mathcal{O}_F over p, we naturally have $\text{Cl}'_F \cong \text{Cl}_F/P$. We put $h'_F = |\text{Cl}'_F|$. A finite Galois extension N/F with group G has a normal p-integral basis (p-NIB for short) when \mathcal{O}'_N is free of rank one over the group ring $\mathcal{O}'_F[G]$. We say that a number field F satisfies the condition (A_0^p) when any cyclic extension N/F of degree p has a p-NIB, and that it satisfies $(A_0^p,1)$ when any abelian extension N/F of exponent p has a p-NIB. Let $K = F(\zeta_p)$ and $\Delta = \Delta_F = \text{Gal}(K/F)$. We naturally identify Δ with a subgroup $H = H_F$ of F^\times so that $\sigma_i \in H$ is the automorphism of K over F sending ζ_p to ζ_p^i. The group ring $\mathbb{Z}[\Delta] = \mathbb{Z}[H]$ and the ideal $S_\Delta = S_H$ naturally act on several objects associated with K.

Theorem 1. Let p be an odd prime number and F a number field. Let $K = F(\zeta_p)$ and $\Delta = \Delta_F = \text{Gal}(K/F)$. Then, the following three conditions are equivalent.

1. F satisfies the condition (A_0^p).
2. F satisfies the condition $(A_0^p,1)$.
3. The Stickelberger ideal S_Δ annihilates Cl'_K.

In particular, F satisfies $(A_0^p,1)$ if $h'_K = |\text{Cl}'_K| = 1$.

Remark 1. As we mentioned in Section 1, the equivalence (I) ⇔ (III) in Theorem 1 is a consequence of a p-integer version of the theorem of McCulloh. In [13, Appendix], we explain how to derive this equivalence from the p-integer version.

3. Corollaries

We use the same notation as in Section 2. As the conditions (A_0^p) and (A_0^p,∞) are equivalent by Theorem 1, we only refer to (A_0^p).

Corollary 1. When $\zeta_p \in F^\times$, F satisfies (A_0^p) if and only if $h'_F = 1$.

Corollary 2. Under the setting of Theorem 1, assume that $[K:F] = 2$. Then, the following two conditions are equivalent.

1. F satisfies (A_0^p).
2. K satisfies (A_0^p).

Proof. When $\zeta_p \in F^\times$ and $\Delta = \{1\}$, we have $S_\Delta = \mathbb{Z}$ from the definition. Hence, the assertion Corollary 1 follows from Theorem 1. When $[K:F] = |\Delta| = 2$, we have

$$\theta = \frac{1}{p} + \frac{p-1}{p} \sigma_{-1} \quad \text{and} \quad \theta_2 = \sigma_{-1}.$$
Hence, it follows that \(S_\Delta = \mathbb{Z}[\Delta] \). Therefore, \(F \) satisfies \((A'_p)\) if and only \(h'_K = 1 \) by Theorem 1, and the assertion of Corollary 2 follows from Corollary 1.

Let \(\ell \geq 3 \) be a prime number and \(g \geq 2 \) an integer. Assume that \(p = (g^\ell - 1)/(g - 1) \) is a prime number. Let \(F \) be a number field and \(K = F(\zeta_p) \). Assume further that \(2\ell \) divides the degree \([K:F]\). Then, there are intermediate fields \(K_2 \) and \(K_\ell \) of \(K/F \) with \([K : K_2] = 2\) and \([K : K_\ell] = \ell\), respectively.

Corollary 3. Under the above setting and assumptions, the following three conditions are equivalent.

(i) \(K_\ell \) satisfies \((A'_p)\).
(ii) \(K_2 \) satisfies \((A'_p)\).
(iii) \(K \) satisfies \((A'_p)\).

Proof. Let \(\Delta = \text{Gal}(K/K_\ell) \), and \(H \) the corresponding subgroup of \(F_p^\times \) of order \(\ell \). Namely, \(H \) is the subgroup of \(F_p^\times \) generated by the class \(\bar{g} \). As \(p = (g^\ell - 1)/(g - 1) \), we easily see that \(2g^i < p \) for \(0 \leq i \leq \ell - 2 \) and \(p < 2g^{\ell-1} < 2p \). Hence, it follows that

\[
\theta_\Delta = \theta_H = \sum_{i=0}^{\ell-1} \frac{g^i}{p} \sigma_g^{-i} \quad \text{and} \quad \theta_2 = \sigma_g^{-(\ell-1)}.
\]

Hence, we see that \(S_\Delta = \mathbb{Z}[\Delta] \), and that \(K_\ell \) satisfies \((A'_p)\) if and only if \(h'_K = 1 \) from Theorem 1. Therefore, the assertion follows from Corollaries 1 and 2.

Let \(p, F, K \) be as in Theorem 1. We say that \(F \) satisfies the condition \((B'_{p,\infty})\) when for any \(r \geq 1 \) and any \(a_1, \ldots, a_r \in F^\times \), the abelian extension \(K(a_i^{1/p} \mid 1 \leq i \leq r) \) over \(K \) has a \(p \)-NIB. When \(\zeta_p \not\in F^\times \), the conditions \((A'_p)\) and \((B'_{p,\infty})\) appear, superficially, to be irrelevant to each other. However, we can show the following relation between them.

Corollary 4. Let \(p, F, K \) be as in Theorem 1. Assume that the norm map \(C\ell'_K \rightarrow C\ell'_F \) is surjective. Then, \(F \) satisfies \((A'_p)\) only when it satisfies \((B'_{p,\infty})\).

The following assertion on the condition \((B'_{p,\infty})\) was shown in [10].

Theorem 2. Let \(p, F, K \) be as in Theorem 1. Then, \(F \) satisfies the condition \((B'_{p,\infty})\) if and only if the natural map \(C\ell'_F \rightarrow C\ell'_K \) is trivial.

Proof of Corollary 4. We see that \(N_{K/F} = \sum_i \sigma_i = -\theta_{-1} \in S_\Delta \). Assume that \(F \) satisfies \((A'_p)\). Then, the element \(\theta_{-1} \) annihilates \(C\ell'_K \) by Theorem
1. From this, it follows that the natural map \(Cl'_F \to Cl'_{K} \) is trivial since the norm map \(N_{K/F} : Cl'_{K} \to Cl'_F \) is surjective. Hence, \(F \) satisfies \((B'_{p,\infty})\) by Theorem 2.

Remark 2. In [14, 15], Kawamoto proved that for any \(a \in \mathbb{Q}^\times \), the cyclic extension \(\mathbb{Q}(\zeta_p, a^{1/p})/\mathbb{Q}(\zeta_p) \) has a normal integral basis (in the usual sense) if it is tame. The condition \((B'_{p,\infty})\) comes from this result. A Kawamoto type property was also studied in [9]. An assertion corresponding to Corollary 4 for the usual integer rings was given in [8, 12] under some condition on the Stickelberger ideal associated with \(H = \text{Gal}(K/F) \).

4. Some results on \(p \)-NIB

In this section, we recall a theorem of Gómez Ayala on normal integral basis of a Kummer extension of prime degree, and a descent property of normal integral bases shown in [11].

Let \(K \) be a number field. Let \(\mathfrak{A} \) be a \(p \)-th power free integral ideal of \(\mathcal{O}'_K \). Namely, \(\mathfrak{P}^p \nmid \mathfrak{A} \) for any prime ideal \(\mathfrak{P} \) of \(\mathcal{O}'_K \). Then, we can uniquely write

\[
\mathfrak{A} = \prod_{i=1}^{p-1} \mathfrak{A}_i^i
\]

for some square free integral ideals \(\mathfrak{A}_i \) of \(\mathcal{O}'_K \) relatively prime to each other. The associated ideals \(\mathfrak{B}_r \) of \(\mathfrak{A} \) are defined by

\[
\mathfrak{B}_r = \prod_{i=1}^{p-1} \mathfrak{A}_i^{[ri/p]} \quad (0 \leq r \leq p - 1).
\]

Clearly, we have \(\mathfrak{B}_0 = \mathfrak{B}_1 = \mathcal{O}'_K \). The following is a \(p \)-integer version of a theorem of Gómez Ayala [5, Theorem 2.1]. For this, see also [11, Theorem 3].

Theorem 3. Let \(K \) be a number field with \(\zeta_p \in K^\times \). A cyclic Kummer extension \(L/K \) of degree \(p \) has a \(p \)-NIB if and only if there exists an integer \(a \in \mathcal{O}'_K \) with \(L = K(a^{1/p}) \) satisfying the following two conditions:

(i) the principal integral ideal \(a\mathcal{O}'_K \) is \(p \)-th power free,

(ii) the ideals of \(\mathcal{O}'_K \) associated with \(a\mathcal{O}'_K \) by (4) are principal.

The following is an immediate consequence of Theorem 3.

Corollary 5. Let \(K \) be a number field with \(\zeta_p \in K^\times \), and let \(a \in \mathcal{O}'_K \) be an integer such that the integral ideal \(a\mathcal{O}'_K \) is square free. Then, the cyclic extension \(K(a^{1/p})/K \) has a \(p \)-NIB.

When \(a \) is a unit of \(\mathcal{O}'_K \), this assertion is classically known (cf. Greither [6, Proposition 0.6.5]).
Lemma 1. Let K be a number field, and $a \in \mathcal{O}_K'$ an integer satisfying the conditions (i) and (ii) in Theorem 3. For any integer s with $1 \leq s \leq p - 1$, we can write $a^s = bx^p$ for some integers $b, x \in \mathcal{O}_K'$ with b satisfying the conditions (i) and (ii) in Theorem 3.

Proof. By the assumption on a, we can write

$$a \mathcal{O}_K' = \prod_{i=1}^{p-1} \mathfrak{A}_i^i$$

for some square free integral ideals \mathfrak{A}_i of \mathcal{O}_K' relatively prime to each other. Further, the ideals \mathfrak{B}_r associated with $a \mathcal{O}_K'$ by (4) are principal. By (1), we see that

$$a^s \mathcal{O}_K' = \prod_{i} \mathfrak{A}_i^{is} = \prod_{i} \mathfrak{A}_i^{(is)p} \cdot \mathfrak{B}_s^p.$$

As \mathfrak{B}_s is principal, we can write $a^s = bx^p$ for some integers $b, x \in \mathcal{O}_K'$ with

$$b \mathcal{O}_K' = \prod_{i} \mathfrak{A}_i^{(is)p}.$$

In particular, the integral ideal $b \mathcal{O}_K'$ is p-th power free. Let \mathfrak{C}_r be the ideals of \mathcal{O}_K' associated with $b \mathcal{O}_K'$ by (4). Namely,

$$\mathfrak{C}_r = \prod_{i=1}^{p-1} \mathfrak{A}_i^{n_i} \quad \text{with} \quad n_i = \left[\frac{r(is)_p}{p} \right].$$

Using (1), we see that

$$r(is)_p = ris - rp \left[\frac{is}{p} \right] = i(rs)_p + ip \left[\frac{rs}{p} \right] - rp \left[\frac{is}{p} \right],$$

and hence,

$$n_i = \left[\frac{r(is)_p}{p} \right] = \left[\frac{i(rs)_p}{p} \right] + i \left[\frac{rs}{p} \right] - r \left[\frac{is}{p} \right].$$

Therefore, we obtain

$$\mathfrak{C}_r = \mathfrak{B}_{(rs)p} \cdot (a \mathcal{O}_K')^{[rs/p]} \cdot \mathfrak{B}_s^{-r}.$$

Hence, the associated ideals \mathfrak{C}_r of $b \mathcal{O}_K'$ are principal. \qed

Let F be a number field. Let $m = p^e$ be a power of p, and ζ_m a primitive m-th root of unity. It is classically known that a cyclic extension N/F of degree m unramified outside p has a p-NIB if and only if the Kummer extension $N(\zeta_m)/F(\zeta_m)$ has a p-NIB (cf. [6, Theorem 1.2.1]). For the ramified case, we showed the following assertion in [11, Theorem 1] with an elementary way.
Theorem 4. Let $m = p^e$ be a power of p. Let F be a number field with $\zeta_m \notin F^\times$, and $K = F(\zeta_m)$. Assume that $p \nmid [K : F]$, or equivalently that $[K : F]$ divides $p - 1$. Then, a cyclic extension N/F of degree m has a p-NIB if and only if NK/K has a p-NIB.

Remark 3. An inexplicit version of the Gómez Ayala theorem already appeared in [17, (3.2.2)].

5. Proof of Theorem 1

In the following, let p, F, K, Δ be as in Theorem 1, and let $H = H_F$ be the subgroup of F^\times_p corresponding to Δ. We use the same notation as in Section 2. It suffices to prove the implications (I) \Rightarrow (III) and (III) \Rightarrow (II).

Let us recall some properties of the element $e := p\theta = \theta_p = \sum_i i\sigma_i^{-1} (\in S_\Delta)$.

Let \mathbf{Z}_p be the ring of p-adic integers, and let $\omega : \Delta \to \mathbf{Z}_p^\times$ be the \mathbf{Z}_p-valued character of Δ representing the Galois action on ζ_p. Namely, we have $\zeta_p^\sigma = \zeta_p(\omega(\sigma))$ for $\sigma \in \Delta$. Denote by

$$e_\omega = \frac{1}{d} \sum_{\sigma} \omega(\sigma)\sigma^{-1}$$

the idempotent of $\mathbf{Z}_p[\Delta]$ corresponding to ω. Here, $d = |\Delta|$, and σ runs over Δ. It is easy to see and well-known that

$$e_\omega^2 = e_\omega \quad \text{and} \quad e_\omega \sigma = \omega(\sigma)e_\omega$$

for $\sigma \in \Delta$ (cf. [19, page 100]). From the definition, we have

(5) \hspace{1cm} e \equiv de_\omega \mod p,

and hence $e^2 \equiv de \mod p$. Therefore, we see from (3) and $e = p\theta$ that

(6) \hspace{1cm} e^2 = de + pS \quad \text{with} \quad S = (p\theta - d)\theta \in S_\Delta.

It follows from (2) that

(7) \hspace{1cm} e\sigma_r \equiv r e \mod pS_\Delta

for an integer r with $\bar{r} \in H$.

The following lemma is an exercise in Galois theory (and is a consequence of the congruence (5) or (7)).

Lemma 2. Let p, F, K be as in Theorem 1, and let L/K be a cyclic extension of degree p. Then, there exists a cyclic extension N/F of degree p with $L = NK$ if and only if $L = K((a^e)^{1/p})$ for some $a \in K^\times$.

Produced by The Berkeley Electronic Press, 2006
Proof of the implication (I) ⇒ (III). Assume that \(F \) satisfies the condition \((A'_p)\). It suffices to show that the element \(\theta_r \) annihilates \(C \Gamma'_K \) for any integer \(r \) with \(r \neq 0 \). Let \(\mathcal{C} \in \mathcal{C}'_K \) be an arbitrary ideal class. For an integer \(r \neq 0 \), choose prime ideals \(\mathfrak{P} \in \mathcal{C}^{-r} \) and \(\mathfrak{O} \in \mathcal{C} \) of relative degree one over \(F \) with \((N_{K/F}\mathfrak{P}, N_{K/F}\mathfrak{O}) = 1 \), where \(N_{K/F} \) denotes the norm map. The condition that \(\mathfrak{P} \) is of relative degree one over \(F \) means that the prime ideal \(\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}'_F \) of \(\mathcal{O}'_F \) splits completely in \(K \). We have \(\mathfrak{P}\mathfrak{O}^r = a\mathcal{O}'_K \) for some \(a \in K^\times \). We put \(b = a^e \) and \(L = K(b^{1/p}) \). Using (1), we see that

\[
\mathfrak{b}\mathcal{O}'_K = \prod_i \mathfrak{P}_i^{-i} \cdot \prod_i \mathfrak{O}^{-1} \mathfrak{r} \cdot (\mathfrak{O}^{(\theta_r)})^p.
\]

Here, in the product \(\prod_i \), \(i \) runs over the integers with \(1 \leq i \leq p - 1 \) and \(\mathfrak{r} \in H \). We have \(\mathfrak{P} \parallel b \) as \(\mathfrak{P} \) splits completely in \(K \). Hence, the cyclic extension \(L/K \) is of degree \(p \). By Lemma 2, there exists a cyclic extension \(N/F \) of degree \(p \) with \(L = N K \). As \(F \) satisfies \((A'_p)\), \(N/F \) has a \(p \)-NIB. Hence, \(L/K \) has a \(p \)-NIB by a classical result on rings of integers in Fröhlich and Taylor [4, III (2.13)]. Therefore, there exists an integer \(c \in \mathcal{O}'_K \) with \(L = K(c^{1/p}) \) satisfying the conditions (i) and (ii) in Theorem 3. Clearly, we have \(b = c^s x^p \) for some \(1 \leq s \leq p - 1 \) and \(x \in K^\times \). By Lemma 1, we can write \(c^s = dy^p \) for some integers \(d, y \in \mathcal{O}'_K \) such that the integral ideal \(d\mathcal{O}'_K \) is \(p \)-th power free. Therefore, as \(b = d(xy)^p \), it follows from (8) that \(\mathfrak{O}^{(\theta_r)} = xy\mathcal{O}'_K \). Hence, \(\theta_r \) kills the class \(\mathcal{C} \) for any \(r \).

To prove the implication (III) ⇒ (II), we need to prepare some lemmas. For an element \(x \in K^\times \), let \([x]_K \) be the class in \(K^\times/(K^\times)^p \) represented by \(x \). For a subgroup \(X \) of \(K^\times \), we put

\[
[X]_K = \{ [x]_K \in K^\times/(K^\times)^p \mid x \in X \}.
\]

Let \(E'_K = (\mathcal{O}'_K)^X \) be the group of units of \(\mathcal{O}'_K \). From now on, we assume that \(S_\Delta \) annihilates \(C \Gamma'_K \). For a while, we fix a prime ideal \(\mathfrak{P} \) of \(\mathcal{O}'_K \). As \(e = \theta_p \in S_\Delta \), we can choose an integer \(a_{\mathfrak{P}} \in \mathcal{O}'_K \) with \(a_{\mathfrak{P}}\mathcal{O}'_K = \mathfrak{P}^e \). Let \(b_{\mathfrak{P}} = a_{\mathfrak{P}}^e \).

Lemma 3. Under the above setting, assume that \(\mathfrak{P} \) is of relative degree one over \(F \). Then, the cyclic extension \(K(b^{1/p}_{\mathfrak{P}})/K \) is of degree \(p \), ramified at \(\mathfrak{P} \), and unramified at all prime ideals of \(\mathcal{O}'_K \) outside \(N_{K/F}\mathfrak{P} \). Further, it has a \(p \)-NIB.

Lemma 4. Under the above setting, assume that \(\mathfrak{P} \) is not of relative degree one over \(F \). Then, we have \(\{ b_{\mathfrak{P}} \} K \in [E'_K]_K \).

Proof of Lemma 3. For simplicity, we write \(a = a_{\mathfrak{P}} \), \(b = a^e = b_{\mathfrak{P}} \), and \(L = K(b^{1/p}) \). Let \(L_0 = K(a^{1/p}) \). First, we show that \(L_0/K \) is of degree \(p \).
and has a p-NIB. From the definition, we have

$$aO'_K = \mathfrak{P}^e = \prod_i \mathfrak{P}^{\sigma_i^{-1}i}.$$

As \mathfrak{P} is of relative degree one over F, we see that

$$(9) \quad \mathfrak{P}||aO'_K$$

and that aO'_K is p-th power free. In particular, L_0/K is of degree p. Let \mathfrak{B}_r be the ideals of O'_K associated with aO'_K by (4). It follows that

$$\mathfrak{B}_r = \prod_i \mathfrak{P}^{\sigma_i^{-1}[ri/p]} = \mathfrak{P}^{\theta_r}.$$

Hence, the associated ideals \mathfrak{B}_r are principal as \mathcal{S}_Δ annihilates Cl'_K. Therefore, L_0/K has a p-NIB by Theorem 3.

Let us show the assertions on $L = K(b^{1/p})$. We see from (6) and $\mathfrak{P}^e = aO'_K$ that

$$bO'_K = a^dO'_K = \mathfrak{P}^{e^2} = a^dO'_K \cdot (\mathfrak{P}^S)^p \quad \text{with} \quad S \in \mathcal{S}_\Delta,$$

where $d = |\Delta|$. As \mathfrak{P}^S is principal, it follows that $[b]_K = [\eta a^d]_K$ for some unit $\eta \in E'_K$. Therefore, by (9), the extension L/K is of degree p and ramified at \mathfrak{P}. Clearly, it is unramified outside $N_{K/F} \mathfrak{P}$. Let $L_\eta = K(\eta^{1/p})$. Then, L_η/K has a p-NIB by Corollary 5. As we have seen above, $L_0 = K(a^{1/p})/K$ has a p-NIB. As is easily seen, the extensions L_η/K and L_0/K are linearly disjoint and their relative discriminants with respect to O'_K are relatively prime to each other. Therefore, the composite $L_\eta L_0/K$ has a p-NIB by [4, III (2.13)]. Hence, L/K has a p-NIB as $L \subseteq L_\eta L_0$.

\begin{proof}[Proof of Lemma 4] Let $D (\subseteq \Delta)$ be the decomposition group of \mathfrak{P} at K/F. Let $r = |\Delta : D|$ and $t = |D| = d/r$ where $d = |\Delta|$. As \mathfrak{P} is not of degree one over F, we have $D \neq \{1\}$ and $t \geq 2$. Choose an integer $g \in \mathbb{Z}$ so that $\rho = \sigma_g$ generates Δ. Then, it follows that $D = \langle \rho^r \rangle$ and

$$e = \sum_{\lambda=0}^{r-1} \sum_{j=0}^{t-1} (g^{\lambda+rj})_p \cdot \rho^{-(\lambda+rj)}.$$

As $\mathfrak{P}^{\rho^r} = \mathfrak{P}$, we see that

$$\mathfrak{P}^e = \prod_{\lambda=0}^{r-1} (\mathfrak{P}^{\rho^\lambda})^{m_\lambda}$$

with

$$m_\lambda = \sum_{j=0}^{t-1} (g^{\lambda+rj})_p \equiv g^\lambda \sum_{\sigma \in D} \omega(\sigma) \equiv 0 \mod p.$$
Here, the last congruence holds as $D \neq \{1\}$. Therefore, we obtain $\mathfrak{p}^e = \mathfrak{a}^p$ for some ideal \mathfrak{a} of \mathcal{O}_K'. Hence, it follows that

$$b_{\mathfrak{q}}\mathcal{O}_K' = \mathfrak{p}^{e^2} = (\mathfrak{a}^p)^p.$$

As \mathfrak{a}^e is principal, we see that $[b_{\mathfrak{q}}]_K \in [E'_K]_K$. By (6) and $b_{\mathfrak{q}} = a_{\mathfrak{q}}^e$, we have $[b_{\mathfrak{q}}^2]_K = [b_{\mathfrak{q}}^d]_K$. As $p \nmid d$, we obtain the assertion. \hfill \Box

Proof of the implication (III) \Rightarrow (II). We are assuming that S_Δ annihilates Cl'_K. Let N/F be an abelian extension of exponent p, and $L = NK$. By Lemma 2 and (6), we have

$$L = K((a_i^{e^2})^{1/p} \mid 1 \leq i \leq r) = K((a_i^e)^{1/p} \mid 1 \leq i \leq r)$$

for some integers $a_i \in \mathcal{O}_K'$. For each prime ideal \mathfrak{p} of \mathcal{O}_F, we choose and fix a prime ideal \mathfrak{q} of \mathcal{O}_K' over \mathfrak{p}. Let $a_{\mathfrak{p}} \in \mathcal{O}_K'$ be an integer with $\mathfrak{p}^e = a_{\mathfrak{p}}\mathcal{O}_K'$, and $b_{\mathfrak{p}} = a_{\mathfrak{p}}^e$. Let

$$a_i\mathcal{O}_K' = \prod_{\mathfrak{p}} \mathfrak{p}^{x_{\mathfrak{p}}}$$

be the prime decomposition of $a_i\mathcal{O}_K'$. Here, \mathfrak{p} runs over the prime ideals of \mathcal{O}_F' dividing $N_{K/F}(a_i)$, and $X_{\mathfrak{p}}$ is an element of $\mathbb{Z}[\Delta]$ with non-negative coefficients. We see from (7) that

$$a_i^{e^2}\mathcal{O}_K' = \prod_{\mathfrak{p}} (\mathfrak{p}^e)^{x_{\mathfrak{p}}} (\mathfrak{p}^{S_{\mathfrak{p}}})^p = \prod_{\mathfrak{p}} a_{\mathfrak{p}}^{x_{\mathfrak{p}}} \mathcal{O}_K'(\mathfrak{p}^{S_{\mathfrak{p}}})^p$$

for some integers $x_{\mathfrak{p}} \geq 0$ and some Stickelberger elements $S_{\mathfrak{p}} \in S_\Delta$. Since $\mathfrak{p}^{S_{\mathfrak{p}}}$ is principal and $b_{\mathfrak{p}} = a_{\mathfrak{p}}^e$, it follows that

$$[a_i^{e^2}]_K = \left[\eta_i^{e^2} \prod_{\mathfrak{p}} b_{\mathfrak{p}}^{x_{\mathfrak{p}}} \right]_K$$

for some unit $\eta_i \in E_K'$. Let T be the set of prime ideals \mathfrak{p} of \mathcal{O}_F' dividing $N_{K/F}(a_i)$ for some i such that \mathfrak{p} splits completely in K. Let $\epsilon_1, \cdots, \epsilon_s$ be a set of units of \mathcal{O}_K' such that the classes $[\epsilon_1^e], \cdots, [\epsilon_s^e]$ form a basis of the vector space $[E_K'/\mathfrak{e}]_K$ over \mathbb{F}_p. Then, it follows from (10), (11) and Lemma 4 that L is contained in

$$\tilde{M} = K \left((\epsilon_j^e)^{1/p}, b_{\mathfrak{p}}^{1/p} \mid 1 \leq j \leq s, \mathfrak{p} \in T \right).$$

By Lemma 2, there uniquely exists a cyclic extension N_j/F (resp. $N_{\mathfrak{p}}/F$) of degree p with $N_jK = K((\epsilon_j^e)^{1/p})$ (resp. $N_{\mathfrak{p}}K = K(b_{\mathfrak{p}}^{1/p})$). We see that N is contained in the composite \tilde{M} of N_j and $N_{\mathfrak{p}}$ with $1 \leq j \leq s$ and $\mathfrak{p} \in T$. By Corollary 5 and Lemma 3, the extensions N_jK and $N_{\mathfrak{p}}K$ over K have a p-NIB. Hence, by Theorem 4, N_j/F and $N_{\mathfrak{p}}/F$ have a p-NIB. From the choice of ϵ_j and Lemma 3, we see that these extensions over F are...
linearly disjoint over F and their relative discriminants with respect to O'_{F} are relatively prime to each other. Therefore, their composite M/F has a p-NIB by [4, III (2.13)]. Hence, N/F has a p-NIB as $N \subseteq M$.

Acknowledgements. The author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 16540033), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

H. ICHIMURA

Humio Ichimura
Faculty of Science, Ibaraki University
Bunkyo 2-1-1, Mito, Ibaraki, 310-8512, Japan

(Received March 7, 2005)