Global Solvably Closed Anabelian Geometry

Shinichi Mochizuki*

*Kyoto University
Global Solvably Closed Anabelian Geometry

Shinichi Mochizuki

Abstract

In this paper, we study the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, over Galois groups of “solvably closed extensions” of number fields — i.e., infinite extensions of number fields which have no nontrivial abelian extensions. The main results of this paper are, in essence, immediate corollaries of the following three ingredients: (a) classical results concerning the structure of Galois groups of number fields; (b) an anabelian result of Uchida concerning Galois groups of solvably closed extensions of number fields; (c) a previous result of the author concerning the pro-Σ anabelian geometry of hyperbolic curves over nonarchimedean local fields.

KEYWORDS: solvably closed, number field, Galois group, anabelian geometry, hyperbolic curve
GLOBAL SOLVABLY CLOSED ANABELIAN GEOMETRY

Shinichi MOCHIZUKI

Abstract. In this paper, we study the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, over Galois groups of “solvably closed extensions” of number fields — i.e., infinite extensions of number fields which have no nontrivial abelian extensions. The main results of this paper are, in essence, immediate corollaries of the following three ingredients: (a) classical results concerning the structure of Galois groups of number fields; (b) an anabelian result of Uchida concerning Galois groups of solvably closed extensions of number fields; (c) a previous result of the author concerning the pro-Σ anabelian geometry of hyperbolic curves over nonarchimedean local fields.

1. Introduction

In this paper, we study various properties of solvably closed Galois groups of number fields, i.e., Galois groups of field extensions of number fields that admit no nontrivial abelian field extensions [cf. Definition 1, (i)]. In §1, we show that such Galois groups satisfy many of the properties of absolute Galois groups of number fields that are of importance in the context of anabelian geometry. In particular, this includes properties concerning Galois cohomology, center-free-ness, decomposition groups of valuations, and topologically finitely generated closed normal subgroups. In §2, after reviewing a fundamental result of Uchida [cf. [11]] to the effect that solvably closed Galois groups of number fields are anabelian, we apply the various results obtained in §1 to give a new version of the main result of [6] concerning the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, in the context of solvably closed Galois groups of number fields. Finally, in §3, we observe that “relatively small” solvably closed Galois groups of number fields exist in “substantial abundance”. For instance, in the case of punctured elliptic curves, it is possible in many instances to obtain solvably closed Galois groups of number fields that are, on the one hand, “large enough” to be compatible with the outer Galois action on the pro-Σ geometric fundamental group of the punctured elliptic curve [i.e., in the sense that this outer Galois action of the Galois group of the number field factors through the quotient determined by the solvably closed extension], but, on the other hand, “small enough” to be linearly disjoint from

Mathematics Subject Classification. Primary 14H30; Secondary 11R99.

Key words and phrases. solvably closed, number field, Galois group, anabelian geometry, hyperbolic curve.
various field extensions arising from the l-torsion points of the elliptic curve, for a prime number $l \notin \Sigma$.

Acknowledgment. The author wishes to thank Akio Tamagawa for bringing the results exposed in Theorems 2.4, 3.1 of the text to his attention.

2. Basic Properties

We begin by defining the notion of a solvably closed Galois group of a number field and showing that such Galois groups satisfy many properties that are well-known in the case of absolute Galois groups of number fields.

Let F be a number field [i.e., a finite extension of the field of rational numbers], \overline{F} an algebraic closure of F, and $\overline{F} \subseteq \overline{F}$ a [not necessarily finite] Galois extension of F. Write $G_F \overset{\text{def}}{=} \text{Gal}(\overline{F}/F)$, $Q_F \overset{\text{def}}{=} \text{Gal}(\overline{F}/F)$. Thus, one may think of Q_F as a quotient $G_F \twoheadrightarrow Q_F$ of G_F.

Definition 1.

(i) We shall say that a field is solvably closed if it has no nontrivial abelian extensions. If e_F is solvably closed, then we shall say that e_F/F is a solvably closed extension and refer to Q_F as a solvably closed Galois group of the number field F.

(ii) If G is any profinite group, and p is a prime number, then we shall write

$$\text{cd}_p(G)$$

for the smallest positive integer i such that $H^j(G, A) = 0$ for all continuous p-torsion G-modules A and all $j > i$, if such an integer i exists; if such an integer i does not exist, then we set $\text{cd}_p(G) \overset{\text{def}}{=} \infty$ [cf. [8], Definition 3.3.1].

Remark 1. Observe that the Galois group Q_F is solvably closed if and only if, for any open subgroup $H_Q \subseteq Q_F$, whose inverse image in G_F we denote by $H_G \subseteq G_F$, the surjection induced on maximal pro-solvable quotients

$$H_G^{\text{sol}} \twoheadrightarrow H_Q^{\text{sol}}$$

by the quotient morphism $H_G \twoheadrightarrow H_Q$ is an isomorphism.

Remark 2. Thus, if we denote by $\overline{F}^{\text{sol}} \subseteq \overline{F}$ the maximal solvable [Galois] extension of \overline{F}, then one verifies immediately that $\text{Gal}(\overline{F}^{\text{sol}}/F)$ is a solvably closed Galois group of the number field F. In particular, [by taking $\overline{F} = F$, it follows that] the maximal pro-solvable quotient G_F^{sol} of G_F is a solvably closed Galois group of the number field F.
Remark 3. One verifies immediately that any open subgroup of a solvably closed Galois group of a number field is again a solvably closed Galois group of a number field.

Proposition 2.1 (Galois Cohomology of Solvably Closed Galois Groups). Suppose that Q_F is a solvably closed Galois group of the number field F. Then:

(i) The natural surjection $G_F \to Q_F$ induces an isomorphism

$$H^i(Q_F, A) \cong H^i(G_F, A)$$

for all continuous torsion Q_F-modules A and all integers $i \geq 0$. In particular, if F contains a square root of -1, then $cd_p(Q_F) = 2$ for all prime numbers p.

(ii) Let p be a prime number; suppose that F contains a primitive p-th root of unity. Then for any automorphism σ of the field \bar{F} that preserves and acts nontrivially on $F \subseteq \bar{F}$, the automorphism induced by σ of the set of one-dimensional \mathbb{F}_p-subspaces of the \mathbb{F}_p-vector space $H^2(Q_F, \mathbb{F}_p)$ is nontrivial.

Proof. First, we consider assertion (i). Write $J_F \overset{\text{def}}{=} \ker(G_F \to Q_F)$. To show the desired isomorphism, it follows immediately from the Leray-Serre spectral sequence associated to the extension $1 \to J_F \to G_F \to Q_F \to 1$ that it suffices to show that $H^i(J_F, A) = 0$ for all $i \geq 1$. Since

$$H^i(J_F, A) \cong \lim_{\to} H^i(H, A)$$

where H ranges over the open subgroups of G_F containing J_F, we thus conclude the desired vanishing as follows: If $i \geq 3$, then the fact that $H^i(H, A) = 0$ follows from the fact that $cd_p(H) \leq 2$, for H sufficiently small [i.e., H that correspond to totally imaginary extensions of F — cf. [8], Proposition 8.3.17]. If $i = 2$, then we recall that by the well-known “Hasse Principle for central simple algebras” [cf., e.g., [8], Corollary 8.1.16; the discussion of [8], §7.1], it follows that we have an exact sequence

$$0 \to H^2(G_F, \mathbb{F}_p(1)) \to \bigoplus_v H^2(G_v, \mathbb{F}_p(1)) \to \mathbb{F}_p \to 0$$

where the “(1)” denotes a “Tate twist”; v ranges over the valuations of F; G_v denotes the decomposition group of v in G_F, which is well-defined up to conjugation; and we recall in passing that the restriction to the various direct summands of the map to \mathbb{F}_p induces an isomorphism $H^2(G_v, \mathbb{F}_p(1)) \cong \mathbb{F}_p$ for
all nonarchimedean v. Thus, by applying the analogue for H of this exact sequence for G_F, together with the Grunwald-Wang Theorem [which assures the existence of global abelian field extensions with prescribed behavior at a finite number of valuations — cf., e.g., [8], Corollary 9.2.3], we conclude immediately that

$$\lim_{H} H^2(H, A) = 0$$

[where H ranges over the open subgroups of G_F containing J_F]. When $i = 1$, the fact that

$$\lim_{H} H^1(H, A) = 0$$

follows formally from the definition of a “solvably closed” Galois group [cf. Definition 1, (i)]. Now the statement concerning $cd_p(Q_F)$ follows immediately from the isomorphism just verified, together with the fact that, if F contains a square root of -1 [hence is totally imaginary], then $cd_p(G_F) = 2$ [cf. [8], Proposition 8.3.17; the exact sequence just discussed concerning $H^2(G_F, \mathbb{F}_p(1))$. This completes the proof of assertion (i).

Finally, we observe that assertion (ii) follows immediately from the exact sequence just discussed concerning

$$H^2(G_F, \mathbb{F}_p(1)) \cong H^2(Q_F, \mathbb{F}_p(1)) \cong H^2(Q_F, \mathbb{F}_p)$$

[cf. assertion (i); our assumption that F contains a primitive p-th root of unity], together with Tchebotarev’s density theorem [cf., e.g., [3], Chapter VIII, §4, Theorem 10], which implies that if we write $F_0 \subseteq F$ for the subfield fixed by σ, then there exist two distinct nonarchimedean valuations v_1, v_2 of F_0 that split completely in F. That is to say, if w_1, w_2 are valuations of F lying over v_1, v_2, respectively, then there exists an element $h \in H^2(Q_F, \mathbb{F}_p) \cong H^2(G_F, \mathbb{F}_p(1))$ [where we note that this isomorphism is compatible with the natural actions by σ, up to multiplication by an element of \mathbb{F}_p^\times which maps to a nonzero element of the direct sum in the above sequence whose unique nonzero components are the components labeled by v_1, v_2; thus, $\sigma(\mathbb{F}_p \cdot h) \neq \mathbb{F}_p \cdot h$, as desired.]

\[\square\]

Remark 4. As was pointed out to the author by the referee, one may generalize Proposition 2.1, (i), substantially if one assumes the Bloch-Kato conjecture — i.e., the assertion that the cup product

$$\cup : H^1(G_K, \mathbb{F}_p(1)) \otimes_i \to H^i(G_K, \mathbb{F}_p(i))$$

induces a surjection for every integer $i \geq 1$, every prime number p, and every field K of characteristic zero. Indeed, if $G_K \twoheadrightarrow Q_K$ is a quotient by a closed normal subgroup $J_K \subseteq G_K$ corresponding to a field extension \tilde{K} of
which has no nontrivial abelian extensions, then to show that the natural morphism

\[H^i(\mathbb{Q}_K, A) \to H^i(G_K, A) \]

is an isomorphism for all integers \(i \geq 0 \) and continuous torsion \(\mathbb{Q}_K \)-modules \(A \), it suffices to verify [cf. the proof of Proposition 2.1, (i)], in the case \(A = \mathbb{F}_p \), that for all open subgroups \(H \subseteq G_K \) containing \(J_K \), an arbitrary class \(\in H^i(H, A) \) vanishes upon restriction to a sufficiently small open subgroup \(H_1 \subseteq H \) containing \(J_K \); but this follows from the fact that \(K \) has no nontrivial abelian extensions if \(i = 1 \), hence by the Bloch-Kato conjecture if \(i \geq 2 \).

Before proceeding, we recall that a profinite group \(\Delta \) is slim if every open subgroup of \(\Delta \) has trivial centralizer in \(\Delta \) [cf. [5], Definition 0.1, (i)].

Corollary 2.2 (Slimness). Every solvably closed Galois group of a number field is slim.

Proof. Suppose that \(\mathbb{Q}_F \) is solvably closed. Let \(H_Q \subseteq \mathbb{Q}_F \) be an open subgroup, \(\sigma \in \mathbb{Q}_F \) an element of the centralizer of \(H_Q \). Write \(F_H \subseteq \widetilde{F} \) for the extension of \(F \) defined by \(H_Q \). Since \(\mathbb{Q}_F \) is solvably closed, by taking \(H_Q \) to be sufficiently small, we may assume that \(F_H \) contains a \(p \)-th root of unity, for some prime number \(p \). Note that since \(\sigma \) commutes with \(H_Q \), it follows that \(\sigma \) acts trivially on \(H^2(H_Q, \mathbb{F}_p) \). Thus, by applying Proposition 2.1, (ii), to the action of \(\sigma \) on \(\widetilde{F}/F_H \), we conclude that \(\sigma \) acts trivially on \(F_H \), i.e., that \(\sigma \in H_Q \). On the other hand, since \(H_Q \) may be taken to be arbitrarily small, it thus follows that \(\sigma = 1 \), as desired. \(\Box \)

The next two results, concerning decomposition groups and topologically finitely generated closed normal subgroups, respectively, are well-known in the case of absolute Galois groups [cf., e.g., [8], Corollary 12.1.3; [2], Proposition 16.11.6].

Proposition 2.3 (Decomposition Groups). Suppose that \(\mathbb{Q}_F \) is a solvably closed Galois group of the number field \(F \). Let \(v, w \) be valuations of \(F \) such that \(v \neq w \); write \(G_v, G_w \subseteq \mathbb{Q}_F \) for the corresponding decomposition groups [which are well-defined up to conjugation] in \(\mathbb{Q}_F \) and \(F_v, F_w \) for the corresponding completions of \(F \). Then:

(i) Suppose that \(F \) contains a square root of \(-1\), and that \(v, w \) are nonarchimedean; let \(K \) be a finite extension of \(F_v \). Then there exists a finite Galois extension of \(F \) contained in \(\widetilde{F} \) whose restriction to \(F_v \) contains \(K \) and whose restriction to \(F_w \) is the trivial extension.

(ii) Suppose that \(v, w \) are archimedean; let \(K \) be a nontrivial finite extension of \(F_v \). Then there exists a quadratic extension of \(F \) contained in...
\(\tilde{F} \) whose restriction to \(F_v \) contains \(K \) and whose restriction to \(F_w \) is the trivial extension.

(iii) The surjection \(G_F \rightarrow Q_F \) induces an isomorphism of \(G_v \) with the decomposition group of \(v \) in \(G_F \). In particular, if \(v \) is nonarchimedean, then \(G_v \) is slim and torsion-free.

(iv) \(G_v \cap G_w = \{1\} \).

(v) Suppose that \(v \) is archimedean (respectively, nonarchimedean).
Then the normalizer (respectively, commensurator) of \(G_v \) in \(Q_F \) is equal to \(G_v \).

Proof. First, we consider assertion (i). Since the absolute Galois group of \(F_v \) is pro-solvable [cf., e.g., [8], Chapter VII, §5], we may assume, by recursion, that \(K \) is an abelian extension of \(F_v \). Since, moreover, \(F \) contains a square root of \(-1 \), it follows that we may apply the Grunwald-Wang Theorem [cf., e.g., [8], Corollary 9.2.3] to \(F \). Now assertion (i) follows immediately by applying the Grunwald-Wang Theorem to \(F \). Assertion (ii) follows by considering the quadratic extension of \(F \) determined by taking the square root of an element \(f \in F \) which is \(< 0\) at \(v \) and either \(> 0 \) or nonreal at \(w \) [where we note that the existence of such an \(f \) follows immediately from the fact that the valuations \(v, w \) are distinct]. In the nonarchimedean case, assertion (iii) follows formally from assertion (i), together with the well-known facts that the absolute Galois group of a nonarchimedean local field is slim [cf., e.g., [5], Theorem 1.1.1, (ii)] and [of finite cohomological dimension — cf., e.g., [8], Corollary 7.2.5 — hence] torsion-free. In the archimedean case, assertion (iii) follows, for instance, by considering the extension of \(F \) obtained by adjoining a square root of \(-1 \). To verify assertion (iv), let us first observe that if at least one of \(v, w \) is nonarchimedean, then it follows from the torsion-free-ness portion of assertion (iii) that both \(v, w \) are nonarchimedean [cf. also the well-known fact that the absolute Galois group of an archimedean local field is finite, of order \(\leq 2! \)], and, moreover, that [from the point of view of verifying assertion (iv)] one may replace \(F \) by a finite abelian extension of \(F \) that satisfies the hypothesis of assertion (i). Now assertion (iv) follows immediately from assertions (i), (ii), (iii). Finally, assertion (v) follows formally from assertion (iv) [together with the torsion-free-ness portion of assertion (iii) in the nonarchimedean case].

Theorem 2.4 (Topologically Finitely Generated Closed Normal Subgroups). Suppose that \(\tilde{F} \) is a Galois extension of the number field \(F \) such that for some prime number \(p \), \(\tilde{F} \) has no cyclic extensions of degree \(p \) [e.g., a solvably closed extension of \(F \)]. Then every topologically finitely generated closed normal subgroup \(N \subseteq Q_F \) is trivial.
Proof. Although this fact only follows formally from the statement of [2], Proposition 16.11.6, in the case where \(\tilde{F} \) is algebraically closed, as was explained to the author by A. Tamagawa, the proof given in [2] generalizes immediately to the case of arbitrary \(\tilde{F} \) [i.e., as in the statement of Theorem 2.4]: Indeed, if we write \(L \subseteq \tilde{F} \) for the Galois [since \(N \) is normal] field extension of \(F \) determined by \(N \), and assume that \(N \) is nontrivial, then it follows that there exists a proper normal open subgroup \(N_1 \subseteq N \) of \(N \). Thus, \(N_1 \) determines a finite Galois extension \(L_1/L \) of degree > 1. Now let us recall that number fields [such as \(F \)] are Hilbertian [cf., e.g., [2], Theorem 13.4.2]. Thus, by [2], Theorem 13.9.1, (b) [i.e., “Weissauer’s extension theorem for Hilbertian fields”], we conclude that \(L_1 \) is Hilbertian, hence, by [repeated application of] [2], Theorem 16.11.2, that \(L_1 \) admits Galois extensions with Galois group isomorphic to a product of an arbitrary finite number of copies of \(\mathbb{Z}/p\mathbb{Z} \). By our assumption on \(\tilde{F} \), it follows that such Galois extensions of \(L_1 \) are contained in \(\tilde{F} \), hence that \(N_1 \) admits finite quotients isomorphic to a product of an arbitrary finite number of copies of \(\mathbb{Z}/p\mathbb{Z} \). But this contradicts the assumption that \(N \) is topologically finitely generated. \(\Box \)

3. ANABELIAN RESULTS

Next, we consider the anabelian geometry of hyperbolic curves, in the context of solvably closed Galois groups of number fields.

The following result is due to K. Uchida [cf. the main theorem of [11]]:

Theorem 3.1 (Solvably Closed Galois Groups are Anabelian). For \(i = 1, 2 \), let \(\tilde{F}_i/F_i \) be a solvably closed extension of a number field \(F_i \); write \(Q_i \overset{\text{def}}{=} \text{Gal}(\tilde{F}_i/F_i) \). Then passing to the induced morphism on Galois groups determines a bijection between the set of isomorphisms of topological groups

\[
Q_1 \simto Q_2
\]

and the set of isomorphisms of fields \(\tilde{F}_1 \simto \tilde{F}_2 \) that map \(F_1 \) onto \(F_2 \).

Next, let us assume that we have been given a hyperbolic curve [cf., e.g., [5], §0, for a discussion of hyperbolic curves] over \(F \). Let \(\Sigma \) be a nonempty set of prime numbers. Write

\[
\Delta_X
\]

for the maximal pro-\(\Sigma \) quotient of the geometric fundamental group \(\pi_1(X \times_F \tilde{F}) \) of \(X \) [relative to some basepoint]. Here, we note in passing that \(\Sigma \) may be recovered from \(\Delta_X \) as the set of prime numbers that occur as factors of orders of finite quotients of \(\Delta_X \). Thus, one has a natural outer action

\[
G_F \to \text{Out}(\Delta_X)
\]
Lemma 3.2 (Slimness). \(\Delta_X \) is slim.

Proof. This follows immediately by considering Galois actions on abelianizations of open subgroups of \(\Delta_X \) — cf. the proof of [5], Lemma 1.3.1, in the case where \(\Sigma \) is the set of all prime numbers. Another [earlier] approach to proving the slimness of \(\Delta_X \) is given in [7], Corollary 1.3.4. \(\square \)

Definition 2. We shall say that the [not necessarily solvably closed!] extension \(\tilde{F}/F \), or, alternatively, the Galois group \(Q_F \), is \(\Sigma \)-compatible with \(X \) if the natural outer action

\[
G_F \to \text{Out}(\Delta_X)
\]

factors through the quotient \(G_F \to Q_F \). Thus, if \(Q_F \) is \(\Sigma \)-compatible with \(X \), then one obtains an exact sequence of profinite groups

\[
1 \to \Delta_X \to \Pi_X \to Q_F \to 1
\]

by pulling back the natural exact sequence

\[
1 \to \Delta_X \to \text{Aut}(\Delta_X) \to \text{Out}(\Delta_X) \to 1
\]

[which is exact by Lemma 3.2!] via the resulting homomorphism \(Q_F \to \text{Out}(\Delta_X) \). Here, we note that since [it is an easily verified tautology that] the étale fundamental group \(\pi_1(X) \) of \(X \) may be recovered as the result of pulling back this natural exact sequence via the homomorphism \(G_F \to \text{Out}(\Delta_X) \), it thus follows that \(\Pi_X \) may be thought of as a quotient of \(\pi_1(X) \).

Proposition 3.3 (Geometric Subgroups are Characteristic). For \(i = 1, 2 \), let \(\tilde{F}_i/F_i \) be a solvably closed extension of a number field \(F_i \); \(Q_i \) \(\overset{\text{def}}{=} \) \(\text{Gal}(\tilde{F}_i/F_i) \); \(\Sigma_i \) a nonempty set of prime numbers; \(X_i \) a hyperbolic curve over \(F_i \) with which \(\tilde{Q}_i \) is \(\Sigma_i \)-compatible; \(1 \to \Delta_{X_i} \to \Pi_{X_i} \to Q_i \to 1 \) the resulting exact sequence of profinite groups [cf. Definition 2]. Then any isomorphism of topological groups

\[
\Pi_{X_1} \overset{\sim}{\to} \Pi_{X_2}
\]

maps \(\Delta_{X_1} \) isomorphically onto \(\Delta_{X_2} \). In particular, \(\Sigma_1 = \Sigma_2 \).

Proof. We give two proofs of Proposition 3.3. The first proof consists of simply observing [cf. the proof of [5], Lemma 1.1.4, (i), via [5], Theorem 1.1.2] that the image of \(\Delta_{X_1} \) under the composite of the isomorphism \(\Pi_{X_1} \overset{\sim}{\to} \Pi_{X_2} \) with the surjection \(\Pi_{X_2} \to Q_2 \) forms a topologically finitely generated closed normal subgroup of \(Q_2 \), hence is trivial, by Theorem 2.4.

The second proof of Proposition 3.3 only uses Theorem 2.4 in the well-known case of an absolute Galois group of a number field. Moreover, when
either Σ_1 or Σ_2 is not equal to the set of all prime numbers, then this second proof does not use Theorem 2.4 at all.

For $i = 1, 2$, let $H_i \subseteq \Pi_{X_i}$ be corresponding [i.e., relative to the given isomorphism $\Pi_{X_1} \sim \Pi_{X_2}$] normal open subgroups; write $H_i \rightarrow J_i$ for the quotients determined by the quotient groups $\Pi_{X_i} \rightarrow Q_i$. By taking the H_i to be sufficiently small, we may also assume that the number fields determined by the J_i contain square roots of -1. Thus, by Proposition 2.1, (i), it follows that

$$\text{cd}_p(H_i) = 2 + d(p, i)$$

where $d(p, i)$ is equal to 1 or 2 [depending on whether X_i is affine or proper] if $p \in \Sigma_i$ and $d(p, i) = 0$ if $p \notin \Sigma_i$. Since $H_1 \sim H_2$, we thus conclude that $\Sigma_1 = \Sigma_2$, and that X_1 is affine if and only if X_2 is. Now if $\Sigma_1 = \Sigma_2$ is the set of all prime numbers, and X_1, X_2 are affine, then it follows from Matsumoto’s injectivity theorem [cf. [4], Theorem 2.1] that the field \overline{F}_i is an algebraic closure of F_i; thus, in this case, Proposition 3.3 follows from [5], Lemma 1.1.4, (i) [i.e., Theorem 2.4 for absolute Galois groups of number fields].

Next, let us suppose that there exists a prime number p such that $p \notin \Sigma_1$, $p \notin \Sigma_2$. This implies that every finite quotient group of $D_i \overset{\text{def}}{=} \ker(H_i \rightarrow J_i)$ has order prime to p, hence [by consideration of the Leray-Serre spectral sequence associated to the surjection $H_i \rightarrow J_i$] that, for $i = 1, 2$, the natural homomorphism

$$H^2(J_i, \mathbb{F}_p) \rightarrow H^2(H_i, \mathbb{F}_p)$$

is an isomorphism. In particular, it follows that Δ_{X_i} acts trivially on $H^2(H_i, \mathbb{F}_p)$. Thus, the natural action of Π_{X_1} on $H^2(H_i, \mathbb{F}_p)$ factors through the quotient $\Pi_{X_1} \rightarrow Q_i/J_i$. Now, by taking H_i to be sufficiently small, we may assume [since Q_i is solvably closed] that the extension field of F_i determined by J_i contains a primitive p-th root of unity. Thus, by Proposition 2.1, (ii), we conclude that the action of Q_i/J_i on $H^2(H_i, \mathbb{F}_p)$ is faithful. Since the isomorphism $\Pi_{X_1} \sim \Pi_{X_2}$ induces an isomorphism $H_1 \sim H_2$, hence an isomorphism $H^2(H_1, \mathbb{F}_p) \sim H^2(H_2, \mathbb{F}_p)$ which is compatible with the respective actions of Π_{X_1}, Π_{X_2}, we thus conclude that the isomorphism $\Pi_{X_1} \sim \Pi_{X_2}$ preserves the kernels of the surjections $\Pi_{X_i} \rightarrow Q_i/J_i$, hence that the subgroup $\Delta_{X_i} = \ker(\Pi_{X_i} \rightarrow Q_i)$ may be recovered as the intersection of the kernels of the surjections $\Pi_{X_i} \rightarrow Q_i/J_i$, by letting the H_i range over all sufficiently small normal open subgroups of Π_{X_i}. This completes the proof of Proposition 3.3 in the case where there exists a prime number p such that $p \notin \Sigma_1$, $p \notin \Sigma_2$.

Finally, we consider the case where X_1, X_2 are proper. Let p be a prime number; suppose that the H_i have been taken to be sufficiently small so
that the number fields determined by the J_i contain a primitive p-th root of unity and a square root of -1 [which, by Proposition 2.1, (i), implies that $\text{cd}_p(J_i) = 2$]. Since $D_i \overset{\text{def}}{=} \ker(H_i \to J_i)$ also satisfies $\text{cd}_p(D_i) \leq 2$, it thus follows from the Leray-Serre spectral sequence associated to the extension $1 \to D_i \to H_i \to J_i \to 1$ that there is a natural isomorphism

$$H^4(H_i, \mathbb{F}_p) \cong H^2(J_i, \mathbb{F}_p) \otimes H^2(D_i, \mathbb{F}_p)$$

which is compatible with the natural action of Π_{X_i} on the various cohomology modules involved. Here, we note that [by the well-known structure of the cohomology of the geometric fundamental group of an algebraic curve] $\Delta_{X_i} \subseteq \Pi_{X_i}$ acts trivially on $H^2(D_i, \mathbb{F}_p)$. Thus, Proposition 3.3 follows in the present case by applying Proposition 2.1, (ii), as in the argument given in the preceding paragraph.

\section*{4. Some Examples}

Finally, we conclude by observing that in various situations, Σ-compatible solvably closed extensions which are, moreover, “relatively small” [e.g., by comparison to the entire absolute Galois group of a number field] exist in substantial abundance.

\textbf{Theorem 3.4} (The Anabelian Geometry of Hyperbolic Curves over Solvably Closed Galois Groups). For $i = 1, 2$, let \bar{F}_i/F_i be a solvably closed extension of a number field F_i; $Q_i \overset{\text{def}}{=} \text{Gal}(\bar{F}_i/F_i)$; Σ_i a nonempty set of prime numbers; X_i a hyperbolic curve over F_i with which Q_i is Σ_i-compatible; $1 \to \Delta_{X_i} \to \Pi_{X_i} \to Q_i \to 1$ the resulting exact sequence of profinite groups [cf. Definition 2]; $\bar{X}_i \to X_i$ the pro-finite étale covering of X_i determined by Π_{X_i} [regarded as a quotient of the étale fundamental group of X_i]. Then passing to the induced morphism on fundamental groups determines a bijection between the set of isomorphisms of topological groups

$$\Pi_{X_1} \simeq \Pi_{X_2}$$

and the set of compatible pairs of isomorphisms of schemes $\bar{X}_1 \sim \bar{X}_2$, $X_1 \sim X_2$.

\textbf{Proof.} By Proposition 3.3, any isomorphism $\Pi_{X_1} \sim \Pi_{X_2}$ induces an isomorphism $Q_1 \sim Q_2$, hence, by Theorem 3.1, a compatible pair of isomorphisms of fields $F_1 \sim F_2$, $F_1 \sim F_2$. Thus, we may apply “Theorem A” of [6] to the isomorphism $\Pi_{X_1} \sim \Pi_{X_2}$ to conclude that this isomorphism arises from a unique compatible pair of isomorphisms of schemes $\bar{X}_1 \sim \bar{X}_2$, $X_1 \sim X_2$, as desired. \qed
Proposition 4.1 (The Case of a Single Prime Number). Let $\Sigma \overset{\text{def}}{=} \{r\}$, where r is a prime number.

(i) Let Δ be a topologically finitely generated pro-r group. [Thus, since Δ is topologically finitely generated, its topology admits a base of characteristic open subgroups, which determine a natural profinite topology on $\text{Out}(\Delta)$.] Write $\Delta \to \Delta^{\text{ab}}$ for the abelianization of Δ. Then the kernel of the natural morphism of profinite groups $\text{Out}(\Delta) \to \text{Aut}(\Delta^{\text{ab}} \otimes F_r)$ is a pro-r [hence, in particular, pro-solvable!] group.

(ii) Let X be a hyperbolic curve over F. Then there exists a finite Galois extension F_1 over F such that the maximal solvable extension [which is solvably closed — cf. Remark 2] $\tilde{F} \overset{\text{def}}{=} F_1^{\text{sol}}$ of F_1 is Σ-compatible with X.

Proof. First, we consider assertion (i). Since Δ admits a base of characteristic open subgroups, it suffices to verify assertion (i) when Δ is a finite group of order a power of r. But then consideration of the [manifestly characteristic!] lower central series of Δ reveals that any automorphism α of Δ that induces the identity on $\Delta^{\text{ab}} \otimes F_r$ is “unipotent upper triangular” with respect to the filtration given by the lower central series; thus, the order of α is a power of r. This completes the proof of assertion (i). Assertion (ii) follows formally from assertion (i) and the definitions.

\[\Box \]

Proposition 4.2 (Basic Properties of Special Linear Groups). Let l be a prime number. Write $\text{SL}_2(F_l)$ for the special linear group of 2×2 matrices with coefficients in F_l, $\text{PSL}_2(F_l) \overset{\text{def}}{=} \text{SL}_2(F_l)/\{\pm 1\}$.

(i) Suppose that $l \geq 5$. Then $\text{PSL}_2(F_l)$ is a simple finite group.

(ii) No proper subgroup of $\text{SL}_2(F_l)$ surjects onto $\text{PSL}_2(F_l)$.

(iii) $\text{PSL}_2(F_2), \text{PSL}_2(F_3), \text{as well as every proper subgroup of } \text{PSL}_2(F_l)$ [for arbitrary l], is either solvable or isomorphic to $\text{PSL}_2(F_5)$.

Proof. Assertions (i), (ii), (iii) are well-known — cf., e.g., [10], Chapter IV, §3.4, Lemmas 1, 2; [1], §1.2.

Remark 5. The proper subgroups H of $\text{SL}_2(F_l)$ may be analyzed as follows: If H is of order divisible by l, then H contains a subgroup U of order l. Since F_l^\times, F_2^\times are of order prime to l, such a subgroup U is generated by a unipotent matrix; thus, [by possibly replacing H with a conjugate of H] we may assume that U is generated by a matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. In particular, [as is well-known or easily computed] the normalizer of U is given by the solvable
subgroup of upper triangular matrices of $SL_2(\mathbb{F}_l)$. Thus, if U fails to be normal in H, the fact that $SL_2(\mathbb{F}_l)$ is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ implies that $H = SL_2(\mathbb{F}_l)$, in contradiction to our assumption that H is proper. That is to say, since H is proper, we conclude that H is solvable, as desired. On the other hand, if the order of H is prime to l, then H may be classified by applying the Hurwitz formula to the tamely ramified Galois covering $\mathbb{P}^1_{\mathbb{F}_l} \to \mathbb{P}^1_{\mathbb{F}_l}/H$ [arising from the natural action of SL_2 on $\mathbb{P}^1_{\mathbb{F}_l}$, where \mathbb{F}_l is an algebraic closure of \mathbb{F}_l], which gives rise to fairly restrictive conditions on the ramification indices of this covering. In particular, if H is non-abelian, then, by taking an appropriate isomorphism of $\mathbb{P}^1_{\mathbb{F}_l}/H$ with $\mathbb{P}^1_{\mathbb{F}_l}$, one concludes that this covering is ramified over the three points “0”, “1”, and “∞” of $\mathbb{P}^1_{\mathbb{F}_l}$, with ramification index 2 at “0”, ramification index $\in \{2, 3\}$ at “1”, and ramification index $\in \{3, 4, 5\}$ (respectively, arbitrary, ≥ 2) at “∞” if the ramification index at “1” is equal to 3 (respectively, 2). Now it is an elementary exercise to classify the possible groups H that may occur. For instance, by considering modular curves, it follows immediately that the case $H = PSL_2(\mathbb{F}_5)$ corresponds to the case where the ramification indices are $(2, 3, 5)$.

Proposition 4.3 (Linear Disjointness I). Let $l > 5$ be a prime number; r a prime number $\neq l$; $\Sigma \overset{\text{def}}{=} \{r\}$; X a once-punctured elliptic curve over a number field F. Suppose further that F contains an l-th root of unity, and that the resulting homomorphism $$G_F \to SL_2(\mathbb{F}_l)$$ determined by the action of the absolute Galois group G_F of F on the l-torsion points of the elliptic curve E compactifying X is surjective. Then there exists a solvably closed extension F/F which is Σ-compatible with X, and, moreover, linearly disjoint [over F] from the extension K of F determined by the kernel of the homomorphism $G_F \to SL_2(\mathbb{F}_l)$.

Proof. Write $L \subseteq K$ for the extension of F determined by the kernel of the homomorphism $G_F \to PSL_2(\mathbb{F}_l)$ [obtained by composing the homomorphism $G_F \to SL_2(\mathbb{F}_l)$ with the natural surjection $SL_2(\mathbb{F}_l) \twoheadrightarrow PSL_2(\mathbb{F}_l)$]. Then it follows immediately from Proposition 4.2, (ii), that any Galois extension of F is linearly disjoint from K if and only if it is linearly disjoint from L. Now observe that $Gal(L/F) \cong PSL_2(\mathbb{F}_l)$ is simple [cf. Proposition 4.2, (i)] and non-abelian. Thus, by Proposition 4.1, (i), it suffices to show that the finite Galois extension R of F determined by the kernel of the homomorphism $G_F \to GL_2(\mathbb{F}_r)$ arising from the Galois action on the r-torsion points of E is linearly disjoint from L. On the other hand, again since
Gal(L/F) is simple and non-abelian, this linear disjointness property follows from the fact [cf. Proposition 4.2, (iii); our assumption that \(r \neq l > 5 \)] that no subquotient of \(GL_2(\mathbb{F}_l) \) [or, equivalently, \(PSL_2(\mathbb{F}_l) \), since \(PSL_2(\mathbb{F}_l) \) is simple and nonabelian] is isomorphic to \(PSL_2(\mathbb{F}_1) \). This completes the proof of Proposition 4.3. \(\square \)

Proposition 4.4 (Linear Disjointness II). Let \(l > 5 \) be a prime number; \(\Sigma \) a nonempty set of prime numbers such that \(l \not\in \Sigma \); \(X \) a once-punctured elliptic curve over a number field \(F \) with stable reduction over the ring of integers \(\mathcal{O}_F \) of \(F \); \(F_\mu \) the extension of \(F \) obtained by adjoining an \(l \)-th root of unity. Suppose further that \(l \geq [F : \mathbb{Q}] + 2 \); that \([F_\mu : F] \) divides \((l-1)/2 \) [which implies that the homomorphism

\[
G_F \to PGL_2(\mathbb{F}_l) \overset{\text{def}}{=} GL_2(\mathbb{F}_l)/\mathbb{F}_l^\times
\]

is surjective; and that, for each prime \(l \) of \(F \) lying over \(l \) at which \(E \) has bad reduction, the following condition is satisfied:

Write \(F_1 \) for the completion of \(F \) at \(l \). Thus, the elliptic curve \(E \times_\mathbb{F}_l F_1 \) is a Tate curve, hence has a well-defined “\(q \)-parameter” \(q_1 \) in the ring of integers \(\mathcal{O}_{F_1} \). Then the valuation of \(q_1 \) is prime to \(l \).

Then:

(i) There exists an extension \(\tilde{F}/F \) which is \(\Sigma \)-compatible with \(X \), and, moreover, linearly disjoint [over \(F \)] from the extension \(K \) of \(F \) determined by the kernel of the homomorphism \(G_F \to PSL_2(\mathbb{F}_1) \).

(ii) Write \(K_\mu \) for the extension of \(F \) determined by the kernel of the homomorphism \(G_F \to GL_2(\mathbb{F}_l) \) [arising from the Galois action on the \(l \)-torsion points of \(E \)]. Thus, \(F_\mu \subseteq K_\mu \); write \(\tilde{F}_\mu \overset{\text{def}}{=} F_\mu \cdot \tilde{F} \) for the composite extension [over \(F \)]. Then the maximal solvable extension \(\tilde{F}_\mu^\text{sol} \) of \(\tilde{F}_\mu \) forms a solvably closed extension of \(F_\mu \) which is \(\Sigma \)-compatible with \(X \) and, moreover, linearly disjoint over \(F_\mu \) from the extension \(K_\mu \) of \(F_\mu \).

Proof. First, we consider assertion (i). Let \(\tilde{F}/F \) be the extension determined by the kernel of the homomorphism \(G_F \to \text{Out}(\Delta_X) \) [cf. Definition 2]. Let \(l \) be a prime of \(F \) lying over \(l \). Since \(PSL_2(\mathbb{F}_1) \) is simple [cf. Proposition 4.2, (i)], to complete the proof of assertion (i), it suffices to show that the composite [i.e., over \(F \)] field extension \(K \cdot \tilde{F} \) is not equal to \(\tilde{F} \). Thus, suppose that \(K \cdot \tilde{F} = \tilde{F} \). Since \(l \not\in \Sigma \), if \(E \) has good reduction at \(l \), then it follows
that \widetilde{F}/F is unramified at l; similarly, if E has bad reduction at l, then the fact that $l \not\in \Sigma$ implies that \widetilde{F}/F is tamely ramified at l. On the other hand, if E has good reduction at l, then the fact that $K \subseteq K \cdot \widetilde{F} = \widetilde{F}$ is unramified at l implies, by applying, for instance, results of Raynaud on the “fully faithfulness of restriction to the generic fiber” for finite flat group schemes over moderately ramified discrete valuation rings [cf. [9], Corollaire 3.3.6, (1); our assumption that $l \geq [F : \mathbb{Q}] + 2$, which implies that the ring of integers \mathcal{O}_{F_l} is indeed “moderately ramified”], that, if we write \mathcal{E} for the stable model of the elliptic curve E over \mathcal{O}_{F_l} and $\mathcal{E}[l]$ for the kernel of multiplication by l on \mathcal{E}, then $\mathcal{E}[l]$ may be written as a direct product

$$\mathcal{E}[l] \cong \mathcal{G} \times \mathcal{G}$$

of two copies of some finite flat group scheme \mathcal{G} over \mathcal{O}_{F_l} [which implies, for instance, that the tangent space of $\mathcal{E}[l]$, hence also of \mathcal{E}, is even-dimensional] — a contradiction. Finally, if E has bad reduction at l, then the fact that $K \subseteq K \cdot \widetilde{F} = \widetilde{F}$ is tamely ramified at l contradicts our assumption concerning the “valuation of the q-parameter” [which implies that K is wildly ramified at l]. This completes the proof of assertion (i).

To verify assertion (ii), let us first observe that by Proposition 4.2, (i) [cf. our assumption that $l > 5$], (ii), and the surjectivity assumption in the statement of the present Proposition 4.4, we have $\text{Gal}(K_{\mu}/F_{\mu}) \cong SL_2(\mathbb{F}_l)$. Now, by applying Proposition 4.2, (ii), as in the proof of Proposition 4.3, assertion (ii) follows immediately from assertion (i), together with the simplicity [and non-solvability] of $PSL_2(\mathbb{F}_l)$.

References

SHINICHI MOCHIZUKI
RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
KYOTO UNIVERSITY
KYOTO, 606-8502 JAPAN
e-mail address: motizuki@kurims.kyoto-u.ac.jp

(Received April 6, 2006)