On Higher Syzygies of Projective Toric Varieties

Shoetsu Ogata*

*Tohoku University

Copyright ©2006 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
On Higher Syzygies of Projective Toric Varieties

Shoetsu Ogata

Abstract

Let A be an ample line bundle on a projective toric variety X of dimension $n \geq 2$. It is known that the d-th tensor power $A^\otimes d$ embeds X as a projectively normal variety in $Pr := P(H^0(X, L^\otimes d))$ if $d \geq n$. In this paper first we show that when $\dim X = 2$ the line bundle $A^\otimes d$ satisfies the property N_p for $p \leq 3d - 3$. Second we show that when $\dim X = n \geq 3$ the bundle $A^\otimes d$ satisfies the property N_p for $p \leq d + 2$ and $d \geq n$.

KEYWORDS: toric variety, syzygy
ON HIGHER SYZYGIES OF PROJECTIVE TORIC VARIETIES

Shoetsu Ogata

Abstract. Let A be an ample line bundle on a projective toric variety X of dimension n (≥ 2). It is known that the d-th tensor power $A^\otimes d$ embeds X as a projectively normal variety in $\mathbb{P}^r := \mathbb{P}(H^0(X, L^\otimes d))$ if $d \geq n - 1$. In this paper first we show that when $\dim X = 2$ the line bundle $A^\otimes d$ satisfies the property N_p for $p \leq 3d - 3$. Second we show that when $\dim X = n \geq 3$ the bundle $A^\otimes d$ satisfies the property N_p for $p \leq d - n + 2$ and $d \geq n - 1$.

Introduction

The purpose of this article is to study the minimal free resolution of homogeneous coordinate rings of toric varieties.

Let X be a projective toric variety of dimension n and L a very ample line bundle on X. Since projective toric variety of dimension one is isomorphic to the projective line, we may assume that $n \geq 2$.

Koelman showed that an ample line bundle on a projective toric surface X is very ample and embeds X as a projectively normal variety in $\mathbb{P}^r := \mathbb{P}(H^0(X, L))$ [10], and obtained a criterion when the surface is defined by only quadrics [11]. When $n \geq 3$ an ample line bundle is not very ample in general. Ewald and Wessels [3] showed that for an ample line bundle A on X the d-th tensor power $L = A^\otimes d$ is very ample for $d \geq \dim X - 1$. Ogata and Nakagawa [13] showed that $L = A^\otimes d$ embeds X as a projectively normal variety if $d \geq \dim X - 1$ and that the homogeneous ideal I of X in $\mathbb{P}^r := \mathbb{P}(H^0(X, L))$ is generated by quadrics if $d \geq \dim X$. In this paper, we study higher syzygies of the homogeneous ideal of X in \mathbb{P}^r, especially the property N_p introduced by Green and Lazarsfeld [7].

Definition 1. Let X be a projective variety and L a very ample line bundle on X defining an embedding $X \hookrightarrow \mathbb{P}^r := \mathbb{P}(H^0(X, L))$. Denote by $S = \text{Sym} H^0(X, L)$ the homogeneous coordinate ring of the projective space \mathbb{P}^r. Consider the graded S-module $R = R(L) = \oplus_{i \geq 0} H^0(X, L^\otimes i)$, the homogeneous coordinate ring of X. Let E_* be a minimal graded free resolution of R:

$$\cdots \to E_2 \to E_1 \to E_0 \to R \to 0,$$

Mathematics Subject Classification. Primary 14M25; Secondary 14J40, 52B20.

Key words and phrases. toric variety, syzygy.
where $E_i = \bigoplus_j S(-a_{ij})$. Then the line bundle L satisfies Property (N_0) if $E_0 = S$. For an integer $p \geq 1$ the line bundle L satisfies Property (N_p) if $E_0 = S$ and if $a_{ij} = i + 1$ for $1 \leq i \leq p$.

Schenck and Smith [17] proved that for an ample line bundle A on a projective toric variety of dimension n, the bundle $A^\otimes d$ satisfies Property N_{d-n+1} for $d \geq n - 1$.

This paper improves their results by separately considering the case $n = 2$ and $n \geq 3$.

Theorem 0.1. Let X be a projective toric surface and A an ample line bundle on X. Then $A^\otimes d$ satisfies Property N_p for $p \leq d - n + 2$ and $d \geq n - 1$.

This is given by Proposition 2.3.

Theorem 0.2. Let X be a projective toric variety of dimension $n \geq 3$ and A an ample line bundle on X. Then $A^\otimes d$ satisfies Property N_p for $p \geq d - n + 2$ and $d \geq n - 1$.

This is given by Proposition 3.3.

1. Polarized Toric Varieties

First we mention the facts about toric varieties needed in this paper following Oda’s book [14], or Fulton’s book [5].

Let N be a free \mathbb{Z}-module of rank n, M its dual and $\langle \cdot, \cdot \rangle : M \times N \to \mathbb{Z}$ the canonical pairing. By scalar extension to the field \mathbb{R} of real numbers, we have real vector spaces $N_\mathbb{R} := N \otimes \mathbb{R}$ and $M_\mathbb{R} := M \otimes \mathbb{R}$. Let $T_N := N \otimes \mathbb{C}^* \cong (\mathbb{C}^*)^n$ be the algebraic n-torus over the field \mathbb{C} of complex numbers, where \mathbb{C}^* is the multiplicative group of \mathbb{C}. Then $M = \text{Hom}_{\mathbb{gr}}(T_N, \mathbb{C}^*)$ is the character group of T_N. For $m \in M$ we denote $e(m)$ the corresponding character of T_N. Let Δ be a complete finite fan of N consisting of strongly convex rational polyhedral cones σ, that is, there exist a finite number of elements v_1, v_2, \ldots, v_s in N such that

$$\sigma = \mathbb{R}_{\geq 0}v_1 + \cdots + \mathbb{R}_{\geq 0}v_s,$$

and $\sigma \cap \{-\sigma\} = \{0\}$. Then we have a complete toric variety $X = T_N\text{emb}(\Delta) := \bigcup_{\sigma \in \Delta} U_\sigma$ of dimension n (see Section 1.2 [14], or Section 1.4 [5]). Here $U_\sigma = \text{Spec } \mathbb{C}[\sigma^\vee \cap M]$ and σ^\vee is the dual cone of σ with respect to the pairing $\langle \cdot, \cdot \rangle$. For the origin $\{0\}$, the affine open set $U_{\{0\}} = \text{Spec } \mathbb{C}[M]$ is the unique dense T_N-orbit. We note that a toric variety is always normal.

Let L be an ample T_N-equivariant invertible sheaf on X. Then the polarized variety (X, L) corresponds to an integral convex polytope P in $M_\mathbb{R}$ of dimension n. We call the convex hull $\text{Conv}\{u_0, u_1, \ldots, u_r\}$ in $M_\mathbb{R}$ of a
finite subset \(\{u_0, u_1, \ldots, u_r\} \subset M \) an integral convex polytope in \(M_\mathbb{R} \). The correspondence is given by the isomorphism
\[
H^0(X, L) \cong \bigoplus_{m \in P \cap M} \mathbb{C} e(m),
\]
where \(e(m) \) are considered as rational functions on \(X \) because they are functions on the open dense subset \(T_N \) of \(X \) (see Section 2.2 [14], or Section 3.5 [5]).

Let \(P_1 \) and \(P_2 \) be integral convex polytopes in \(M_\mathbb{R} \). Then we can consider the Minkowski sum \(P_1 + P_2 := \{x_1 + x_2 \in M_\mathbb{R}; x_i \in P_i \ (i = 1, 2)\} \) and the multiplication by scalars \(rP_1 := \{rx \in M_\mathbb{R}; x \in P_1\} \) for a positive real number \(r \). If \(l \) is a natural number, then \(lP_1 \) coincides with the \(l \)-times sum of \(P_1 \), i.e., \(lP_1 = \{x_1 + \cdots + x_l \in M_\mathbb{R}; x_1, \ldots, x_l \in P_1\} \). The \(l \)-th tensor power \(L \otimes l \) corresponds to the convex polytope \(lP := \{lx \in M_\mathbb{R}; x \in P\} \). Moreover the multiplication map
\[
H^0(X, L \otimes l) \otimes H^0(X, L) \rightarrow H^0(X, L \otimes (l+1))
\]
transforms \(e(u_1) \otimes e(u_2) \) for \(u_1 \in lP \cap M \) and \(u_2 \in P \cap M \) to \(e(u_1 + u_2) \) through the isomorphism (1.1). Therefore the equality \((lP \cap M) + (P \cap M) = (l+1)P \cap M\) is equivalent to the surjectivity of the multiplication map (1.2).

Proposition 1.1 (Nakagawa-Ogata [13]). Let \(X \) be a projective toric variety of dimension \(n \) and \(L \) an ample line bundle on \(X \). Then the multiplication map
\[
H^0(X, L^{\otimes i}) \otimes H^0(X, L) \rightarrow H^0(X, L^{\otimes (i+1)})
\]
is surjective for all \(i \geq n - 1 \).

This implies that \(L^{\otimes d} \) satisfies Property \(N_0 \) for \(d \geq n - 1 \). By employing an analogous method of Mumford [12] we obtained that \(L^{\otimes d} \) satisfies Property \(N_1 \) for \(d \geq n \) (see Corollary 2.2 in [13]). Schenck and Smith [17] generalizes for \(L^{\otimes d} \) to satisfy Property \(N_p \) for \(d \geq n - 1 + p \).

2. Toric Surfaces

Ogata[16] generalize the result of [11] to higher dimension by using the method of Fujita’s regular ladder [4]. In this section we use the same method in the case of dimension two.

Let \(X \) be a projective toric surface and \(L \) an ample line bundle on \(X \). We consider a general hyperplane section \(C \) of the linear system \(|L|\). Since \(X \) is normal, we may assume that \(C \) is nonsingular. Set \(L_C = L|C \), the restriction of \(L \) to the curve \(C \). From easy calculation, we see that
\[
h^0(C, L_C) = h^0(X, L) - 1 = \frac{1}{2} P \cap M - 1,
\]
\begin{align}
(2.2) \quad h^1(C, \mathcal{O}_C) &= h^2(X, L^{-1}) = h^0(X, \omega_X \otimes L) = \# \text{Int } P \cap M, \\
(2.3) \quad h^1(C, L_C) &= 0.
\end{align}

Denote by \(g = h^1(C, \mathcal{O}_C) \) the genus of \(C \). Then from Riemann-Roch Theorem we have \(\deg L_C = 2g - 2 + \# \partial P \cap M \).

Lemma 2.1 (Green [6], (4.a.1)). Let \(L \) be a line bundle of degree \(2g + 1 + p \) \((p \geq 0)\) on a smooth irreducible projective curve of genus \(g \). Then \(L \) satisfies Property \(N_p \).

This is a generalization of Mumford [12] (the case \(p = 0 \)) and of Fujita [4] (the case \(p = 1 \)).

Lemma 2.2 (Green [6], (3.b.7)). Let \(X \) be a compact complex manifold, \(L \) a line bundle on \(X \), \(Y \subset X \) a connected hypersurface in the linear system \(|L| \) and \(L_Y \) denote the restriction of \(L \) to \(Y \). Assume that

\[H^1(X, L^{\otimes q}) = 0 \quad \text{for all } q \geq 0. \]

Then \(\mathcal{K}_{p,q}(X, L) \cong \mathcal{K}_{p,q}(Y, L_Y) \) for all \(p,q \).

Since \(H^1(X, L^{\otimes q}) = 0 \) for \(q \geq 0 \) and for any ample ample line bundle \(L \) on a toric variety \(X \), this lemma implies that if \(L_Y \) satisfies Property \(N_p \) for a general smooth hypersurface \(Y \) in \(|L| \), then \(L \) also satisfies Property \(N_p \).

Proposition 2.3. Let \(A \) be an ample line bundle on a projective toric surface \(X \) corresponding to an integral convex polygon \(Q \) in \(M_{\mathbb{R}} \) given by the isomorphism

\[H^0(X, A) \cong \bigoplus_{m \in Q \cap M} \mathbb{C}e(m). \]

Then the \(d \)-th tensor power \(A^{\otimes d} \) satisfies Property \(N_p \) for \(p \leq d \# \text{Int } Q \cap M - 3 \). In particular, \(A^{\otimes d} \) satisfies Property \(N_p \) for \(p \leq 3d - 3 \).

Proof. Set \(L = A^{\otimes d} \). Let \(C \) be a general hyperplane section of \(|L| \). Set \(L_C = L|C \). Denote by \(g \) the genus of \(C \). Then we have

\[\deg L_C = 2g - 2 + d \# \text{Int } Q \cap M \]

\[= 2g + 1 + (d \# \text{Int } Q \cap M - 3). \]

From Lemma 2.1, the bundle \(L_C \) satisfies Property \(N_p \) for \(p \leq d \# \text{Int } Q \cap M - 3 \). From Lemma 2.2 we obtain a proof of Proposition. \(\square \)

This is a generalization of the case \((X, A) = (\mathbb{P}^2, \mathcal{O}(1))\) treated by Birkenhake in [1].
3. Higher Dimension

Lemma 3.1 (Ogata [15]). Let A be an ample line bundle on a projective toric variety of dimension n ($n \geq 3$). Then $A^{\otimes d}$ satisfies Property N_1 for $d \geq n - 1$.

A very ample invertible sheaf L on a projective variety X defines an embedding $\Phi_L : X \to \mathbb{P}(H^0(X, L)) = \mathbb{P}^r$. Set $M_L := \Phi_L^* \Omega^{1}_{\mathbb{P}^r}(1)$ so that there exists the following exact sequence of vector bundles

$$0 \to M_L \to H^0(X, L) \otimes \mathcal{O}_X \to L \to 0.$$

Lemma 3.2 (Ein-Lazarsfeld [2]). Assume that L is very ample and that $H^1(X, L^{\otimes k}) = 0$ for all $k \geq 1$. Then L satisfies Property N_p if and only if

$$H^1(X, \wedge^a M_L \otimes L^{\otimes b}) = 0 \quad \text{for } 1 \leq a \leq p + 1 \text{ and } b \geq 1.$$

Since in characteristic zero $\wedge^a M_L$ is a direct summand of $M_L^{\otimes a}$, we have only to show the vanishing of $H^1(X, M_L^{\otimes a} \otimes L^{\otimes b})$ as in [2] and [8].

Proposition 3.3. Let $p \geq 2$ be an integer. Let A be an ample line bundle on a projective toric variety X of dimension n ($n \geq 3$). Then $A^{\otimes d}$ satisfies Property N_p for $p \leq n - 2 - d$.

For a proof we have to show the vanishing of $H^1(X, M_L^{\otimes a} \otimes L^{\otimes b})$ for $1 \leq a \leq p + 1$ and $b \geq 1$ with $L = A^{\otimes d}$. We need a lemma.

Lemma 3.4 (Mumford [12]). Let F be a coherent sheaf on a projective algebraic variety X. Let A be a line bundle on X generated by global sections. If $H^i(X, F \otimes A^{\otimes (i)}) = 0$ for all $i \geq 1$, then the multiplication map

$$H^0(X, F \otimes A^{\otimes j}) \otimes H^0(X, A) \to H^0(X, F \otimes A^{\otimes (j+1)})$$

is surjective for all $j \geq 0$.

For a proof see Theorem 2 in [12].

Proof of Proposition 3.3. Let $q \geq 2$ be an integer and $L = A^{\otimes d}$ with $d \geq n - q - 2$. We want to show that

$$H^1(X, M_L^{\otimes q} \otimes A^{\otimes j}) = 0 \quad \text{for } j \geq n + q - 3,$$

$$H^i(X, M_L^{\otimes q} \otimes A^{\otimes j}) = 0 \quad \text{for } i \geq 2 \text{ and } j \geq 0.$$

From Proposition 1.1 and the exact sequence (3.1) we see that

$$H^i(X, M_L \otimes A^{\otimes j}) = 0 \quad \text{for } i \geq 1, j \geq 0 \text{ and } d \geq n - 1.$$

First we shall show the vanishing of (3.2) for $q = 2$. Taking tensor product of (3.1) with $M_L \otimes A^{\otimes j}$ we obtain an exact sequence

$$0 \to M_L^{\otimes 2} \otimes A^{\otimes j} \to H^0(X, L) \otimes \mathcal{O}_X \to M_L \otimes A^{\otimes j} \to M_L \otimes L \otimes A^{\otimes j} \to 0.$$
From (3.4) and (3.5) we have

\[(3.6) \quad H^i(X, M_L^{\otimes 2} \otimes A^{\otimes j}) = 0 \quad \text{for} \quad i \geq 2, \quad j \geq 0 \quad \text{and} \quad d \geq n - 1.\]

Second we shall show the vanishing of (3.2) for \(q = 2 \). From Lemmas 3.1 and 3.2, we see that \(H^1(X, \wedge^2 M_L \otimes L^{\otimes b}) = 0 \) for \(b \geq 1 \) and \(d \geq n - 1 \). Taking wedge product in (3.1) and twisting by \(L^{\otimes b} \), we obtain an exact sequence

\[(3.7) \quad 0 \rightarrow \wedge^2 M_L \otimes L^{\otimes b} \rightarrow \wedge^2 H^0(X, L) \otimes_C L^{\otimes b} \rightarrow M_L \otimes L^{\otimes (b+1)} \rightarrow 0.\]

The vanishing of the first cohomology group implies the surjectivity of the map

\[(3.8) \quad \wedge^2 H^0(X, L) \otimes H^0(X, L^{\otimes b}) \rightarrow H^0(X, M_L \otimes L^{\otimes (b+1)}).\]

Taking global sections of (3.7) with \(b = 0 \) we see that the surjective map (3.8) factors through \(\wedge^2 H^0(X, L) \rightarrow H^0(X, M_L \otimes L) \). Thus we have that

\[(3.9) \quad H^1(X, M_L^{\otimes 2} \otimes L^{\otimes b}) = 0 \quad \text{for} \quad b \geq 1 \quad \text{and} \quad d \geq n - 1\]

from the exact sequence (3.5) replacing \(A \) by \(L \). For line bundles \(L_1 \) and \(L_2 \), denote by \(R(L_1, L_2) \) the kernel of the multiplication map \(H^0(X, L_1) \otimes H^0(X, L_2) \rightarrow H^0(X, L_1 \otimes L_2) \). By taking a global section of the exact sequence

\[0 \rightarrow M_L \otimes A \rightarrow \Gamma(X, L) \otimes_C A \rightarrow L \otimes A \rightarrow 0,\]

we have \(H^0(X, M_L \otimes A) = R(L, A) \). Then we can rewrite the sequence (3.5) after taking its global sections as

\[
\begin{array}{ccc}
H^0(X, L) \otimes H^0(X, M_L \otimes A^{\otimes j}) & \longrightarrow & H^0(X, M_L \otimes L \otimes A^{\otimes j}) \\
\| & & \| \\
H^0(X, L) \otimes R(A^{\otimes j}, L) & \longrightarrow & R(L \otimes A^{\otimes j}, L).
\end{array}
\]

For simplicity we denote \(A^{\otimes i} \) as \(A^i \) and \(H^0(X, L) \) as \(\Gamma(L) \). From Corollary 2.2 in [13], we have that

\[\Gamma(A^i) \otimes R(A^d, A^j) \rightarrow R(A^{d+i}, A^j)\]

is surjective for \(d \geq n, \ i \geq 1 \) and \(j \geq 1 \). Hence we showed the vanishing of (3.2) for \(j \geq 1 \). We remain to show the vanishing of \(H^1(X, M_L^{\otimes 2} \otimes A^{\otimes (n-1)}) \).
for \(d \geq n \). Consider the diagram

\[
\begin{array}{c}
0 \\
\downarrow \\
R(A_{n-1}, A_{n-1}) \\
\otimes \\
\Gamma(A^d) \\
\downarrow \\
\Gamma(A_{n-1}) \\
\otimes \Gamma(A^{d+n-1}) \\
\downarrow \\
\Gamma(A^{d+n-1}) \\
\end{array}
\]

\[
\begin{array}{c}
0 \\
\downarrow \\
R(A_{n-1}, A^d) \\
\otimes \\
\Gamma(A^d) \\
\downarrow \beta \\
\Gamma(A^{2n-2}) \\
\otimes \\
\Gamma(A^{d+2n-2}) \\
\end{array}
\]

If \(\alpha \) is surjective, then \(\beta \) is also surjective. The vanishing (3.9) implies the surjectivity of

\[
R(A_{n-1}, A_{n-1}) \otimes \Gamma(A^{n-1}) \rightarrow R(A_{n-1}, A^{2n-2}).
\]

Since \(\Gamma(A^i) \otimes \Gamma(A^{n-1}) \rightarrow \Gamma(A^{n+i-1}) \) is surjective for \(i \geq 1 \), the map \(\alpha \) is surjective, hence,

\[
\Gamma(A^d) \otimes R(A^{n-1}, A^d) \rightarrow R(A^{d+n-1}, A^d)
\]

is surjective. This map is the same as

\[
\Gamma(L) \otimes \Gamma(M_L \otimes A^{n-1}) \rightarrow \Gamma(M_L \otimes L \otimes A^{n-1})
\]

with \(L = A^d \). Thus we obtain that \(H^1(X, M_L^{\otimes q} \otimes A^{n-1}) = 0 \).

For \(q \geq 2 \) and \(L = A^d \) with \(d \geq n + q - 2 \), if we have the equalities (3.2) and (3.3), then from the exact sequence

\[
(3.10) \quad 0 \rightarrow M_L^{\otimes (q+1)} \otimes A^j \rightarrow \Gamma(L) \otimes M_L^{\otimes q} \otimes A^j \rightarrow M_L^{\otimes q} \otimes L \otimes A^j \rightarrow 0
\]

we have

\[
H^i(X, M_L^{\otimes (q+1)} \otimes A^j) = 0 \quad \text{for } i \geq 2 \text{ and } j \geq 0,
\]

and from Lemma 3.4 we see the surjectivity of

\[
\Gamma(M_L^{\otimes q} \otimes A^j) \otimes \Gamma(A) \rightarrow \Gamma(M_L^{\otimes q} \otimes A^{j+1})
\]
for $j \geq n + q - 2$. From this and the exact sequence (3.10) we have

$$H^1(X, M_\ell^{\otimes (q+1)} \otimes A^j) = 0 \quad \text{for } j \geq n + q - 2.$$

In particular, we have

$$H^1(X, M_\ell^{\otimes (q+1)} \otimes L^\otimes b) = 0$$

for $b \geq 1$ and $L = A^{\otimes d}$ with $d \geq n + q - 2$.

\[\square \]

References

ON HIGHER SYZYgies OF PROJECTIVE TORIC VARIETIES

Shoetsu Ogata
Mathematical Institute
Faculty of Science
Tohoku University
Sendai, 980-8578 Japan
e-mail address: ogata@math.tohoku.ac.jp

(Received November 17, 2005)