Commutativity theorems for rings with a commutative subset or a nil subset

Hisao Tominaga* Adil Yaqub†

*Okayama University
†University of California
COMMUTATIVITY THEOREMS FOR RINGS WITH A COMMUTATIVE SUBSET OR A NIL SUBSET

HISAO TOMINAGA and ADIL YAQUB

Throughout, R will represent a ring with center C, and N the set of nilpotent elements in R. As usual, $[x,y]$ will denote the commutator $xy - yx$. Given a subset S of R, we denote by $V_n(S)$ the set of all elements of R which commute with all elements in S. Following [2], R is called \textit{s-unital} if for each x in R, $x \in Rx \cap xR$. As stated in [2], if R is an s-unital ring, then for any finite subset F of R there exists an element e in R such that $ex = xe = x$ for all x in F. Such an element e will be called a \textit{pseudo-identity} of F.

Let l be a fixed positive integer, q a fixed integer greater than l, and E_q the set of elements x in R such that $x^q = x$. Let A be a non-empty subset of R, and A^+ the additive subgroup of R generated by A. We consider the following properties:

(I-A) For each $x \in R$, there exists a polynomial $f(\lambda)$ in $Z[\lambda]$ such that $x - x^q f(x) \in A$.

(II-A)$_q$ If $x, y \in R$ and $x - y \in A$, then either $x^q = y^q$ or x and y both belong to $V_n(A)$.

(ii-A)$_q$ If $x, y \in R$ and $x - y \in A$, then either $x^q - y^q \in C$ or x and y both belong to $V_n(A)$.

(iii-A)$_q$ $[a, x^q] = 0$ for any $a \in A$ and $x \in R$.

(iii-A)$_q$ For any $x \in R$, either $x \in C$ or $x = x' + x''$ with some $x' \in A$ and $x'' \in E_q$.

(A)$_q$ If $a, b \in A$ and $q[ka, b] = 0$ for some positive integer k, then $[ka, b] = 0$.

(A)$_q^*$ If $a, b \in A$ and $q[a, b] = 0$, then $[a, b] = 0$.

(A)$_q^*$ If $a \in A$, $x \in R$ and $l[a^k, x] = 0$ for some positive integer k, then $[a^k, x] = 0$.

Our present objective is to prove the following theorems.

Theorem 1. The following statements are equivalent:

1) R is commutative.

2) There exists a commutative subset A for which R satisfies (I-A), (ii-A)$_q$ and (iii-A*)$_q$.

2)* There exists a commutative subset A for which R satisfies (I-A),
(ii-A^*) and (iii-A^*)$_q$.

3) There exists a commutative subset A of N for which R satisfies (ii-A^*)$_q$ and (iii-A^*)$_q$.

3)* There exists a commutative subset A of N for which R satisfies (ii-A^*)$_q$ and (iii-A^*)$_q$.

Theorem 2. Let R be an s-unital ring. Then the following statements are equivalent:

1) R is commutative.

2) There exists a subset A for which R satisfies (I-A)$_q$, (II-A)$_q$, (iii-A^*)$_q$ and (A)$_q$.

3) There exists a subset A of N for which R satisfies (ii-A^*)$_q$, (iii-A^*)$_q$ and (A)$_q$.

3)* There exists a subset A of N for which R satisfies (ii-A^*)$_q$, (iii-A^*)$_q$ and (A)$_q$.

4) R satisfies the polynomial identity $[X^q, Y] = 0$ and there exists a subset A of N for which R satisfies (iii-A^*)$_q$ and (A)$_q$.

5) R satisfies the polynomial identity $(XY)^q -(YX)^q = 0$ and there exists a subset A of N for which R satisfies (iii-A^*)$_q$ and (A)$_q$.

6) R satisfies the polynomial identity $[X^q, Y] - [X, Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A^*)$_q$ and (A)$_q$.

7) R satisfies the polynomial identity $[X, (X+Y)^q - Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A^*)$_q$ and (A)$_q$.

8) R satisfies the polynomial identity $(XY)^q - X^q Y^q = 0$ and there exists a subset A of N for which R satisfies (iii-A^*)$_q$, (A)$_q$ and (A)$_q^*$.

9) R satisfies the polynomial identity $[X^q, Y^q] = 0$ and there exists a subset A of N for which R satisfies (iii-A^*)$_q$ and (A)$_q^*$.

Proof of Theorem 1. Obviously, 1) implies both 2) and 3). Next, the proof of [4, Lemma 1 (3)] shows that (ii-A^*)$_q$ implies (ii-A^*)$_q^*$, and therefore 2) and 3) imply 2)* and 3)*, respectively.

2)* \Rightarrow 1). Since A is commutative and $A \subseteq V_h(E_q)$, (iii-A^*)$_q$ shows that $A \subseteq V_h(A) \cap V_h(E_q) \subseteq V_h((A^{*} + E_q) \cup C) = C$. Hence, by (I-$A$) and [1, Theorem 19], R is commutative.

3)* \Rightarrow 1). As was shown just above, A is a subset of C. We claim next that $N \subseteq C$. Suppose, to the contrary, that there exists $u \in N \setminus C$. Then $u = u' + u''$ with some $u' \in A^{*}$ and $u'' \in E_q$. As is easily seen, $u' = u - u' \in E_q \cap N = 0$, and hence $u = u' \in A^{*} \subseteq C$, a contradiction. Thus,
N is an ideal of R contained in C. Now, let \(x \in R \setminus C \), and \(x = x' + x'' \) (\(x' \in A^+, x'' \in E_q \)). Then \(x^q \equiv x'^q = x'' \equiv x \) (mod \(N \)). This proves that \(x - x^q \in C \) for all \(x \in R \). Hence, \(R \) is commutative again by [1, Theorem 19].

Proof of Theorem 2. It is clear that 1) implies 2)−9) and 4) does 3)*. Furthermore, [3, Proposition 3] shows that 5) implies 4) and 6) is equivalent to 7). As was claimed in the proof of Theorem 1, \((ii\cdot A)_q \) implies \((ii\cdot A)_q^* \) and hence 3) implies 3)*.

2) \(\Rightarrow \) 1). Suppose that there exist \(a, b \in A \) such that \(ab \neq ba \). Then, by \((ii\cdot A)_q \), \(a^q = 0 \). Let \(k > 1 \) be the least positive integer such that \([a^i, b] = 0 \) for all \(i \geq k \), and let \(e \) be a pseudo-identity of \([a, b] \). Then \(f(a^k - 1, b) = [(e + a^{k-1})^q, b] = 0 \), since as remarked in the proof of Theorem 1, \((ii\cdot A)_q \) \((ii\cdot A)_q^* \). In view of (I-A), there exists \(f(\lambda) \in \mathbb{Z}^N \) such that \(a^{k-1} - a^{2k-1}f(a^{k-1}) \in A \). Then, by \((A)_q \), \(q[a^{k-1} - a^{2k-1}f(a^{k-1}), b] = 0 \) implies that \(0 = [a^{k-1} - a^{2k-1}f(a^{k-1}), b] = [a^{k-1}, b] \), which contradicts the minimality of \(k \). Hence, \(A \) has to be commutative, and therefore \(R \) is commutative by Theorem 1.

3)* \(\Rightarrow \) 1). Let \(u \in N \setminus C \), and \(u = u' + u'' \) (\(u' \in A, u'' \in E_q \)). Then, noting that \(A \subseteq V_q(E_q) \), we can easily see that \(u'' = u' - u'' \in E_q \cap N = 0 ; u = u' \in A \). This proves that \(N \subseteq A \cup C \). Suppose now that there exist \(a, b \in A \) such that \(ab \neq ba \). Let \(k > 1 \) be the least positive integer such that \([a^i, b] = 0 \) for all \(i \geq k \). Since \(N \subseteq A \cup C \), \(a^{k-1} \) must belong to \(A \). Let \(e \) be a pseudo-identity of \([a, b] \). Then \(f(a^{k-1}, b) = [(e + a^{k-1})^q, b] = 0 \), and so \((A)_q \) gives \([a^{k-1}, b] = 0 \), which contradicts the minimality of \(k \). We have thus seen that \(A \) is commutative. Hence, \(R \) is commutative by Theorem 1.

Combining those above, we see that 1)−5) are all equivalent.

6) \(\Rightarrow \) 1). In view of [3, Proposition 3], \(R \) satisfies the polynomial identity \([X^{qa}, Y] = 0 \) for some positive integer \(a \). It is easy to see that \(R \) satisfies \((iii\cdot A)_q^\varphi \) and \((A)_q^\varphi \). Hence \(R \) is commutative by 4).

8) \(\Rightarrow \) 3)*. Let \(a \in A \) and \(x \in R \). Let \(e \) be a pseudo-identity of \([a, x] \). If \(a_0 \) is the quasi-inverse of \(a \) then we can easily see that

\[
0 = (e - a)^q[(e - a_0)^q x^q(e - a)^q] = (e - a)^q[(e - a_0) x(e - a)]^q(e - a_0)^q - x^q(e - a)^{q-1} = [(e - a)^{q-1}, x^q].
\]

Choose the minimal positive integer \(k \) such that \([a^i, x^q] = 0 \) for all \(i \geq k \).
Suppose \(k > 1 \). Then, by the above,
\([e-a^{k-1}a^{-1}, x^q] = 0\). Combining this with \([a^i, x^q] = 0\) for all \(i \geq k \), we get \((q-1)[a^{k-1}, x^q] = 0\), and hence \([a^{k-1}, x^q] = 0\) by \((A)^q\). But this contradicts the minimality of \(k \). Thus,
\(k = 1 \), and hence \([a, x^q] = 0\).

9) \(\Rightarrow 3\). Let \(a \in A \) and \(x \in R \). Choose the minimal positive integer \(k \) such that \([a^i, x^q] = 0\) for all \(i \geq k \). Suppose \(k > 1 \). Then \(0 = [(e+a^{k-1})^q, x^q] = q[a^{k-1}, x^q] \), and hence \([a^{k-1}, x^q] = 0\) by \((A)^q\). This contradiction shows that \([a, x^q] = 0\).

Corollary 1. Let \(R \) be an \(s\)-unital ring. Then the following statements are equivalent:

1) \(R \) is commutative.
2) \(R \) satisfies the polynomial identity \([X^q, Y] = 0\) and there exists a subset \(A \) of \(N \) for which \(R \) satisfies \((\text{iii-}A^+)\) and \((A)\).
3) \(R \) satisfies the polynomial identity \((XY)^q - (YX)^q = 0\) and there exists a subset \(A \) of \(N \) for which \(R \) satisfies \((\text{iii-}A^+)\) and \((A)\).
4) \(R \) satisfies the polynomial identity \([X^q, Y] - [X, Y]^q = 0\) and there exists a subset \(A \) of \(N \) for which \(R \) satisfies \((\text{iii-}A^+)\) and \((A)\).
5) \(R \) satisfies the polynomial identity \([X, (X+Y)^q - Y^q] = 0\) and there exists a subset \(A \) of \(N \) for which \(R \) satisfies \((\text{iii-}A^+)\) and \((A)\).

Proof. Notice that \(N \) forms an ideal provided \(R \) satisfies one of the polynomial identities cited in 2)–5) (see, e.g., [3, Proposition 2]).

Corollary 2. Let \(R \) be an \(s\)-unital ring. Then the following statements are equivalent:

1) \(R \) is commutative.
2) \(R \) satisfies the polynomial identity \([X^q, Y] = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{ii-}A)\), \((\text{iii-}A)\), and \((A)\).
3) \(R \) satisfies the polynomial identity \((XY)^q - (YX)^q = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{ii-}A)\), \((\text{iii-}A)\), and \((A)\).
4) \(R \) satisfies the polynomial identity \([X^q, Y] - [X, Y]^q = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{ii-}A)\), \((\text{iii-}A)\), and \((A)\).
5) \(R \) satisfies the polynomial identity \([X, (X+Y)^q - Y^q] = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{ii-}A)\), \((\text{iii-}A)\), and \((A)\).
6) \(R \) satisfies the polynomial identity \([X^q, Y^q] = 0\) and there exists a subset \(A \) for which \(R \) satisfies \((\text{ii-}A)\), \((\text{iii-}A)\), and \((A)\).

Proof. Obviously 1) implies 2)–6) and 2) does 6). Furthermore,
[3, Proposition 3] shows that 3) implies 2) and 4) is equivalent to 5).

6) \Rightarrow 1). Suppose A is not commutative. Let $a \in A$ and $b \in A \setminus V_q(A)$. Then, by $(II\cdot A)_q$, $a^q = 0$, which tells us that $A \subseteq N$. As was remarked in the proof of Theorem 2, $(II\cdot A)_q$ implies $(I\cdot A)_q^*$. Hence the statement 3* of Theorem 2 holds, and therefore R is commutative. This contradiction shows that A is commutative. Suppose now that there exist $x, y \in R$ such that $xy \neq yx$. Then, by $(iii\cdot A)_q$, $x = x' + x''$ and $y = y' + y''$ with some $x', y' \in A$ and $x'', y'' \in E_q$. Since $[x', y'] = 0$ and $A \subseteq V_q(E_q \cup A)$, we see that $[x, y] = 0$, a contradiction. Hence R is commutative.

5) \Rightarrow 1). By [3, Proposition 3 (ii)], R satisfies the polynomial identity $[X^{q\alpha}, Y^{q\alpha}] = 0$ for some positive integer α. It is easy to see that R satisfies $(II\cdot A)_{q\alpha}$, $(iii\cdot A)_{q\alpha}$ and $(A)_{q\alpha}$. Hence R is commutative, by 6).

We conclude this paper with the following examples:

1) Let $R = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$, $a, b, c \in \text{GF}(3)$, $A = N = R$, and $q = 4$. This example shows that Theorem 2 need not be true if R is not s-unital.

2) Let $R = \begin{pmatrix} a & b & c & d \\ 0 & a & d & 0 \\ 0 & 0 & a & 0 \end{pmatrix}$, $a, b, c, d \in \text{GF}(3)$, $A = N$, and $q = 3$. This example shows that we cannot drop the hypothesis that A is commutative in Theorem 1 3) and that $(A)_{q}$ cannot be deleted in Theorem 2 3).

3) Let $R = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $a, b, c \in \text{GF}(2)$, $A = N$, and $q = 3$. This example shows that $(ii\cdot A)_q$ cannot be deleted in Theorem 1 3) and Theorem 2 3).

4) Let $R = \begin{pmatrix} a & b & c \\ 0 & a^2 & 0 \\ 0 & 0 & a \end{pmatrix}$, $a, b, c \in \text{GF}(4)$, $A = N$, and $q = 6$. This example shows that $(iii\cdot A)_q$ cannot be deleted in Theorem 2 3).

5) Let $R = \begin{pmatrix} a & b \\ 0 & a^2 \end{pmatrix}$, $a, b \in \text{GF}(4)$. Then $C = \{0, 1\}$, $E_r = \{\begin{pmatrix} a & b \\ 0 & a^2 \end{pmatrix} \mid a \neq 0\} \cup \{0\}$, and $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = 1 + \begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix}$ for any b; hence R satisfies $(II\cdot C)_r$, $(iii\cdot C)_r$ and $(C)_r$. This example shows that the hypothesis that $A \subseteq N$ cannot be deleted in Theorem 1 3) and Theorem 2 3).
REFERENCES

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN
UNIVERSITY OF CALIFORNIA, SANTA BARBARA, U.S.A.

(Received October 12, 1983)