On cohomology of groups in finite local rings

Takao Sumiyama

* Aichi Institute Of Technology

Copyright ©1987 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
ON COHOMOLOGY OF GROUPS IN FINITE LOCAL RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

TAKAO SUMIYAMA

Let G and H be finite groups and let $\rho: H \to \text{Aut}(G)$ be a fixed group homomorphism from H to the automorphism group of G. A map $f: H \to G$ is called a crossed homomorphism if $f(ab) = \rho_a(f(b))f(a)$ for any $a, b \in H$. This is an extended definition of usual crossed homomorphism (cf. [3, pp. 104–106]). The set of all crossed homomorphisms of H to G will be denoted by $Z^1_\rho(H, G)$. For each fixed $x \in G$, the map $f_x: H \to G$ defined by $f_x(a) = \rho_a(x)x^{-1}$ is a crossed homomorphism. The function of this form f_x is called principal, and the set of all principal crossed homomorphisms of H to G is denoted by $B^1_\rho(H, G)$. In case G is Abelian, $Z^1_\rho(H, G)$ and $B^1_\rho(H, G)$ are Abelian groups and $H^1_\rho(H, G) = Z^1_\rho(H, G)/B^1_\rho(H, G)$ is the first cohomology group of H over G.

When S is a finite set, $|S|$ denotes the number of elements of S.

The purpose of this paper is to show that [7, Theorem 1 (3)] can be derived from a more general proposition and to describe finite local rings in terms of cohomology of their unit groups.

Theorem 1. Let G be a finite solvable group with order g, $H = \langle c \rangle$ a cyclic group with order h, and $\rho: H \to \text{Aut}(G)$ a group homomorphism. If $(g, h) = 1$, then $Z^1_\rho(H, G) = B^1_\rho(H, G)$, that is, all crossed homomorphisms of H to G are principal.

Proof. Let \widetilde{G} be the semidirect product of H with G determined by ρ. That is, any element x of \widetilde{G} is uniquely written as $x = at$ with $a \in H$ and $t \in G$, and the multiplication is given by

$$(at)(bv) = (ab)(\rho_\rho(t)v) \quad (a, b \in H, t, v \in G).$$

Note that $\rho_\rho(t) = b^{-1}tb$ in \widetilde{G}.

Let $f: H \to G$ be a crossed homomorphism. Then

$$(c^{f(c)})^s = c^{s\rho_{c\rho^{-1}}(f(c))\rho_{c\rho^{-1}}(f(c))...\rho_\rho(c(f(c)))f(c)} = c^{sf(c^s)}$$

for any integer $s \geq 1$, so the order of c is equal to the order of $cf(c)$. As
\langle c \rangle \text{ and } \langle cf(c) \rangle \text{ are both Hall subgroups of } \overline{G}, \text{ by [1, p. 141 Theorem 9.3.1. 2]}, \text{ there exists } y = bv \in \overline{G}(b \in H, \nu \in G) \text{ such that } y^{-1}cy = (cf(c))^k \text{ for some integer } k \text{ (} 1 \leq k \leq h). \text{ Then } c(c^{-1}v^{-1}cv) = v^{-1}cv = y^{-1}cy = c^{f(c)}, \text{ so } k = 1, \text{ and } f(c) = c^{-1}v^{-1}cv = f_{v^{-1}}(c). \text{ Hence } f \text{ is a principal crossed homomorphism.}

In the remainder of this paper suppose \(R \) is a (not necessarily commutative) finite local ring with radical \(M \). \text{ Let } R/M = K \cong GF(p^r)(p \text{ a prime).} \text{ Let } |R| = p^{ar}, |M| = p^{(n-1)r}, R^* \text{ the unit group of } R, \text{ and } p^k \text{ the characteristic of } R. \text{ The } r\text{-dimensional Galois extension } GR(p^{kr}, p^k) \text{ of } Z_{p^k} = Z/p^kZ \text{ is called a Galois ring (see [4]). By [5, Theorem 8 (i)]}, \text{ } R \text{ contains a subring isomorphic to } GR(p^{kr}, p^k), \text{ which will be called a maximal Galois subring of } R. \text{ If } R_1 \text{ and } R_2 \text{ are two maximal Galois subrings of } R, \text{ then by [5, Theorem 8 (ii)]}, \text{ there exists } a \in R^* \text{ such that } R_2 = a^{-1}R_1a. \text{ In the proof of [6, Theorem], the author has proved that } R^* \text{ contains an element } u \text{ such that (i) its multiplicative order is } p^r-1, \text{ and (ii) } Z_{p^k}[u], \text{ the subring of } R \text{ generated by } u, \text{ is a maximal Galois subring of } R.

Let \(N = |x \in M| xu = ux| \) be a subgroup of the additive group of \(M \), then, by [6, Remark], the number of maximal Galois subrings of \(R \) is equal to \(|M: N|, \) the index of \(N \) in \(M \). \text{ In the following we fix such an element } u. \text{ Note that, if } u' \text{ is another such element, then } N \text{ and } N' = |x \in M| xu' = u'x| \text{ consist of the same number of elements.}

Let us define \(\phi: \langle u \rangle \to Aut(1+M) \) by \(\phi(x) = v^{-1}xv \) \((v \in \langle u \rangle, x \in 1+M). \) By Theorem 1 and [7, Theorem 1 (2)], we see that \(|Z_p^\phi(\langle u \rangle, 1+M)|, |B_\phi(\langle u \rangle, 1+M)|, \text{ and } |M: N| \text{ are all equal to the number of maximal Galois subrings of } R. \text{ As } M \text{ and } N \text{ are modules over } Z_{p^k}[u], \text{ by [4, p. 310 Theorem (XVI.2)]}, |M: N| \text{ is a power of } p^r.

We will deal with the equation
\[
(1) \quad X^{p^r-1} = 1
\]
in \(R \).

\textbf{Theorem 2.} \textit{Let } \(N_i = |x \in M| u^i x = xu^i| \text{ be a submodule of } M, \text{ } |M: N_i| \text{ the index of } N_i \text{ in } M, \text{ and } v \text{ the number of solutions of (1) in } R. \text{ Then.}

\[
\nu = \sum_{d \mid p^r-1} \phi(d) |M: N_{(p^r-1)/d}|,
\]

where \(\phi \) is the Euler function.
Proof. In the following, the word "order" always means the multiplicative order.

If \(t \in R^* \) satisfies \(t^{p^r-1} = 1 \), then the order of \(t \) is a divisor of \(p^r - 1 \). When \(d \) is a divisor of \(p^r - 1 \), let \(S_d \) denote the set of all elements in \(R^* \) with order \(d \), then \(\nu = \sum_{d|p^r-1} |S_d| \). Any \(t \in R^* \) is uniquely written as \(t = vx, v \in \langle u \rangle, x \in 1 + M \).

If the order of \(t = vx \ (v \in \langle u \rangle, x \in 1+M) \) is \(d \), then the order of \(v \) is \(d \), for, orders of \(\langle u \rangle \) and \(1+M \) are coprime. Hence, if \(t = vx \in S_d \), then \(v = u^{hs} \), where \(h = (p^r-1)/d \) and \(s \) is an integer with \(1 \leq s < d \). \((s, d) = 1 \). The number of such \(s \)'s is \(\phi(d) \).

Let \(s \) be such an integer and \(t = u^{hs}x \in S_d \ (x \in 1+M) \), then both of \(\langle t \rangle \) and \(\langle u^{hs} \rangle \) are Hall subgroups of \(G = \langle (u^{hs})^j | 1 \leq j \leq d, z \in 1+M \rangle \) with the order \(dp^{(n-1)r} \). So, there exists some \(y \in 1+M \) and an integer \(1 \leq i < d \) such that \((i, d) = 1 \) and \(t = y^{-1}(u^{hs})^iy \). Then \((s, d) = 1 \), so we see that \(S_d = |x^{-1}u^{hs}x| \leq s < d, (s, d) = 1, x \in 1+M| \).

Let us put \(H_s = \{x^{-1}u^{hs}x | x \in 1+M \} \) for each fixed \(u^{hs} \). Since \(x^{-1}u^{hs}x = x^{-1}u^{hs}x' (x, x' \in 1+M) \) is equivalent to \(s = s' \) and \(xx'^{-1} \in N_{hs} \), we have \(|H_s| = |M: N_{hs}| \). When \((s, d) = 1 \), \(N_{hs} = N_h \), so \(|H_s| = |M: N_h| \). Hence, \(|S_d| = \phi(d) |M: N_h| \) and \(\nu = \sum_{d|p^r-1} |S_d| = \sum_{d|p^r-1} \phi(d) |M: N_{p^r-1/d}| \), which completes the proof.

Corollary. If \(r \geq 2 \), then

\[
(p^r - 1) \left[\left\lfloor \frac{\phi(p^r-1)(|M: N|-1)+p^r-2}{p^r-1} \right\rfloor + 1 \right] \leq \nu \leq \frac{(p^r-p)}{p^r-1} \left[\frac{(p^r-p)}{p^r-1} |M: N|+p-1 \right],
\]

where \([a] \) denotes the greatest integer not exceeding \(a \).

Proof. When \(d \) is a divisor of \(p - 1 \), \(N_{d(p^r-1/d)} = M \) by [7, Theorem 2(3)], so \(\sum_{d|p^r-1} \phi(d) |M: N_{p^r-1/d}| = \sum_{d|p^r-1} \phi(d) = p - 1 \). Then,

\[
\nu = \sum_{d|p^r-1} \phi(d) |M: N_{p^r-1/d}| = \phi(p^r-1) |M: N| + \sum_{d|p^r-1} \phi(d) |M: N_{p^r-1/d}| + (p-1),
\]

where the second term is a sum with respect to all \(d \) such that \((*) \) \(d \) is a proper divisor of \(p^r-1 \) and not a divisor of \(p-1 \). Since \(M \supseteq N_{p^r-1/d} \supseteq N \),
T. Sumiyama

\[\phi(p^r - 1) | M: N| + \sum_{i \neq 1} \phi(d) + (p - 1) \leq \nu \leq (\phi(p^r - 1) + \sum_{i \neq 1} \phi(d)) | M: N| + p - 1. \]

Since

\[\sum_{d \mid (p^r - 1)} \phi(d) = \sum_{d \mid (p^r - 1)} \phi(d) - \sum_{d \mid (p - 1)} \phi(d) - \phi(p^r - 1) = p^r - p - \phi(p^r - 1), \]

\[\phi(p^r - 1) | M: N| - 1 + p^r - 1 \leq \nu \leq (p^r - p) | M: N| + p - 1. \]

By [1, p. 137 Theorem 9.1.2], \(\nu \) is a multiple of \(p^r - 1 \), so we get the inequality of Corollary.

In case \(R \) has only one maximal Galois subring, equivalent conditions are given in [7, Theorem 2 (2)].

Let us deal with the case \(R \) has a plenty of maximal Galois subrings.

Suppose \(r \geq 2 \) and \(n \geq 2 \). Let \(V \) be a finite nilpotent ring, and moreover a two-sided vector space with dimension \(n - 1 \) over a finite field \(F \cong GF(p^r) \) which satisfies the following (2)–(6) for any \(a, b \in F \) and any \(x, y \in V \).

(2) \(a(xy) = (ax)y \)

(3) \((xy)a = x(ya) \)

(4) \((ax)b = a(xb) \)

(5) \((xa)y = x(ay) \)

(6) If \(x \neq 0 \), then there exists some \(a \in F \) such that \(ax \neq xa \).

Such \(V \) does exist (see [5, Section 1]).

Let \(F^+ V \) denote the Abelian group direct sum \(F \oplus V \) with multiplication

\[(a, x)(a', x') = (aa', ax' + xa' + xx'). \]

\(F^+ V \) is a finite local ring with radical \(V' = \langle (0, x) | x \in V \rangle \) and \((F^+ V) / V' \cong F \). Let \(\zeta \) be a multiplicative generator of \(F \), then \(\zeta' = (\zeta, 0) \) has multiplicative order \(p^r - 1 \), and generates a maximal Galois subring of \(F^+ V \) isomorphic to \(F \). Since \(x = 0 \) is the only element of \(V \) such that \(\zeta x = x \zeta \), \(F^+ V \) has \(|V| = p^{(n-1)r} \) maximal Galois subrings.

Theorem 3. Suppose \(n \geq 2 \). If the number of maximal Galois subrings of \(R \) is the largest, that is, if \(R \) has \(p^{(n-1)r} \) maximal Galois subrings, then \(R \) is isomorphic to \(F^+ V \).
ON COHOMOLOGY OF GROUPS IN FINITE LOCAL RINGS

Proof. Suppose $\text{ch } R = p^k$ and $k \geq 2$. As is shown in [5, pp. 200–201], $\sum_{i=1}^{r} Z_{p^k} u^i$ is a direct sum, hence $\sum_{i=1}^{r} pZ_{p^k} u^i$ is a subset of N consisting of $p^{(k-1)r}$ elements. Then $|M : N| \leq p^{n-1/r}/p^{(k-1)r} \leq p^{n-2r}$, which contradicts the assumption. So we see $\text{ch } R = p$. As R is an algebra over Z_p and $R/M \cong GF(p^n)$ is a separable extension of Z_p, by Wedderburn-Malcev theorem [2, p. 491 Theorem 72.19], there exists a subfield K' of R isomorphic to $K = R/M$ and $R = K' \oplus M$ as Abelian groups. K' is a maximal Galois subring of R, and M is a two-sided vector space over K'. K' contains an element u' with order p^{r-1}, then $Z_p[u]$ and $K' = Z_p[u']$ are both maximal Galois subrings of R. So, the number of elements of $N' = \{ x \in M \mid u'x = xu' \}$ is equal to $|N| = 1$, that is, $x = 0$ is the only element of M satisfying $u'x = xu'$. $f : R \to K' \oplus M$ defined by $f(a + m) = (a, m)$ ($a \in K'$, $m \in M$) gives an isomorphism of R onto $K' \oplus M$.

Acknowledgement. The author would like to express his indebtedness and gratitude to Prof. K. Motose for his helpful suggestion and valuable comments.

REFERENCES

Aichi Institute of Technology
Yagusa-chô, Toyota 470–03 Japan

(Received December 8, 1985)