Primitive elements of cyclic extensions of commutative rings

Isao Kikumasa∗ Takasi Nagahara†

PRIMITIVE ELEMENTS OF CYCLIC EXTENSIONS OF COMMUTATIVE RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

ISAO KIKUMASA and TAKASI NAGAHARA

Throughout this paper, A will mean a commutative ring with identity element 1 which is an algebra over a finite prime field $GF(p)$, and all ring extensions of A will be assumed with identity element 1, the identity element of A. Moreover, B will mean a Galois extension of A with a cyclic Galois group $G = \langle \sigma \rangle$ generated by σ of order p^n, which will be called a cyclic p^n-extension of A (with a Galois group G). If B is generated by a single element x over A then we say that B/A has a primitive element and x is a primitive element for B/A.

This paper is about the existence of primitive elements for cyclic p^n-extensions. In [2], K. Kishimoto made a study on primitive elements for cyclic 2^ℓ-extensions. In §1, we shall present a sharpening of [2] and some generalizations. In §2, we shall give some applications and generalizations of the results of §1 to cyclic p^n-extensions with $p \geq 2$ and $n \geq 1$.

In what follows, given a Galois extension S/R with a Galois group G, we shall use the following conventions: For any subring T of S and any subgroup H of G,

1) $\mathfrak{M}(T) = \{ M; M$ is a maximal ideal of $T \}$,
2) $G(T) = \{ \sigma \in G; \sigma(a) = a$ for all $a \in T \}$,
3) $S(H) = \{ a \in S; \sigma(a) = a$ for all $\sigma \in H \}$,
4) $t_\sigma(a) = \sum_{\sigma \in H} \sigma(a)$ for each $a \in T$, which will be called the H-trace of a. Moreover, for any set V and its subset W,
5) $|V| = \text{the cardinal number of } V$,
6) $V \setminus W = \text{the complement of } W$ in V.

Now, we shall here consider a cyclic p^n-extension B/A with a Galois group $G = \langle \sigma \rangle$. Then, there exists an element a in B whose G-trace is 1 ([1, Lemma 1.6]). If, in particular, $|G| = p$ then there exists an element b in B such that $\sigma(b) = b + 1$. When this is the case, there holds that $B = A[b]$ and $t_\sigma(b) = 0$ if $p > 2$ ([7, Theorem 1.2]). Such an element b will be called a σ-generator of B/A (cf. [2]). In case $|G| = 2$, an element c in B is a σ-generator of B/A if and only if $t_\sigma(c) = 1$.

91
1. On primitive elements of cyclic 2^k-extensions. In this section, we shall discuss the case $p = 2$ and $n = 2$, i.e., $|\langle \sigma \rangle| = 4$. Throughout this section, H will mean a subgroup of G generated by σ^2, i.e., $H = \langle \sigma^2 \rangle$. Moreover we put $T = B(H)$ and $\sigma|T = \bar{\sigma}$.

First, we shall prove the following theorem which contains the result of K. Kishimoto [2, Lemma 1].

Theorem 1. The following conditions are equivalent.

(a) There exists a primitive element for B/A whose G-trace is zero.

(b) There exists an invertible element of T whose $\langle \bar{\sigma} \rangle$-trace is 1.

Proof. (a) \Rightarrow (b). Let $B = A[z]$ and $t_\sigma(z) = 0$, and set $b = z + \sigma(z)$. Then, we have $\sigma^3(b) = b$. This implies that $b \in T$ and $b + \sigma(b) \in A$. By [4, Theorem 3.3], b and $b + \sigma(b) = z + \sigma^3(z)$ are invertible in B. Hence $x = b(b + \sigma(b))^{-1}$ is an invertible element of T and $t_{\langle \bar{\sigma} \rangle}(x) = 1$.

(b) \Rightarrow (a). Let x be an invertible element of T whose $\langle \bar{\sigma} \rangle$-trace is 1. Then, $\sigma(x) = x + 1$. Hence we have $T = A[x]$ by [7, Theorem 1.2]. Since B is a Galois extension of A, there exists an element y in B such that $t_\sigma(y) = 1$. Put

$$b = x^2 + x \quad \text{and} \quad z = xy + x \sigma(y) + \sigma(xy + x \sigma(y)).$$

Then, since x is invertible, $\sigma(x) = x + 1$ is also invertible and so is $b = x \sigma(x)$. Moreover, since $t_\sigma(y) = 1$, we have $\sigma^3(z) = x + 1$. Hence $B = T[z]$. Further,

$$z + \sigma(z) = xy + x \sigma(y) + \sigma(xy + x \sigma(y)) = x t_\sigma(y) = x.$$

Hence we have $\sigma(z) = z + x$. Then we obtain $\sigma(z^2 + z + x b) = z^2 + z + x b$. Therefore, it follows that $c = z^2 + z + x b \in A$, and $x = (z^2 + z + c) b^{-1} \in A[z]$. This implies that $A[z] = A[z, x] = T[z] = B$. Moreover, noting $\sigma(z) = z + x$ and $\sigma(x) = x + 1$, we have $t_\sigma(z) = 0$.

Corollary 2. Let x be an invertible element of T with $t_{\langle \bar{\sigma} \rangle}(x) = 1$ and y an element of B with $t_\sigma(y) = 1$. Then

$$z = xy + x \sigma(y) + \sigma(y) + \sigma^3(y)$$

is a primitive element for B/A whose G-trace is zero and so is $z + a$ for any $a \in A$. Moreover
\[z_1 = xy + x \sigma(y) + \sigma(y) + \sigma^2(y^2) + y + y^2 \]

is also an element which has this property.

Proof. The first part is shown in the proof of Theorem 1. Moreover, it is clear that \(A[z + a] = A[z] = B \) and \(t_0(z + a) = t_0(z) = 0 \) for any \(a \in A \). Since \(t_0(y) = 1 \) and

\[
\begin{align*}
z + z_1 &= y + \sigma(y) + y^2 + \sigma(y^2), \\
\sigma(z + z_1) &= (\sigma(y) + \sigma(y)) + (\sigma(y^2) + \sigma(y^2)) \\
&= (y + \sigma(y) + 1) + (y^2 + \sigma(y^2) + 1) \\
&= z + z_1.
\end{align*}
\]

Hence, \(z + z_1 \) is in \(A \) and \(z_1 = z + b \) for some \(b \in A \). This shows the last part.

Remark 1. Assume that there is an invertible element \(x \) in \(T \) whose \(\langle \partial \rangle \)-trace is 1. Then, for any element \(y \) of \(B \) whose \(G \)-trace is 1, we set

\[
b = x^2 + x, \quad z = xy + x \sigma(y) + \sigma(xy + x \sigma(y)), \quad c = z^2 + z + xb\]

and

\[
f = (X - z)(X - \sigma(z))(X - \sigma^2(z))(X - \sigma^3(z)).
\]

Then, noting \(\sigma(z) = z + x \), we have

\[
f = X^4 + (b + 1)X^3 + bX + (b^3 + bc + c^2)
\]

and \(B = A[z] \cong A[X]/(f) \) by [4, Theorems 3.3 and 3.4]. Clearly \(\{1, z, z^2, z^3\} \) is a linearly independent \(A \)-basis for \(B \).

Next, for the \(z_1 \) in Corollary 2, we set \(a = z_1 + z \) (\(\in A \)), and

\[
f_1 = (X - z_1)(X - \sigma(z_1))(X - \sigma^2(z_1))(X - \sigma^3(z_1)).
\]

Then

\[
f_1 = X^4 + (b + 1)X^3 + bX + (b^3 + b(c + a^2 + a) + (c + a^2 + a)^2)
\]

and \(B = A[z_1] \cong A[X]/(f_1) \). This primitive element \(z_1 \) for \(B/A \) and the polynomial \(f_1 \) are of K. Kishimoto’s type in [2, Lemma 1].

Next, we shall present an alternative proof of [2, Lemma 2] which is simple.

Lemma 3 ([K. Kishimoto]). Assume that \(B/A \) has a primitive element. Then, given \(M \in \mathfrak{M}(A) \), if \(A/M = GF(2) \) then \(T/ TM = GF(4) \).
Proof. Let $M \in \mathcal{M}(A)$ and $A/M = GF(2)$. Moreover, let x and z be primitive elements for T/A and B/A, respectively. Then B/BM is a cyclic 2^i-extension of A/M with a Galois group $\langle \rho \rangle$ where ρ is the automorphism of B/BM induced by σ. We set $r = x + BM$ and $s = z + BM$ in B/BM. Then $B/BM = GF(2)[s]$ and $(B/BM)(\rho^i) = T/TM = GF(2)[r]$. We shall here assume that $r^2 - r = 0$, i.e., $r^2 = r$. Then, noting $[GF(2)[r] : GF(2)] = 2$, we have $T/TM = GF(2)[r] \oplus GF(2)(1-r)$. Hence the units of T/TM are only 1. Clearly $s + \rho^i(s) \in T/TM$. By [4, Theorem 3.3], $s + \rho^i(s)$ is a unit in B/BM, and so is in T/TM. Hence $s + \rho^i(s) = 1$, which implies that $t_{\rho^i}(s) = 0$. Thus, by Theorem 1, there exists a unit t in T/TM such that $t + \rho(t) = 1$. For $t = 1$, we have $t + \rho(t) = 0$, and this is a contradiction. Hence $r^2 - r \neq 0$, and so, $r^2 - r = 1$. Since $f = X^2 + X + 1$ is irreducible over $GF(2)$, $GF(4) = GF(2)[X]/(f) \cong GF(2)[r]$.

Now, we define here three sets \mathcal{M}_0, \mathcal{M}_1, and \mathcal{M}_r' as follows:

\begin{align*}
\mathcal{M}_0 &= \{ M \in \mathcal{M}(A) \mid TM \in \mathcal{M}(T) \}, \\
\mathcal{M}_1 &= \{ N \in \mathcal{M}(T) \mid BN \in \mathcal{M}(B) \} \quad \text{and} \\
\mathcal{M}_r' &= \{ N \in \mathcal{M}(T) \mid N \cap A \in \mathcal{M}_0 \}.
\end{align*}

We will often use the sets in the rest of this section.

Lemma 4. (i) If $N \in \mathcal{M}(T)$ then $N \cap \sigma(N) = T(N \cap A)$ and

$$|N' \in \mathcal{M}(T) \mid N \cap A \subset N'\} = |N, \sigma(N)|.$$

(ii) For $N \in \mathcal{M}(T)$, there holds $N \in \mathcal{M}_r'$ if and only if $\sigma(N) = N$; and hence $N \in \mathcal{M}_1$ if and only if $\sigma(N) \neq N$.

(iii) $\mathcal{M}_r' = \{ TM \mid M \in \mathcal{M}_0 \} \subset \mathcal{M}_1$.

Proof. (i) Set $N_0 = N \cap \sigma(N)$ and $M_0 = N \cap A$. Then, since $\sigma(N_0) = N_0$ and $\sigma(TM_0) = TM_0$.

T/N_0 and T/TM_0 are Galois extensions over the field A/M_0 of order 2. Hence,

$$[T/N_0 : A/M_0] = [T/TM_0 : A/M_0] = 2.$$

Moreover, since $TM_0 \subset N_0$, we have a natural A/M_0-homomorphism of T/TM_0 to T/N_0. Therefore, $T/TM_0 = T/N_0$ and $TM_0 = N_0$. This shows the first equality.

For any $N' \in \{ N' \in \mathcal{M}(T) \mid N \cap A \subset N'\}$.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol29/iss1/6

4
\(N \sigma(N) \subseteq N \cap \sigma(N) = T(N \cap A) \subseteq N' \).

Thus \(N \subseteq N' \) or \(\sigma(N) \subseteq N' \) because \(N' \) is a prime ideal of \(T \). Hence we have \(N = N' \) or \(\sigma(N) = N' \) by maximality. This implies that
\[|N' \in \mathfrak{M}(T); N \cap A \subseteq N'| \subseteq |N, \sigma(N)|. \]

The converse inclusion is trivial.

(ii) Let \(N \) be an element of \(\mathfrak{M}(T) \). Assume that \(N \in \mathfrak{M}_1 \). Then, by (i), \(N \cap \sigma(N) = T(N \cap A) \in \mathfrak{M}(T) \). Hence, by maximality,
\[N \cap \sigma(N) = N \text{ and } N \cap \sigma(N) = \sigma(N). \]

It follows therefore that \(\sigma(N) = N \).

Conversely, assume that \(\sigma(N) = N \). Then, by (i),
\[T(N \cap A) = N \cap \sigma(N) = N \in \mathfrak{M}(T). \]

Thus we obtain \(N \in \mathfrak{M}_1 \).

(iii) By (i) and (ii), we can easily see that \(\mathfrak{M}_1 = |TM; M \in \mathfrak{M}_0|. \)

Let \(N \) be any element of \(\mathfrak{M}_1 \). Then, \(N = TM \) for some \(M \in \mathfrak{M}_0 \). Since \(TM \in \mathfrak{M}(T) \), \(T/TM \) is a field. Thus, by [7, Theorem 1.8], \(B/\text{BM} \) is also a field. Hence
\[BN = B \cdot TM = BM \in \mathfrak{M}(B). \]

This implies that \(N \in \mathfrak{M}_1 \) and so \(\mathfrak{M}_1 \subseteq \mathfrak{M}_1 \).

Theorem 5. Assume that \(|\mathfrak{M}(A) \setminus \mathfrak{M}_0| \) is finite and \(T/TM = GF(4) \) for any \(M \in \mathfrak{M}(A) \) such that \(A/M = GF(2) \). Then, there exists an invertible element \(y \) in \(T \) with \(t_{\sigma}(y) = 1 \). Therefore \(B/A \) has a primitive element.

Proof. First, we shall show that there exists an element \(y \) in \(T \) such that \(y + \sigma(y) = 1 \) and \(y \in N \) for all \(N \in \mathfrak{M}(T) \setminus \mathfrak{M}_1 \). Since \(|\mathfrak{M}(A) \setminus \mathfrak{M}_0| \) is finite, so is \(|\mathfrak{M}(T) \setminus \mathfrak{M}_1| \). Hence by Lemma 4, we can put
\[\mathfrak{M}(T) \setminus \mathfrak{M}_1 = |N_{11}, N_{12}, N_{21}, N_{22}, ..., N_{11}, N_{12}| \]

where \(\sigma(N_{ii}) = N_{ij} (i = 1, 2, ..., t) \) and \(N_{jj} \neq N_{ii}, N_{ij} \) for \(j \neq i \). Moreover, set
\[M_i = A \cap N_{ii} (i = 1, 2, ..., t). \]

Then, if \(i \neq j \) then \(M_i \neq M_j \). Indeed, if \(M_i = M_j \) for some \(i \neq j \) then
Since $N_{1i} + \sigma(N_{1i})$, this is a contradiction by Lemma 4(i). Therefore, for $I = \bigcap_{i=1}^{r} M_i$, $A/I = A/M_1 \oplus A/M_2 \oplus \cdots \oplus A/M_i$. Since all A/M_i are fields, there exists a set of orthogonal idempotents $\{\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_I\}$ in A/I such that

$$\bar{I} = \bar{e}_1 + \bar{e}_2 + \cdots + \bar{e}_I,$$

$e_i \in A, e_i \not\in M_i$ and $e_j \in M_j (j \neq i)$. Moreover, by our assumption, A/M_i is a field such that $A/M_i \neq GF(2)$. Indeed, if $A/M_i = GF(2)$ then $T/TM_i = GF(4)$. This means that $TM_i \in \mathfrak{M}(T)$ and $N_{1i} \in \mathfrak{M}_i'$. This is a contradiction. Hence, there exists an element a_i of A such that $a_i e_i \neq e_i$ and $\neq 0 (\mod M_i)$. This shows that

$$(a_i^2 + a_i) e_i \neq 0 (\mod M_i).$$

Now, for an element x in T with $t_i(x) = 1$, we define an element y in T as follows:

If $x \in N_{ik}$ for all i and k then $y = x$ (in this case, it is clear that $y + \sigma(y) = 1$ and $y \in N$ for all $N \in \mathfrak{M}(T) \setminus \mathfrak{M}_i'$).

If $x \in N_{ik}$ for some i and k then, without loss of generality, we may choose an integer $s (1 \leq s \leq t)$ such that

$x \in N_{1i}$ or $x \in N_{i2}$ if $1 \leq i \leq s$ and $x \in N_{i1}$ and $x \in N_{i2}$ if $s < j \leq t$.

For the s and the above a_i, we put

$$a = a_1 e_1 + a_2 e_2 + \cdots + a_s e_s$$

and

$$y = x + a.$$

Then, since $a \in A$, $y + \sigma(y) = x + \sigma(x) = 1$.

Now we shall show that $y \in N$ for all $N \in \mathfrak{M}(T) \setminus \mathfrak{M}_i'$. As is easily seen

$$a^2 + a = (a_1^2 + a_1) e_1 + (a_2^2 + a_2) e_2 + \cdots + (a_s^2 + a_s) e_s (\mod I).$$

Since $e_i \in M_i (j \neq i)$,

$$(a_i^2 + a_i) e_i \neq 0 (\mod M_i) (1 \leq i \leq s)$$

and

$$a^2 + a = 0 (\mod M_i) (s < j \leq t).$$

It follows that $a^2 + a \in M_i (1 \leq i \leq s)$ and $a^2 + a \in M_j (s < j \leq t)$. We
note here that $x \sigma(x)$ is contained in $A = B(\sigma)$ and

$$x \sigma(x) \in N_{i1}N_{i2} \subset N_{i1} \cap N_{i2} \quad (1 \leq i \leq s).$$

Then

$$x \sigma(x) \in A \cap (\bigcap_{i=1}^{s}(N_{i1} \cap N_{i2})) = \bigcap_{i=1}^{s}M_{i}.$$

Moreover, $y \sigma(y) = x \sigma(x) + a^2 + a$. Hence, we see that

$$y \sigma(y) \in M_{i} \quad (1 \leq i \leq s).$$

For $j \left(s < j \leq t \right)$, x and $\sigma(x)$ are not in N_{i1} ($k = 1, 2$) by the definition of s. Since N_{i1} is a prime ideal, $x \sigma(x) \in N_{i1}$ and so $x \sigma(x) \in M_{j}$. Thus we have

$$y \sigma(y) \in M_{j} \quad (s < j \leq t).$$

Therefore, $y \in N_{i1}$ and $\sigma(y) \in N_{i1}$ ($1 \leq i \leq t$). Since $\sigma(y) \in N_{i1}$ means that $y \in N$ for all $N \in \mathfrak{M}(T) \backslash \mathfrak{M}$.

Now, we are in a position to complete the proof. Indeed, it suffices to show that $y \in N$ for all $N \in \mathfrak{M}(T)$. Because if $y \notin N$ for all $N \in \mathfrak{M}(T)$ then y is an inversible element of T. In this case, B/A has a primitive element by Theorem 1.

Let N be any element of $\mathfrak{M}(T)$. Then, by Lemma 4, $N = TM$ for some $M \in \mathfrak{M}$, $M \neq 0$. Hence, σ induces an automorphism ρ of T/N. Thus, T/N is a Galois extension of $A/(A \cap N)$ with a cyclic Galois group $\langle \rho \rangle$. Since $\gamma \sigma(\gamma) = 1$, we have $\gamma + \rho(\gamma) = \overline{1}$ in T/N. Hence $\gamma \neq 0$ and so $y \in N$.

Corollary 6. Assume that $|\mathfrak{M}(A) \backslash \mathfrak{M}|$ is finite. Then the following are equivalent.

(a) B/A has a primitive element.

(b) B/A has a primitive element whose G-trace is zero.

Proof. (a) \Rightarrow (b) is trivial.

(b) \Rightarrow (a). By Lemma 3, $T/TM = GF(4)$ for any $M \in \mathfrak{M}(A)$ such that $A/M = GF(2)$. Hence, by Theorem 1 and Theorem 5, we obtain (b).

The following theorem contains the result of [2, Theorem 3].

Theorem 7. Assume that $||M \in \mathfrak{M}(A); \ A/M \cong GF(2)||$ is finite. Then, the following conditions are equivalent.

(a) B/A has a primitive element.
(b) \(T/TM = GF(4) \) for any \(M \in \mathcal{M}(A) \) such that \(A/M = GF(2) \).

Proof. (a) \(\Rightarrow\) (b). It is clear by Lemma 3.
(b) \(\Rightarrow\) (a). Let \(M \) be an element of \(\mathcal{M}(A) \) such that \(A/M = GF(2) \).
Then, \(TM \in \mathcal{M}(T) \) because \(T/TM = GF(4) \) is a field. Hence we have \(M \in \mathcal{M}_1 \). Since \(|M\in\mathcal{M}(A) ; A/M\neq GF(2)| \) is finite, so is \(|\mathcal{M}(A)\setminus\mathcal{M}_1| \).
Thus, by Theorem 5, \(B \) has a primitive element over \(A \).

2. On primitive elements of cyclic \(p^n \)-extensions. Set \(B_i = B(\sigma^p) \)
\((i = 0, 1, 2, \ldots, n)\) and \(\mathcal{M}_i = |M \in \mathcal{M}(B_i) ; B_{i-1} \in \mathcal{M}(B_i)| \) \((i = 0, 1, 2, \ldots, n-1)\). Then, obviously \(B = B_n \) and \(A = B_0 \). Moreover, \(B_i \) is a cyclic \(p^{-i} \)-extension of \(B_j \) with a Galois group \(\langle \sigma^p | B_i \rangle \).

Theorem 8. Assume that \(p = 2 \) and \(|\mathcal{M}(B_0)\setminus\mathcal{M}_1| \) is finite. Then, the following conditions are equivalent.

(a) \(B_2/B_0 \) has a primitive element.
(b) \(B_{k+1}/B_k \) has a primitive element for any \(k (0 \leq k \leq n-2) \).

Proof. (a) \(\Rightarrow\) (b). We note that \(B_{k+2} \) is a cyclic \(2^k \)-extension of \(B_k \) with a Galois group \(\langle \sigma^p | B_{k+2} \rangle \).
First, we shall show that \(|\mathcal{M}(B_k)\setminus\mathcal{M}_k| \) is finite for each \(k (0 \leq k \leq n-2) \) by induction. To prove this, let \(i \) be any integer such that \(0 \leq i < n-2 \) and \(N \) an element of \(\mathcal{M}(B_{i+1}) \) such that \(N \cap B_i \in \mathcal{M}_i \). Then, by Lemma 4(iii), we have \(N \in \mathcal{M}_{i+1} \). Hence, if \(L \in \mathcal{M}(B_{i+1}) \setminus \mathcal{M}_{i+1} \) then \(L \cap B_i \in \mathcal{M}(B_{i+1}) \setminus \mathcal{M}_i \). Combining this with Lemma 4(i), we see that if \(|\mathcal{M}(B_i)\setminus\mathcal{M}_i| \) is finite then \(|\mathcal{M}(B_{i+1})\setminus\mathcal{M}_{i+1}| \) is also finite.

Now, we shall show that \(B_{k+2}/B_k \) has a primitive element for all \(k (0 \leq k \leq n-2) \) by induction. We assume that \(B_{k+2}/B_k \) has a primitive element for all \(k (0 \leq k < n-2) \). Then, it is enough to show that \(B_{k+1}/N \neq GF(2) \) for any \(N \in \mathcal{M}(B_{k+1}) \). Indeed, in this case, we see that \(B_{k+3}/B_{k-1} \) has a primitive element by Theorem 5.

Assume that \(B_{k+1}/N = GF(2) \) for some \(N \in \mathcal{M}(B_{k+1}) \). Then, since
\[B_k/(B_k \cap N) \subset B_{k-1}/N, \]
we obtain \(B_k/(B_k \cap N) = GF(2) \). Hence, by Lemma 3, \(B_{k+1}/(B_k \cap N) B_{k+1} = GF(4) \), which is a field. Thus, we have \((B_k \cap N) B_{k+1} = N \) by the maximality of \((B_k \cap N) B_{k-1} \). It follows that \(B_{k+1}/N = GF(4) \). This is a contradiction.

(b) \(\Rightarrow\) (a) is trivial.
Theorem 9. Assume that \(p = 2 \) and \(\| M \in \mathfrak{M}(A); A/M \cong GF(2) \| \) is finite. Then, the following conditions are equivalent.

(a) \(B_1/B_0 \) has a primitive element.

(b) \(B_{k+2}/B_k \) has a primitive element for any \(k \) \((0 \leq k \leq n-2) \).

Proof. (a) \(\iff \) (b). Let \(M \) be an element of \(\mathfrak{M}(B_0) \) such that \(A/M = GF(2) \). Then, by Theorem 7, \(B_1/B_0 \cong GF(4) \). Hence \(B_1M \in \mathfrak{M}(B_1) \) and so \(M \in \mathfrak{M}_0 \). This implies that

\[
\mathfrak{M}(B_0) \setminus \mathfrak{M}_0 \subset \{ M \in \mathfrak{M}(A); A/M \cong GF(2) \}.
\]

Thus, \(|\mathfrak{M}(B_0) \setminus \mathfrak{M}_0| \) is finite. Therefore, we have (b) by Theorem 8.

(b) \(\iff \) (a). Trivial.

Corollary 10. When \(B/A \) is in the situation of Theorem 8 or 9, this has a system of generating elements consisting of \(m \) elements where \(m = n/2 \) if \(n \) is an even number, and \(m = (n+1)/2 \) if \(n \) is an odd number.

Proof. The assertion is obvious by Theorems 8 and 9.

Theorem 11. Assume that \(p \geq 2 \) and \(\mathfrak{M}(A) = \mathfrak{M}_0 \). Then, \(B/A \) has a primitive element. Moreover, if \(x \in B \) with \(t_0(x) = 1 \) then \(x \) is a primitive element for \(B/A \) and is invertible.

Proof. Let \(M \) be any element of \(\mathfrak{M}(A) \). Then, \(B/\langle M \rangle \) is a cyclic \(p^n \)-extension with a Galois group \(\langle \rho \rangle \) where \(\rho \) is the automorphism of \(B/\langle M \rangle \) induced by \(\sigma \). Further, \((B/\langle M \rangle) \langle \rho^i \rangle = B_1/B_0 \) which is a field. Hence, by [7, Theorem 1.8], \(B/\langle M \rangle \) is also a field. We will here denote \(b + \langle M \rangle \) \((\in B/\langle M \rangle) \) by \(\bar{b} \). For an element \(x \) of \(B \) satisfying \(t_0(x) = 1 \), \(\rho^i(x) = \bar{x} \) for any \(i \) \((1 \leq i \leq p^n-1) \) since \(t_0(x) = 1 \). Indeed, assume that \(\rho^i(x) = \bar{x} \) for some \(i \) and put \(H = \{ \tau \in \langle \rho \rangle ; \tau(x) = \bar{x} \} \). Then, \(H \) is a subgroup of \(\langle \rho \rangle \) and hence \(|H| = p^s \) for some integer \(s \) \((1 \leq s \leq n) \).

Since

\[
\langle \rho \rangle = \rho_1H \cup \rho_2H \cup \cdots \cup \rho_mH \quad (\rho_i \in \langle \rho \rangle ; 1 \leq i \leq m)
\]

for some integer \(m \), we have \(t_{\rho_i}(\bar{x}) = p^s \rho_i(\bar{x}) = 0 \). Hence, \(t_{\rho^i}(\bar{x}) = 0 \) which is a contradiction. Therefore, by the Galois theory of fields,

\[B/\langle M \rangle = (A/M)[\bar{x}] \]

This implies that \(B = A[x] + BM \). Since \(M \) is any maximal ideal of \(A \), we
have $B = A[x]$ by [8, Theorem 9.1].

Next, we shall prove that the x is invertible. For any $M \in \mathfrak{M}(A)$, $\bar{x} \neq \bar{0}$ because $t^{(\varphi)}(\bar{x}) = \bar{1}$. Noting that B/BM is a field, we have $(B/BM)\bar{x} = B/BM$. This means that $Bx + BM = B$. Thus, by the same way as in the above, we have $Bx = B$ and so x is invertible.

Remark 2. Let

$$B = GF(3^3) \oplus GF(3^3) \oplus GF(3^3)$$

and τ an automorphism of $GF(3^3)$ of order 3. Moreover, let σ be an automorphism of B defined by

$$\sigma((x_1, x_2, x_3)) = (\tau(x_3), x_1, x_2).$$

Then, by [6, Lemma 1.1], B is a cyclic 3^2-extension of

$$A = \{ (a, a, a) : a \in GF(3) \}$$

with a Galois group $\langle \sigma \rangle$. As is seen in [3, p. 555], the following polynomials are irreducible over $GF(3)$:

$$f_1 = X^3 + 2X + 1,$$

$$f_2 = X^3 + 2X + 2 \text{ and }$$

$$f_3 = X^3 + X^1 + 2.$$

Clearly, each f_i and f_j ($i \neq j$) are relatively prime. Hence for $g = f_1f_2f_3$, we have

$$A[X]/(g) \cong A[X]/(f_1) \oplus A[X]/(f_2) \oplus A[X]/(f_3).$$

Since $A[X]/(f_i) \cong GF(3^3)$ ($i = 1, 2, 3$), it follows that $A[X]/(g) \cong B$. Noting $A[X]/(g) = A[x]$ for $x = X + (g)$, B/A has a primitive element. However, we have

$$B(\sigma^3) = GF(3) \oplus GF(3) \oplus GF(3)$$

which is not a field. Hence Lemma 3 does not hold for $p = 3$. Clearly, in the extension $B(\sigma^3)/A$, $(2, 1, 1)$ is an invertible element whose trace is 1, but there are not invertible σ-generators. Moreover, there are 8 irreducible polynomials of degree 3 in $GF(3)[X]$. On the other hand, the ones of degree 2 in $GF(2)[X]$ are only $X^2 + X + 1$ (cf. [3, pp.553-555]).
Remark 3. Let B be a cyclic 2^n-extension of $GF(2)$ with a Galois group $\langle \sigma \rangle$, $B_1 = B(\sigma^1)$, and $B_2 = B(\sigma^2)$. If $B_2/GF(2)$ has a primitive element then $B_1 = GF(4)$ by Lemma 3. and whence by [7, Theorem 1.8], B is a field, which has a primitive element over $GF(2)$. However, the converse does not hold. This is seen in the following example. Let

$$B = GF(2^4) \oplus GF(2^4)$$

and τ an automorphism of $GF(2^4)$ of order 4. Then B is a cyclic 2^2-extension of $A = \{(a, a); a \in GF(2)\}$ with a Galois group $\langle \sigma \rangle$ where $\sigma((x_1, x_2)) = (\tau(x_2), x_1)$. Now, as is seen in [3, p. 553], the following polynomials in $GF(2)[X]$ are irreducible over $GF(2)$:

$$f_1 = X^4 + X^3 + 1$$
$$f_2 = X^4 + X^3 + X^2 + X + 1.$$

Hence, for $g = f_1f_2$, we have the A-ring isomorphisms

$$A[X]/(g) \cong A[X]/(f_1) \oplus A[X]/(f_2) \cong GF(2^4) \oplus GF(2^4) = B.$$

Let b be an element of B which corresponds to $X+(g)$ under the above isomorphisms. Then b is a primitive element for B/A. However, since B is not a field, $B_2 = B(\sigma^1)$ has no primitive elements over A by the preceding statement. Moreover, it can be easily checked that $t_1(b) = a(1, 1)$ where a is the sum of the coefficients of X^2 in f_1 and f_2. In this case, $t_2(b) = 0$ because $a = 0$. But if we replace the f_1 by $X^4 + X + 1$, which is irreducible over $GF(2)$, then $a = 1$ and so $t_2(b) = 1$. This shows that B/A has at least two primitive elements, each trace of which is 0 and 1.

Remark 4. Let

$$B = GF(4) \oplus \cdots \oplus GF(4)$$

which is the direct sum of 2^3 copies of $GF(4)$. Then B is a cyclic 2^3-extension of $A = \{(a, a, ..., a); a \in GF(4)\}$ with a Galois group $\langle \sigma \rangle$ where $\sigma((x_1, x_2, ..., x_8)) = (x_8, x_1, ..., x_7) (x_i \in GF(4); 1 \leq i \leq 8)$. We set here $B_1 = B(\sigma^1)$ and $B_2 = B(\sigma^2)$. Then by Theorem 7, B_2/A has a primitive element. Hence by Theorem 9, B/B_1 has a primitive element. However, B/A has no primitive elements. Indeed, if $B = A[x]$ for some x in B then the elements $1, x, ..., x^7$ are linearly independent over A by [4, Theorems 3.3 and 3.4]; on the other hand, since $a^4 = a$ for all $a \in GF(4)$, there holds $x^4 = x$, which is a contradiction. As is seen in Corollary 10, B is generated
by two elements over A.

Remark 5. Let

$$B = GF(4) \oplus GF(4) \oplus GF(4) \oplus GF(4).$$

Then, B is a cyclic 2^4-extension of $A = \{(a, a, a, a); a \in GF(4)\}$ with a Galois group $\langle \sigma \rangle$ where $\sigma((x_1, x_2, x_3, x_4)) = (x_1, x_1, x_2, x_3)(x_i \in GF(4); i = 1, 2, 3, 4)$. Then, by Theorem 7, B/A has a primitive element. Let $x = (x_1, x_2, x_3, x_4)$ be any primitive element for B/A. If $x_i = x_j$ for some $i < j$ then $x - \sigma^{-k}(x)$ is not invertible in B, which is a contradiction by [4, Theorem 3.3]. Hence if $1 \leq i \neq j \leq 4$ then $x_i \neq x_j$. It follows therefore that $t_{(\sigma)}(x) = 0$ because $\sum_{a \in GF(4)} a = 0$.

REFERENCES

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY, OKAYAMA 700, JAPAN

(Received May 1, 1987)