Some Generalizations of Boolean Rings

Hiroaki Okamoto* Julie Grosen†
Hiroaki Komatsu‡

*Okayama University
†University of California
‡Okayama University
SOME GENERALIZATIONS OF BOOLEAN RINGS

Hiroaki Okamoto, Julie GROSEN and Hiroaki KOMATSU

Throughout, \(R \) will represent a ring with center \(C \). Let \(N \) denote the set of nilpotents in \(R \), and \(N^* \) the subset of \(N \) consisting of all elements in \(R \) which square to zero. Let \(E \) be the set of idempotents in \(R \). If \(E \subseteq C \) then \(R \) is called normal. In case \(R \) has 1, we denote by \(U \) the multiplicative group of units of \(R \). Following [10], \(R \) is called \((E,N)\) representable, if each \(x \in R \) can be written uniquely in the form \(x = e + a \), where \(e \in E \) and \(a \in N \). Given \(x \in R \), we define inductively \(x^{(n)} = x, x^{(n+1)} = x^{(n-1)} \cdot x \), where \(x \cdot y = x + y + xy \). In [8], Hirano, Komatsu, Tominaga and Yaqub considered the following condition which arose, presumably, in connection with logic:

\((*) \quad \text{for any } x, y \in R, (x+xy) \cdot (y+yx) = 0 \) if and only if \(x = y \),

and proved that \(R \) satisfies \((*)\) if and only if \(R \) is commutative, \(R/N \) is a Boolean ring and \(a^{(n)} = 0 \) for all \(a \in N \) (see Theorem 1 below). Obviously, every Boolean ring satisfies the condition \((*)\). If \(R \) has 1, then \((*)\) becomes \((*)' \quad \text{for any } x, y \in R, (1+x+xy)(1+y+yx) = 1 \) if and only if \(x = y \). Recently, GROSEN [4] gave a number of characterizations of a ring with 1 in which the condition \((*)'\) holds.

An element \(x \) in \(R \) is called strongly regular, if there exist \(y, y' \in R \) such that \(x^2y = x = y'x^2 \). As is well-known, if \(x \) is strongly regular, there exists (uniquely) \(z \in R \) such that \(x^2z = x, z^2x = z \) and \(xz = zx \); furthermore, \(z \) commutes with every element which commutes with \(x \). We denote by \(S \) the set of strongly regular elements in \(R \). A ring \(R \) is called a \(B'-ring \) if \(S = E \). Obviously, every Boolean ring is a \(B'-ring \).

A ring \(R \) is called \(s\)-unital if \(x \in Rx \cap xR \) for all \(x \in R \), or equivalently if for each finite subset \(F \) of \(R \) there exists \(e \in R \) such that \(ex = x = xe \) for all \(x \in F \) (see [6]). Following [11], \(R \) is called an \(s^*\)-unital ring if for each \(x \in R \) there exist \(e', e'' \in E \) such that \(xe' = x = e''x \), or equivalently if for each finite subset \(F \) of \(R \) there exists \(e \in E \) such that \(eFe = F \) (see [11, Corollary 7]). As is easily seen, every \(s\)-unital \(\pi\)-regular ring is \(s^*\)-unital. In what follows, we shall use freely this fact. A ring \(R \) is a \(cs^*\)-unital ring if for each \(x \in R \) there exists a central idempotent \(e \) such that \(ex = x \).

A ring \(R \) is called an \(I\)-ring (resp. \(N\)-ring) if every element of \(R \) is expressible as a product of elements in \(E \) (resp. \(N \)): \(R \) is called an \(NI\)-ring (or \(I\)-ring) if every element of \(R \) is expressible as a product of elements in
E ∪ N (see [1] and [7]). Needless to say, every Boolean ring is an I-ring.

Our present objective is to improve several results of Grosen obtained in [4, § 5] and the main theorems of Abu-Khuzam [1] and reprove the main theorems of [2].

First, as preliminaries, we state the following lemmas.

Lemma 1 ([10, Theorem 4]). The following are equivalent:

1) R is $(E-N)$ representable.

2) R is normal, and every element of R can be written as a sum of an idempotent and a nilpotent element.

3) R is normal and $x - x^2 ∈ N$ for every $x ∈ R$.

4) R is normal. N is an ideal and R/N is a Boolean ring.

Lemma 2 ([8, Lemma 5]). Let $f(X) = k_1X + k_2X^2 + \cdots + k_nX^n$ be a polynomial in $XZ[X]$ with $(k_1, k_2) = 1$. If N satisfies the identity $f(X) = 0$, then N satisfies the identities $X^3 = 0 = k_1X + (k_2 - k_1)X^2$.

Lemma 3. If N is closed under $*$ (in particular, if N is an ideal) and satisfies the identity $X^{(2)} = 0$, then N is commutative.

Proof. For any $a, b ∈ N$, $a * b = a * (a * b)^{(2)} = b = a^{(2)} * (b * a) = b * a$. whence $ab = ba$ follows.

Lemma 4. (1) If R satisfies the identity $(X + X^3)^{(2)} = 0$, then $8x = 0, x^3 = x^3$ and $x - x^2 ∈ N$ (or $x + x^2 ∈ N$) for all $x ∈ R$, and $a^3 = 0 = a^{(2)}$ for all $a ∈ N$.

(2) If N satisfies the identity $(X + X^3)^{(2)} = 0$, then $4a = 0$ and $a^3 = 0 = a^{(2)}$ for all $a ∈ N$.

Proof. (1) Since $6x^2 + 2x^4 = (x + x^3)^{(2)} + (-x + (-x)^3)^{(2)} = 0$ and $4x^3 = (x + x^3)^{(2)} - (-x + (-x)^3)^{(2)} = 0$, we get $8x = (4x + 4x^3)(2 + x^2) - 2(6x^2 + 2x^4)x = 0$. Further, noting that $2x + 3x^2 + 2x^3 + x^4 = (x + x^3)^{(2)} = 0$, we can easily see that $a^3 = 0 = a^{(2)}$ for all $a ∈ N$ (Lemma 2). Since $(x + x^3)^{(2)} = |(x + x^3)^{(2)} - 2(x + x^3)| = -8(x + x^3)^3 = 0$, we have $(x + x^3)^3 = 0$ (and $(x - x^2)^3 = 0$) by the above, and therefore $x^5 - x^3 = (x + x^3)^3 - (x + x^3)^3 = 0$.

(2) By the proof of (1), we obtain $8a = 0$ and $a^3 = 0 = a^{(2)}$ for all $a ∈ N$. Hence $4a = -2a^2 = a^3 = 0$.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol31/iss1/12
Lemma 5. Let \(x \in R \). If \(2x \in N \) and \(x^n - x^{n+1} \in N \) for some integers \(n > 0 \) and \(k \geq 0 \), then \(x - x^2 \in N \).

Proof. As is easily seen,

\[
(x-x^2)^x_n = (x^n - x^{n+2})x^x + \sum_{i=1}^{x^x} (-1)^i \binom{2^x}{i} x^{i+1} + 2x^{x^2 + n} \in N.
\]

Hence \(x - x^2 \in N \).

Lemma 6. The following are equivalent:
1) \(R \) is normal.
2) If \(e, f \in E \) and \(e - f \in N^* \), then \(e = f \).
In particular, if (*) holds in \(-E\), then \(R \) is normal.

Proof. If \(e, f \in E \), \(ef = fe \) and \(e - f \in N^* \), then \(e - f = (e - f)^3 = 0 \). Conversely, suppose 2). Let \(e \in E \) and \(x \in R \). Then \(f = e - ex(1 - e) \in E \) and \(e - f = ex(1 - e) \in N^* \). Hence we have \(ex = exe \); similarly, \(xe = exe \). This proves that \(R \) is normal. Now, let \(e, f \in E \). Then \((-e + (-e) (-f)) - (-f + (-f)(-e)) = ef + fe - e - f \). This enables us to see the latter assertion.

Corollary 1. Suppose that \(x^y - y^x \in N \cap C \) for all \(x, y \in R \). Then \(x - x^2 \in N \) for all \(x \in R \), and \(R \) is normal.

Proof. If \(x \in N \), clearly \(x - x^2 \in N \). If \(x \in R \setminus N \), then \((x-x^2)x^3 = x^2 - (x^2)^2 \in N \). Thus \(x - x^2 \in N \) for all \(x \in R \). Now, let \(e, f \in E \) and \(e - f \in N^* \). Then \(ef + fe = e + f \) and \(ef - fe \in C \), and so \(e = e(ef + fe - f)e + e = efe = efe + |e(ef - fe) - (ef - fe)e| = -efe + ef + fe = -e + e + f = f \). Hence \(R \) is normal, by Lemma 6.

Lemma 7. Let \(R \) be a ring with 1. If \(U \subseteq E + N \), then \(2 \in N \). If, furthermore, \(R \) is normal and for each \(x \in R \setminus U \) there exist integers \(n > 0 \) and \(k \geq 0 \) such that \(x^n - x^{n+1} \in N \), then \(x - x^2 \in N \) for all \(x \in R \).

Proof. Let \(-1 = e + a, e \in E \) and \(a \in N \). Then \(-1 + a = e = 1 \), since \(-1 + a \in U \). Hence \(2 = -a \in N \). If \(R \) is normal, then \(u - u^2 \in N \) for any \(u \in U \). Now, the latter assertion is clear, by Lemma 5.

We are now ready to complete the proof of our first theorem.
Theorem 1. The following are equivalent:
1) R satisfies (\ast).
2) R is commutative, $x - x^2 \in N$ for all $x \in R$ (or R/N is a Boolean ring), and $a^{(2)} = 0$ for all $a \in N$.
3) R is normal, $x - x^2 \in N$ for all $x \in R$, and $a^{(3)} = 0$ for all $a \in N$.
4) R is $(E-N)$ representable and $a^{(2)} = 0$ for all $a \in N$.
5) R is normal and satisfies the identity $(X + X^2)^{(2)} = 0$.
6) R is normal, N satisfies the identity $(X + X^2)^{(2)} = 0$, and $x - x^2 \in N$ for all $x \in R$.
7) R is normal, $2R \subseteq N$, for each $x \in R$ there exist integers $n \geq 0$ and $k \geq 0$ such that $x^n - x^{n+2k} \in N$, and $a^{(2)} = 0$ for all $a \in N$.
8) N satisfies the identity $(X + X^2)^{(1)} = 0$, and $x^2y - y^2x \in N \cap C$ for all $x, y \in R \setminus N$.

Proof. By Lemma 6, (1) implies (5).
3) \Leftrightarrow 4) \Rightarrow 2). By Lemma 1, and Lemmas 1 and 3, respectively.
5) \Leftrightarrow 7) \Leftrightarrow 3). By Lemma 4 (1), and Lemma 5, respectively.
8) \Leftrightarrow 6) \Rightarrow 3). By Corollary 1, and Lemma 4 (2), respectively.
1) \Leftrightarrow 8). We have seen that 1) implies 3) and 2). Hence $x^2y - y^2x = (x^2 - x)y - (y^2 - y)x \in N$ for all $x, y \in R$.

2) \Leftrightarrow 1). Let $x, y \in R$, and put $a = x + xy, b = y + yx$. Obviously, $x + x^2 \in N$, and $(x + x^2)^{(2)} = 0$. Conversely, if $a \cdot b = 0$ then $a^2 + (a + a^2)b = a(a \cdot b) = 0$, and so $a^2 = -(a + a^2)b \in N$. This implies that $a \in N$. Hence $y \cdot x = 0 \cdot b = a^{(2)}b = a \cdot (a \cdot b) = a \cdot 0 = x + xy$, whence $y = x$ follows.

The next includes [4, Theorems 5.5, 5.6 and Corollaries 5.1, 5.3, 5.7] and improves [4, Theorems 5.14, 5.15 and Corollary 5.6].

Corollary 2. Let R be a ring with 1. Then the following are equivalent:
1) R satisfies (\ast).
2) R is commutative, R/N is a Boolean ring, and $u^2 = 1$ for all $u \in U$ (or $(1 + a)^2 = 1$ for all $a \in N$).
3) R is normal, $x - x^3 \in N$ for all $x \in R$, and $u^2 = 1$ for all $u \in U$.
4) R is $(E-N)$ representable and $u^2 = 1$ for all $u \in U$.
5) R is normal and satisfies the identity $(X + X^2)^{(3)} = 0$.
6) R is normal, N satisfies the identity $(X + X^2)^{(2)} = 0$, and $x - x^2 \in N$ for all $x \in R$.
7) R is normal, $2 \in N$, and for each $x \in R$ there exist integers $n \geq 0$.
and \(k \geq 0\) such that \(x^n - x^{n+k} \in N\), and \(u^2 = 1\) for all \(u \in U\).

8) \(N\) satisfies the identity \((x + x^2)^2 = 0\), and \(x^2y - y^2x \in N \cap C\) for all \(x, y \in R \setminus N\).

9) \(R\) is normal. \(U\) satisfies the identity \((x + x^2)^2 = 0\), and \(x - x^2 \in N\) for all \(x \in R\).

10) \(R\) is normal. \(2 \in N\). and for each \(x \in R\) there exists a positive integer \(n\) such that \(x^n = x^{n+2}\) = 0.

11) \(R\) is normal. \(2 \in N\). for each \(x \in R\) there exist integers \(n > 0\) and \(k \geq 0\) such that \(x^n - x^{n+k} \in N\). and if \(u, v \in U\) and \(u-v \in N\) then \(u^2 = v^2\).

12) \(R\) is normal. \(U \subseteq E + N\). for each \(x \in R \setminus U\) there exist integers \(n > 0\) and \(k \geq 0\) such that \(x^n - x^{n+k} \in N\). and if \(u, v \in U\) and \(u-v \in N\) then \(u^2 = v^2\).

Proof. Obviously. 1) \(\Rightarrow\) 11) and 12). and the equivalence of 1) – 10) is clear by Lemma 4 (1) and Theorem 1.

11) (resp. 12)) \(\Rightarrow\) 3). By Lemma 5 (resp. Lemma 7), \(x - x^2 \in N\) for all \(x \in R\). In particular, for each \(u \in U\), we obtain \(1 - u = u^{-1}(u - u^2) \in N\), and so \(1 = u^2\).

Theorem 2. The following are equivalent:

1) \(R\) satisfies \((*)\).

2) \(2R \subseteq N\). and there exists a subset \(A\) of \(R\) containing \(N \cup (-E)\) such that \((*)\) holds in \(A\) and \(R \setminus A \subseteq E + N\).

3) \(R\) is normal. and there exists a subset \(A\) of \(R\) containing \(N\) and satisfying the identity \((x + x^2)^2 = 0\) such that \(R \setminus A \subseteq E + N\).

Proof. By Theorem 1, 1) \(\Rightarrow\) 2) and 3).

2) \(\Rightarrow\) 1). By Lemma 6. \(R\) is normal. and so \(x - x^2 \in N\) for all \(x \in R \setminus A\). Now. let \(x \in A\). Then \((x - x^2)^2 = (x + x^2)^2 - 4x^3 = -2(x + x^2 + 2x^3) \in N\). Hence \(x - x^2 \in N\) for all \(x \in R\). and therefore \(R\) satisfies \((*)\). by Theorem 1 6).

3) \(\Rightarrow\) 1). In view of Theorem 1. it suffices to show that \(x - x^2 \in N\) for all \(x \in R\). First. we consider the case that \(x \in A\). If \(-x \in A\). clearly \(x - x^2 \in N\). If \(-x \in A\). then. by the proof of Lemma 4 (1). \(8x = 0\). and so \(2x \in N\). Hence \((x - x^2)^2 = (x + x^2)^2 - 4x^3 = -2(x + x^2 + 2x^3) \in N\); \(x - x^2 \in N\). Next. we consider the case that \(x \in A\): \(a = x + x^2 \in N\). Since \(2x \in A\) forces a contradiction \(2x = 4a - (2x + 4x^2) \in N \subseteq A\). we see that \(2x \in A\). Then \((4a - 2x)^2 = (2x + 4x^2)^2 = -2(2x + 4x^2) = -2(4a\)
Let R be a ring with 1. A subset A of R is called a weakly normal subset if for each $x \in R$, either $-x$ or $x-1$ is in A; a weakly normal subset A of R is called a normal subset if $e, f \in E$ and $e-f \in N^*$ imply $-e, -f \in A$ or $-e, -f \in A$. As is easily seen, if a weakly normal subset A of R satisfies the identity $(X+X^2)^{(2)} = 0$ then R satisfies the same identity; if (\ast) holds in a normal subset A of R then R is normal. (Note that if $e, f \in E$, then $(-e+(-e)(-f)) \cdot (-f+(-f)(-e)) = ef+ef-e-f$ and $(e-1+(e-1)(f-1)) \cdot (f-1+(f-1)(e-1)) = ef+ef-e-f$.)

The next includes [4, Theorems 5.1, 5.2, 5.7, 5.12 and 5.13].

Corollary 3. Let R be a ring with 1. Then the following are equivalent:

1) R satisfies (\ast).

2) $2 \in N$, and there exists a subset A of R containing $N \cup (-E)$ such that (\ast) holds in A and $R \setminus A \subseteq E+N$.

3) There exists a subset A of R containing $U \cup (-E)$ such that (\ast) holds in A and $R \setminus A \subseteq E+N$.

4) R is normal, and there exists a subset A of R containing N and satisfying the identity $(X+X^2)^{(2)} = 0$ such that $R \setminus A \subseteq E+N$.

5) There exists a subset A of R satisfying the identity $(X+X^2)^{(2)} = 0$ such that $A \supseteq N$, $(-A) \cap E \subseteq \{0, 1\}$ and every element in $R \setminus A$ is uniquely expressible as $e+a$ with $e \in E$ and $a \in N$.

6) R is normal, and there exists a weakly normal subset A of R satisfying the identity $(X+X^2)^{(3)} = 0$.

7) There exists a normal subset A of R in which (\ast) holds.

Proof. Obviously, 1) \Rightarrow 2) $-7)$. By Theorem 2, each of 2) and 4) implies 1). Further, combining Corollary 2 with the remark stated just above, we readily see that each of 6) and 7) implies 1).

3) \Rightarrow 1). Obviously, $8 = (1+1)^2 + 2(1+1^2) = 0$, and so $2 \in N$. Furthermore, R is normal, by Lemma 6. Now, it is easy to see that $x-x^2 \in N$ for all $x \in R$. (See the proof of 2) \Rightarrow 1) of Theorem 2.) Hence R satisfies (\ast), by Corollary 2 9).

5) \Rightarrow 1). By Lemma 6 and Theorem 2.

The next proves the latter part of [2, Theorem 2] and improves [12, Theorem B].
Theorem 3. (1) If for each \(x \in R \) there exists a positive integer \(n \) such that \(x^{n+1} = x^n \), then \(N \) is an ideal of \(R \) and \(R/N \) is a Boolean ring.

(2) Let \(R \) be an \(s \)-unital ring. If for each \(x \in R \) there exists a positive integer \(n \) such that \(x^{n+1} - x^n \in C \), then \(R \) is commutative.

Proof. (1) In the complete matrix ring \(M_2(D) \) over a division ring \(D \) with \(t > 1 \), \((1 + e_{12})^{k-1} \neq (1 + e_{12})^k \) for each positive integer \(k \). Thus, in virtue of the structure theorem of primitive rings, we can easily see that any primitive homomorphic image of \(R \) is a division ring. This shows that \(R/J \) is a reduced ring, where \(J \) is the Jacobson radical of \(R \). Since \(J \) is a nil ideal, we conclude that \(J = N \) and \(R/N \) is a Boolean ring.

(2) In virtue of [6, Proposition 1], we may assume that \(R \) has 1. Let \(x \) be an arbitrary element in \(R \). Then there exists a positive integer \(n \) such that \((1 + x)^{n+1} - (1 + x)^n \in C \). Since \((1 + X)^{n+1} - (1 + X)^n = X - X^2f(X)\) with some \(f(X) \in \mathbb{Z}[X] \), \(R \) is commutative by [5, Theorem 19].

Now, we shall reprove [2, Theorem 1].

Theorem 4. The following are equivalent:

1) \(R \) is a Boolean ring.
2) \(R \) is an \(s \)-unital, \(\pi \)-regular \(B' \)-ring.
3) \(R \) is an \(s \)-unital \(B' \)-ring satisfying the identity \((X + X^2)^{\pi(2)} = 0\).
4) \(R \) is a \(cs^* \)-unital \(B' \)-ring and an \(NI \)-ring.
5) \(R \) is a \(B' \)-ring and an \(I \)-ring.
6) \(R \) is a semiprime \(I \)-ring and \(N^* \) is commutative.
7) \(R \) is a semiprime \(NI \)-ring and \(PI \) ring, and \(N^* \) is commutative.
8) \(R \) is an \(s \)-unital ring, and for each \(x \in R \) there exists a positive integer \(n \) such that \(x^{n+1} = x^n \).

Proof. Obviously, 1) implies 3), 4), 7) and 8).

3) \(\Rightarrow \) 2). By Lemma 4 (1).
4) \(\Rightarrow \) 5). By [7, Lemma 1].

5) \(\Rightarrow \) 1). Let \(a \in N^* \), and choose \(e \in E \) with \(eae = a \) Then \(e - a = (e - a)^2(e + a) \), and \(e - a \in E \), whence \(a = 0 \) follows. Hence \(N = 0 \) and \(E \) is central.

2) \(\Rightarrow \) 1). As above, we see that \(N = 0 \). Now, let \(x \in R \). Then there exists \(y \in R \) such that \(x^nyx^n = x^n \) for some \(n \). Since \(x^ny \) and \(yx^n \) are central idempotents, we obtain \(x^ny = x^n = yx^zn \). As is well-known, there exists \(z \in R \) such that \(xz = zx \) and \(x^{n+1}z = x^n \). Then \((x - x^2z)^n = \)
\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} x^{n+i} z^i = \sum_{i=0}^{n} (-1)^i \binom{n}{i} x^n = (x-x)^n = 0, \text{ whence } x = x^2 z.
\]

This proves that \(R \) is strongly regular, and consequently Boolean.

6) \(\Rightarrow \) 1). Let \(e \in E \). Then \((1-e)ReR(1-e)Re = (1-e)R|eR(1-e)\cdot(1-e)Re \cdot eR(1-e)|e = 0 \), whence \((1-e)Re = 0 \) follows; similarly, \(eR(1-e) = 0 \). Hence \(E \) is central and \(R \) is Boolean.

7) \(\Rightarrow \) 6). By [9, Theorem 3], \(N = 0 \).

8) \(\Rightarrow \) 1). By Theorem 3 1), it suffices to show that \(N = 0 \). Suppose, to the contrary, that \(N \neq 0 \), and choose a non-zero \(a \) in \(N^* \). Then there exists an idempotent \(e \) such that \(ea = ae = a \). By hypothesis, there exists a positive integer \(n \) such that \((e+a)^{n+1} = (e+a)^n \). But this forces a contradiction \(a = 0 \).

Corollary 4 (cf. [2, Lemma 1 (3) and Theorem 2]). If \(R \) is a \(\pi \)-regular \(B^* \)-ring, then for each \(x \in R \) there exists a positive integer \(n \) such that \(x^{n+1} = x^n \).

Proof. There exists \(y \in R \) such that \(x^m y x^m = x^m \) for some \(m \). Then \(e' = x^m y \) is an idempotent and \(e'Re' \) is a Boolean ring by Theorem 4 2). Hence \(x^{2m} y = e' x^m e' \) is an idempotent, and so \(x^{2m} = x^{2m} y x^{2m} = (x^{2m} y)^2 x^{2m} = x^{2m} \). This proves that \(e = x^{2m} \) is in \(E \). Again by Theorem 4 2), \(eRe \) is a Boolean ring, and therefore \(x^{2m+1} = ex^2 = (exe)^2 = exe = x^{2m+1} \).

Finally, we state the following which includes [1, Theorems 1, 2 and 3]

Theorem 5. Let \(R \) be an \(NI \)-ring.

(1) If \(R \) is Artinian, then \(N \) is a nilpotent ideal of \(R \) and \(R/N \) is the finite direct sum of copies of \(GF(2) \).

(2) If \(R \) is a \(\pi \)-regular \(PI \) ring, then \(N \) coincides with the prime radical of \(R \) and \(R/N \) is a Boolean ring.

(3) If \(N \) is commutative, then \(N \) is a commutative ideal of \(R \) and \(R/N \) is a Boolean ring.

Proof. (1) As is well-known, the Jacobson radical \(J \) of \(R \) is nilpotent and \(R/J \) is a finite direct sum of matrix rings over division rings. Then, by [7, Lemma 1], \(R/J \) is a Boolean ring and \(J = N \).

(2) This is [7, Corollary 1].

(3) By [3, Theorem 2], \(N \) is a commutative ideal of \(R \). Since \(R/N \) is
a reduced I-ring, it is normal and Boolean.

REFERENCES

H. OKAMOTO AND H. KOMATSU
DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
OKAYAMA, 700 JAPAN

J. GROSEN
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
SANTA BARBARA, CALIFORNIA 93106, U.S.A.

(Received November 30, 1988)