On R-Automorphisms of R[X]

Miguel Ferrero* Antonio Paques†

*Universidade Federal do Rio Grande do Sul
†Universidade Estadual de Campinas

ON R-AUTOMORPHISMS OF R[X]

MIGUEL FERRERO and ANTONIO PAQUES

Let R be a ring with an identity element and let $R[X]$ be the polynomial ring over R in an indeterminate X. The R-automorphisms of $R[X]$ have been characterized by R. W. Gilmer when R is a commutative ring ([6], Theorem 3). It follows that if φ is an R-automorphism of $R[X]$, φ is completely determined by $\varphi(X) = \sum_{i=0}^{n} a_i X^i$. This is also true if R is a non-commutative ring and since $\varphi(X)$ is a central element of $R[X]$, the description given by Gilmer shows that φ is an R-automorphism of $R[X]$ if and only if $a_i \in Z(R)$, for $0 \leq i \leq n$, a_1 is a unit and a_i is nilpotent for $i \geq 2$.

On the other hand, if G is a group of R-automorphisms of $R[X]$, the computation of the invariant subring $R[X]^G$ is a question of interest. In particular, if G is a finite group and R is an integral domain, J. B. Castillon [1] showed that $R[X]^G = R[f]$, where $f = \prod_{\varphi \in G} \varphi(X)$. The original motivation of our study was to obtain an extension of this result and to determine conditions under which $R[X]$ is a Galois extension of $R[X]^G$. Since every automorphism of such a group is of finite order, we found that it is interesting to characterize such kind of automorphisms. Also, in section 3 we show that when there exists a finite group G of R-automorphisms of $R[X]$ such that $R[X]$ is a Galois extension of $R[X]^G$, then the characteristic of R is finite. So, this case is of particular interest.

In §1 we study automorphisms of finite order. The main theorem of this section states that when the characteristic of R is finite, then an automorphism such as φ given above is of finite order if and only if there exists an integer $t \geq 1$ with $a_i^t = 1$.

In §2 we extend the result of [1]. We prove that if G is finite and $\varphi(X) - X$ is not a zero divisor in $R[X]$, for any $1 \neq \varphi \in G$, then $R[X]^G = R[f]$ where $f = \prod_{\varphi \in G} \varphi(X)$. The converse is also true if R has no non-zero nilpotent elements.

In §3 we consider the question of whether $R[X]$ is a Galois extension of $R[X]^G$ under some additional assumptions. The main result of this
section gives a characterization of a Galois automorphism of \(R[X] \), i.e., an \(R \)-automorphism \(\varphi \) such that \(R[X] \) is a Galois extension of \(R[X]^{(\varphi)} \), where \((\varphi) \) is the cyclic group generated by \(\varphi \). It follows that the order of \(\varphi \) must be a prime integer \(p \) and the characteristic of \(R \) must be \(p^e \), \(e \geq 1 \). Also we show that a group \(G \) as above is necessarily a \(p \)-elementary abelian group.

Throughout this paper \(R \) is a (not necessarily commutative) ring with an identity element. The center of \(R \) is denoted by \(Z \) and the group of units of \(Z \) by \(U(Z) \). The set of all the nilpotent elements of \(R \) will be denoted by \(N(R) \) and we put \(N(Z) = N \). Finally, the order of \(\varphi \) is denoted by \(|\varphi| \). We recall that a commutative ring is said to be reduced if it has no non-zero nilpotent elements.

1. Automorphisms of finite order. Throughout this section we assume that \(\varphi \) is an \(R \)-automorphism of \(R[X] \) defined by \(\varphi(X) = a_0 + a_1 X + \cdots + a_n X^n \), where \(a_i \in Z, i = 0, 1, \ldots, n \), \(a_1 \in U(Z) \) and \(a_j \in N \) for \(j \geq 2 \).

Recall that an element \(a \in R \) is said to be a \((\mathbb{Z}_r) \) torsion element if there exists an integer \(t \geq 1 \) such that \(ta = 0 \). The ring \(R \) is said to be torsion free (or having characteristic zero) if \(R \) has no non-zero torsion elements. In the case that there exists an integer \(m \geq 2 \) such that \(mR = 0 \), \(R \) is said to be of finite characteristic and the characteristic of \(R \) is the smallest such integer \(m \).

The main result of this section gives a complete description of the \(R \)-automorphisms of \(R[X] \) which are of finite order, under the assumption that \(R \) is a ring of finite characteristic. In fact, we will prove the following more general result

Theorem 1.1. Assume that \(a_j \) is a torsion element, for \(j = 0, 2, 3, \ldots, n \). Then \(|\varphi| < \infty \) if and only if \(a_1 \) is a root of the unit element of \(R \).

To prove the theorem we need some lemmas. We begin with the following

Lemma 1.2. Assume that \(b_i \in N \) are torsion elements of \(R \), for \(i = 1, 2, \ldots, n \), and \(\sigma \) is the \(R \)-automorphism of \(R[X] \) defined by \(\sigma(X) = X + \sum_{i=1}^n b_i X^i \). Then \(|\sigma| < \infty \).

Proof. Denote by \(I \) the ideal of \(R \) generated by \(\{b_1, b_2, \ldots, b_n\} \).
Note that $\sigma^2(X) = X + \sum_{i=1}^{n} b_i X^i + \sum_{i=1}^{n} b_i (X + \sum_{j=1}^{n} b_j X^j)^i = X + 2 \sum_{i=1}^{n} b_i X^i + \sum_{k \geq 1} c_k X^k$, for some elements $c_k \in I^2$. An easy induction argument gives $\sigma^s(X) = X + s \sum_{i=1}^{n} b_i X^i + \sum_{j \geq 1} d_j X^j$, for any integer $s \geq 2$, where $d_j \in I^2$. Since b_1, b_2, \ldots, b_n are torsion elements there exists an integer $v \geq 2$ with $\sigma^v(X) = X + \sum_{\ell \geq 1} e_\ell X^\ell$, where $e_\ell \in I^2$. Repeating the argument starting with σ^v, we obtain $\sigma^{v^2}(X) = X + \sum_{k \geq 1} f_k X^k$, for some elements $f_k \in I^4$. Now it is easy to complete the proof since I is a nilpotent ideal.

Lemma 1.3. Assume that $b_i \in N$, for $i = 0,\ldots,n$, and let σ be the R-automorphism of $R[X]$ defined by $\sigma(X) = b_0 + X + \sum_{i=1}^{n} b_i X^i$. Then for every $s \geq 2$ there exist elements $c_0 \in I^2$ and $c_1,\ldots,c_m \in I$ such that $\sigma^s(X) = sb_0 + c_0 + X + \sum_{j=1}^{m} c_j X^j$, where I is the ideal of R generated by \{b_0,b_1,\ldots,b_n\}.

Proof. We have $\sigma^2(X) = b_0 + (b_0 + X + \sum_{i=1}^{n} b_i X^i) + \sum_{j=1}^{n} b_j (b_0 + X + \sum_{i=1}^{n} b_i X^i)^j = 2b_0 + X + \sum_{i=1}^{n} b_i X^i + \sum_{j=1}^{n} b_j b_0^j + \sum_{\ell \geq 1} c_\ell X^\ell$, for some $c_\ell \in I$. Note that $\sum_{i=1}^{n} b_j b_0^j \in I^2$ and so the result is true for $s = 2$. Now it is easy to complete the proof using an induction argument.

Corollary 1.4. Assume that $b_i \in N$ are torsion elements of R, for $i = 0,1,\ldots,n$, and let σ be the R-automorphism of $R[X]$ defined by $\sigma(X) = b_0 + X + \sum_{i=1}^{n} b_i X^i$. Then $|\sigma| < \infty$.

Proof. By the assumption there exists an integer $s \geq 2$ such that $sb_i = 0$, for $i = 0,\ldots,n$. Then there exist $c_0 \in I^2$ and $c_1,\ldots,c_m \in I$ such that $\sigma^s(X) = c_0 + X + \sum_{i=1}^{m} c_i X^i$, by Lemma 1.3. Applying the same argument to the automorphism σ^s we obtain $\sigma^{s^2}(X) = d_0 + X + \sum_{i=1}^{n} d_i X^i$, where $d_0 \in I^2$, $d_1,\ldots,d_t \in I$. Since the ideal I is nilpotent, repeating this way we arrive to $\sigma^s(X) = X + \sum_{j=1}^{n} \epsilon_j X^j$, for some integer $v \geq 2$ and $\epsilon_1,\ldots,\epsilon_u \in I$. Hence σ^v is of finite order by Lemma 1.2 and we have $|\sigma| < \infty$.

Proof of Theorem 1.1. Assume that there exists an integer $s \geq 1$ such that $a_i^s = 1$. By an induction argument we can easily see that $\varphi^s(X) = a_0 \sum_{i=0}^{m} a_i^s + b_0 + X + \sum_{j=1}^{n} b_j X^j$, where b_0,b_1,\ldots,b_m are in the ideal I generated by \{a_2,\ldots,a_n\}. Then $\varphi^{2s}(X) = 2a_0 \sum_{i=0}^{m} a_i^s + c_0 + X + \sum_{j=1}^{n} c_j X^j$, where c_0,\ldots,c_t are in I. Repeating the argument and using
the fact that \(a_0 \) is a torsion element we obtain an integer \(v \geq 1 \) and elements \(d_0, d_1, \ldots, d_u \) in \(I \) such that \(\varphi^v(X) = d_0 + X + \sum_{i=1}^{u} d_i X^i \). Then \(\varphi \) is of finite order by Corollary 1.4.

Conversely, assume that \(|\varphi| = m < \infty \). From the formula obtained for \(\varphi^v(X) \) above it follows that \(a_1^m + b = 1 \), for some \(b \in I = (a_2, \ldots, a_n) \). Since \(b \) is a torsion element there exists an integer \(u \geq 1 \) with \(ub = 0 \). Then \(a_1^{mu} = (1 - b)^u = 1 + b^2 r \), for some \(r \in R \). Thus \(a_1^{mu} = 1 + c \), where \(c \in I^2 \). Repeating the argument and using the fact that \(I \) is a nilpotent ideal we find an integer \(t \geq 1 \) such that \(a_1^t = 1 \).

Now we include some additional remarks concerning the easy particular case in which \(\varphi(X) = a_0 + a_1 X, \ a_1 \in U(Z) \). This is the case for any \(R \)-automorphism of \(R[X] \) if the center \(Z \) of \(R \) is reduced.

An easy computation shows the following

Proposition 1.5. Let \(\varphi \) be the \(R \)-automorphism of \(R[X] \) defined by \(\varphi(X) = a_0 + a_1 X \). Then \(\varphi^n = 1 \) if and only if \(a_1^n = 1 \) and \(a_0(1 + a_1 + \cdots + a_1^{n-1}) = 0 \).

We say that the ring \(R \) satisfies the condition (C) if the following holds:

\[(C) \text{ For every } 1 \neq \varepsilon \in Z \text{ such that } \varepsilon^n = 1, \text{ for } n \geq 2, \text{ we have } 1 - \varepsilon \in U(Z).\]

Condition (C) holds, for example, if the center \(Z \) of \(R \) is a field.

Corollary 1.6. Let \(\varphi \) be the \(R \)-automorphism of \(R[X] \) defined by \(\varphi(X) = a_0 + a_1 X \) and assume that \(R \) satisfies the condition (C). Then \(\varphi^n = 1 \) if and only if one of the following conditions holds

i) \(a_1 = 1 \) and \(na_0 = 0 \),

ii) \(a_1 \neq 1 \) and \(a_1^n = 1 \).

Proof. It is clear that if i) holds, then \(\varphi^n = 1 \). Assume that ii) holds. Since \((1-a_1)(1 + a_1 + \cdots + a_1^{n-1}) = 1 - a_1^n = 0 \) we have \(1 + a_1 + \cdots + a_1^{n-1} = 0 \) by the condition (C). Hence Proposition 1.5 gives \(\varphi^n = 1 \).

Conversely, assume that \(\varphi^n = 1 \). Hence \(a_1^n = 1 \) and we have either \(a_1 \neq 1 \) or \(a_1 = 1 \) and so \(na_0 = a_0(1 + a_1 + \cdots + a_1^{n-1}) = 0 \).
Remark 1.7. The above Corollary shows that if \(\varphi(X) = a_0 + X \), then \(|\varphi| < \infty \) if and only if \(a_0 \) is a torsion element. Now, if \(\sigma \) is defined by \(\sigma(X) = b_0 + b_1 X \), where \(b_1^m = 1 \) and \(1 + b_1 + \cdots + b_1^{m-1} = 0 \) we have \(\sigma^m = 1 \) for any \(b_0 \in Z \). This is the case, for example, if \(a_1 \) is a root of the unity of order \(m \) and \(Z \) is a field. This remark shows that probably is very difficult to obtain a general theorem corresponding to Theorem 1.1 without any additional assumption.

Proposition 1.5 has also the following

Corollary 1.8. Assume that \(R \) is a ring of characteristic a prime integer \(p \) and \(Z \) is reduced. If \(\varphi \) is an \(R \)-automorphism of \(R[X] \), then the following conditions are equivalent:

i) \(|\varphi| = p^e \), for some integer \(e \geq 1 \).

ii) \(|\varphi| = p \).

iii) \(\varphi(X) = a_0 + X \), for some \(a_0 \in Z \).

Proof. Assume that \(\varphi(X) = a_0 + a_1 X \) and \(|\varphi| = p^e \). If \(a_1 \neq 1 \) we have \(a_1^{p^e} = 1 \). Thus \((a_1 - 1)^{p^e} = 0 \) and so \(a_1 - 1 = 0 \), a contradiction. Hence i) \(\Rightarrow \) iii) and the rest is clear.

From Corollary 1.8 the following is clear.

Remark 1.9. If \(R \) is as in Corollary 1.8 we have

i) The set of all the \(R \)-automorphisms of \(R[X] \) of order \(p^e \), for some \(e \geq 1 \), is a subgroup of \(\text{Aut}_R(R[X]) \) which is isomorphic to the group \((R, +)\),

ii) Assume that \(G \) is a \(p \)-group which is a subgroup of \(\text{Aut}_R(R[X]) \). Then \(G \) is abelian and any element of \(G \) has order \(p \).

Example 1.10. Assume that \(R \) is a field of characteristic \(p \) and let \(\varepsilon \) be a primitive root of the unity of order a prime \(q \neq p \). Then the automorphism \(\sigma \) defined by \(\sigma(X) = a_0 + \varepsilon X \), \(a_0 \in R \), has order \(q \). This example shows that the subgroup of all the \(R \)-automorphisms of \(R[X] \) of order \(p^e \) considered in the Remark 1.9 may be a proper subgroup of \(\text{Aut}_R(R[X]) \).

2. **The fixed subring.** Let \(G \) be a group of \(R \)-automorphisms of \(R[X] \). The computation of the invariant subring \(R[X]^G \) is a subject of
interest ([1],[4]). In particular, in [4] the author studied $R[X]^G$ when G is the group of all the R-automorphisms of $R[X]$, for a commutative ring R. On the other hand, J. B. Castillon [1] proved that if R is a commutative domain and G is a finite group, then $R[X]^G = R[f]$, where $f = \prod_{\varphi \in G} \varphi(X)$.

The purpose of this section is to extend the above result. Throughout R is a (not necessarily commutative) ring and G is a finite group of R-automorphisms of $R[X]$ whose order is n. We put $f = \prod_{\varphi \in G} \varphi(X) \in Z[X]$. We will prove the following

Theorem 2.1. Assume that for every $\varphi \in G$, $\varphi \neq 1$, $\varphi(X) - X$ is not a zero divisor in $R[X]$. Then $R[X]^G = R[f]$ and $R[X]$ is a free left (right) $R[X]^G$-module with the basis $\{1, X, \ldots, X^{n-1}\}$.

Note that $\varphi(X) - X \in Z[X]$. Then the following is clear.

Corollary 2.2. If R is a prime ring, then $R[X]^G = R[f]$.

By the definition of f it is clear that $R[f] \subseteq R[X]^G$. We begin with the following

Lemma 2.3. Assume that $\varphi(X) - X$ is not a zero divisor in $R[X]$ for every $\varphi \in G$, $\varphi \neq 1$. Then $R[X] = \sum_{j=0}^{n-1} R[f]X^j$.

Proof. An easy computation shows that there exist $g \in Z[X]$ with $\partial g = n$ and the leading coefficient of g is invertible and $h \in N[X]$ such that $f = g + h$, where N is the set of all the nilpotent elements of Z. Then there exists an integer $m \geq 1$ with $h^m = 0$. Hence $g^m = \sum_{i=1}^{m} b_if^ig^{m-i}$, for some $b_i \in Z$, and we easily obtain $X^{nm} \in \sum_{j=0}^{nm-1} Z[f]X^j$. It follows that $Z[X]$ is finitely generated over $Z[f]$.

If Z is a reduced ring, then $h = 0$ and we obtain that $Z[X]$ is generated over $Z[f]$ by $\{1, X, \ldots, X^{n-1}\}$. Consequently $R[X] = R \otimes_Z Z[X] = \sum_{j=0}^{n-1} R[f]X^j$. The result follows in this case.

Assume now that R is arbitrary. Put $\bar{Z} = Z/N$ and note that every $\varphi \in G$ induces a \bar{Z}-automorphism $\bar{\varphi}$ of $\bar{Z}[X]$. Also, by the assumption $\bar{\varphi}(X) \neq X$ if $\varphi \neq 1$. Thus the group $\bar{G} = \{\bar{\varphi}: \varphi \in G\} \cong G$ and we have $\bar{Z}[X] = \sum_{j=0}^{n-1} \bar{Z}[\bar{f}]X^j$, where $\bar{f} = \prod_{\varphi \in G} \bar{\varphi}(X) = f + N[X] \in \bar{Z}[X]$. Consequently $Z[X] = \sum_{j=0}^{n-1} Z[f]X^j + N[X]$ and the Nakayama's Lemma gives $Z[X] = \sum_{j=0}^{n-1} Z[f]X^j$. Finally, as above we obtain $R[X] = \sum_{j=0}^{n-1} R[f]X^j$.
Remark 2.4. We point out that when Z is a reduced ring the result $R[X] = \sum_{j=0}^{n-1} R[f]X^j$ is independent of the assumption. Also, since $\partial f = n$ and the leading coefficient of f is invertible we easily obtain that $\sum_{j=0}^{n-1} R[f]X^j = \sum_{j=0}^{n-1} \oplus R[f]X^j$. Consequently in this case $R[X] = \sum_{j=0}^{n-1} \oplus R[f]X^j$ holds for any finite group G.

Now we are able to prove the theorem.

Proof of Theorem 2.1. Note that $R[X] = \sum_{j=0}^{n-1} R[f]X^j \subseteq \sum_{j=0}^{n-1} R[X]^G X^j \subseteq R[X]$. Thus it is enough to show that $\sum_{j=0}^{n-1} R[X]^G X^j = \sum_{j=0}^{n-1} \oplus R[X]^G X^j$.

Assume that $h_i \in R[X]^G$, $i = 0, \ldots, n - 1$, and $\sum_{i=0}^{n-1} h_i X^i = 0$. Then $\sum_{i=0}^{n-1} h_i \varphi_j(X)^i = 0$ for every $\varphi_j \in G$. Denote by A the matrix whose entries are $\varphi_j(X)^i \in Z[X]$. We easily obtain $\det(A)h_\ell = 0$, for $\ell = 0, \ldots, n - 1$. However $\det(A)$ is a Wadernon determinant and by the assumption is not a zero divisor in $R[X]$. Consequently $h_\ell = 0$ for $\ell = 0, \ldots, n - 1$, and the proof is complete.

It is an open problem whether the converse of Theorem 2.1 holds. We can prove this under an additional assumption.

Proposition 2.5. Assume that the ring R has no non-zero nilpotent elements. Then the following conditions are equivalent:

ii) $\sum_{i=0}^{n-1} R[X]^G X^i$ is a direct sum.

iii) $\varphi(X) - X$ is not a zero divisor in $R[X]$, for every $1 \neq \varphi \in G$.

Proof. The equivalence between i) and ii) follows from the Remark 2.4. We prove i) \implies iii).

Assume, by contradiction, that there exists $\varphi \in G$, $\varphi \neq 1$, such that $\varphi(X) - X$ is a zero divisor in $R[X]$. Since $\varphi(X) - X \in Z[X]$ it follows easily that there exists a non-zero $c \in R$ such that $c(\varphi(X) - X) = 0$. Then $H = \{\sigma \in G: \sigma(cX) = cX\}$ is a subgroup of G with $|H| \geq 2$. Take a set τ_1, \ldots, τ_t of representatives of the distinct left cosets of H in G and put $g = \prod_{i=1}^t \tau_i(cX)$. Then g is a non-zero element of $R[X]^G$ whose degree is $t < n$ and the leading coefficient is of the type $c^t d$, for some $d \in U(Z)$. By the assumption $g = b_n f^n + \cdots + b_0$, for some $b_i \in R$, which is a contradiction.
since the leading coefficient of f^n is invertible.

We finish this section with the following

Remark 2.6. The subring $R[f]$ of $R[X]$ is a polynomial ring over R, i.e., there exists and an R-isomorphism $\psi: R[t] \to R[f]$ such that $\psi(t) = f$. In fact, note that the coefficient of X^n in f is always invertible. Since $f \in Z[X]$ this implies that f is not a zero divisor in $R[X]$. Assume that $a_0 + a_1 f + \cdots + a_n f^n = 0$, $a_i \in R$. Then $a_0 = 0$ because the constant term of f is zero. Thus $(a_1 + a_2 f + \cdots + a_n f^{n-1}) f = 0$ and so $a_1 + a_2 f + \cdots + a_n f^{n-1} = 0$. Repeating the argument we obtain $a_i = 0$ for $i = 0, \ldots, n$.

3. Galois automorphisms and Galois groups. Let S be a ring and G a finite group of automorphisms of S. Recall that S is said to be a Galois extension of S^G with group G if there exist $x_i, y_i \in S$, $i = 1, \ldots, m$, such that $\sum_{i=1}^m x_i \sigma(y_i) = \delta_{1,\sigma}$ for every $\sigma \in G$ ([2],[7]). The set $\{x_i, y_i\}_{1 \leq i \leq m}$ is called a Galois coordinate system for S over S^G.

Throughout this section G is again a finite group of R-automorphisms of $R[X]$. We study here under which conditions $R[X]$ is a Galois extension of $R[X]^G$ with group G. When this is the case we say that G is a Galois group of $R[X]$. An R-automorphism of $R[X]$ is said to be a Galois automorphism if the cyclic group (φ) generated by φ is a Galois group of $R[X]$. Clearly, every element of a Galois group of $R[X]$ is a Galois automorphism.

Every group G of R-automorphisms of $R[X]$ induces a group of Z-automorphims of $Z[X]$ which is isomorphic to G. Assume that $1 \neq \varphi \in G$. Then $\varphi(X) - X \in Z[X]$ and so $\varphi(X) - X$ is invertible in $Z[X]$ if and only if $\varphi(X) - X$ is invertible in $R[X]$. Hereafter we will say simply "$\varphi(X) - X$ is invertible" when this is the case.

We begin this section with the following

Lemma 3.1. The following conditions are equivalent:

i) G is a Galois group of $R[X]$.

ii) G is a Galois group of $Z[X]$.

iii) $\varphi(X) - X$ is invertible, for every $\varphi \in G$, $\varphi \neq 1$.

Proof. i) \implies iii) By the assumption there exist $x_i, y_i \in R[X]$, $1 \leq i \leq m$, such that $\sum_{i=1}^m x_i \varphi(y_i) = \delta_{1,\varphi}$, for every $\varphi \in G$. Suppose that
\(\varphi(X) - X \) is not invertible. Then there exists a maximal ideal \(\mathcal{M} \) of \(R[X] \) such that \(\varphi(X) - X \in \mathcal{M} \). We easily obtain that \(\varphi(h) - h \in \mathcal{M} \), for every \(h \in R[X] \), and so \(\sum_{i=1}^{n} x_i(y_i - \varphi(y_i)) \in \mathcal{M} \). Thus \(\varphi = 1 \).

iii) \(\implies \) ii) This follows directly from ([2], Theorem 1.3).

ii) \(\implies \) i) This is clear since the Galois coordinate system for \(Z[X] \) is in \(R[X] \).

Combining Lemma 3.1 with Theorem 2.1 we immediately have

Corollary 3.2. If \(G \) is a Galois group of \(R[X] \), then \(R[X]^G = R[f] \) and \(R[X] \) is a free left (right) \(R[X]^G \)-module with the basis \(\{1, X, \ldots, X^{n-1}\} \), where \(f = \prod_{\varphi \in G} \varphi(X) \) and \(n = \text{order}(G) \).

Now we give a characterization of a Galois automorphism. Assume that \(\varphi(X) = a_0 + a_1X + \cdots + a_nX^n \), \(a_0 \in Z \), \(a_1 \in U(Z) \) and \(a_i \in N \) for \(i \geq 2 \). We have

Theorem 3.3. The following conditions are equivalent:

i) \(\varphi \) is a non-trivial Galois automorphism of \(R[X] \).

ii) \(a_0 \in U(Z) \) and there exists a prime integer \(p \) such that the characteristic of \(R \) is \(p^e \), \(e \geq 1 \), and \(|\varphi| = p \).

Moreover, under the above conditions \(a_1 \equiv 1 \pmod{N} \).

Proof. i) \(\implies \) ii) Suppose that \(\varphi \) is a Galois automorphism of \(R[X] \) with \(|\varphi| = p \). We may write \(\varphi(X) = a_0 + a_1X + g \), where \(g = a_2X^2 + \cdots + a_nX^n \in N[X] \). By Lemma 3.1 \(\varphi(X) - X = a_0 + (a_1 - 1)X + g \) is invertible in \(Z[X] \), so we have \(a_0 \in U(Z) \) and \(a_1 - 1 \in N \). Then we can easily show that for every \(i \geq 1 \) there exists \(h_i \in N[X] \) such that \(\varphi^i(X) = ia_0 + X + h_i \). Therefore \(ia_0 = (\varphi^i(X) - X) - h_i \) is invertible in \(Z \) if \(i < p \) and is nilpotent if \(i = p \). It follows that the integer \(i \) is invertible in \(Z \) if \(i < p \) and is nilpotent if \(i = p \). Consequently \(p \) is prime and \(p^t = 0 \) for some integer \(t \geq 1 \). Thus the characteristic of \(R \) is a power of \(p \).

ii) \(\implies \) i) We write again \(\varphi(X) = a_0 + a_1X + g \), \(g \in N[X] \). Then \(X = \varphi^p(X) = b_0 + a_1^pX + h \), for some \(b_0 \in Z \) and \(h \in N[X] \). It follows that \(a_1^p \equiv 1 \pmod{N} \) and so \((a_1 - 1)^{p^e} \equiv 0 \pmod{N} \). Thus \(a_1 \equiv 1 \pmod{N} \) and we have \(\varphi^i(X) - X = ia_0 + h_i \), for some \(h_i \in N[X] \). Since \(i \) and \(a_0 \) are invertible, for \(1 \leq i < p \), Lemma 3.1 completes the proof.

For a ring with reduced center we have the following particular case.
Corollary 3.4. Assume that Z is a reduced ring and φ is an R-automorphism of $R[X]$. Then the following conditions are equivalent:
i) φ is a non-trivial Galois automorphism of $R[X]$.
ii) $\varphi(X) = X + a_0$, for some $a_0 \in U(Z)$, and the characteristic of R is a prime integer p.

Now we are in position to give a description of a Galois group of $R[X]$. Recall that a p-elementary abelian group is a group which is isomorphic to a direct product of cyclic groups of order p. We have

Proposition 3.5. Assume that the characteristic of R is p^e and G is a Galois group of $R[X]$. Then G is a p-elementary abelian group.

Proof. We know that G is a Galois group of $Z[X]$. Denote by \bar{Z} the factor ring Z/N and consider the group \bar{G} of \bar{Z}-automorphisms of $\bar{Z}[X]$ induced by G. It is easy to see that \bar{G} is a Galois group of $\bar{Z}[X]$ which is isomorphic to G. So we may assume that Z is a reduced ring of characteristic p. In this case, for every $\varphi \in G$, $\varphi \neq 1$, we have $\varphi(X) = X + a_\varphi$, for some $a_\varphi \in U(Z)$. Also, $\varphi \circ \psi(X) = X + (a_\psi + a_\varphi)$. Therefore the group G is isomorphic to a subgroup of the abelian group $(Z, +)$. The result is now evident.

Now we can give a representation of all the Galois groups in the reduced case. Assume that V is a non-empty subset of units of Z. We say that $H = V \cup \{0\}$ is an additive group of units of Z if for every $u, v \in H$ we have $u - v \in H$.

If H is a finite additive group of units of Z, for any $u \in H$ we define an R-automorphism of $R[X]$ by $\varphi_u(X) = X + u$. Then it is clear that $\{\varphi_u : u \in H\}$ is a Galois group of $R[X]$ which is isomorphic to H. The converse is apparent from the proof of Proposition 3.5. Then we have

Corollary 3.6. Assume that Z is a reduced ring. Then the above correspondence is a one-to-one correspondence between the set of all the Galois groups of $R[X]$ and the set of all the finite additive groups of units of Z.

Remark 3.7. It is clear that in the general case if G is a Galois group of $R[X]$, then G is isomorphic to a finite additive group of units of Z/N. But we do not know whether any such a group can be realized as a
Galois group of $R[X]$.

We finish the paper with some examples, remarks and questions.

First, by Theorem 3.3 if a Galois automorphism of $R[X]$ exists, then the characteristic of R is p^e, for a prime p and $e \geq 1$. The following examples show that any such a characteristic is possible.

Example 3.8. Let R be any ring of characteristic 2^e, $e \geq 1$, and let φ be the R-automorphism of $R[X]$ defined by $\varphi(X) = 1 - X$. Then φ is a Galois automorphism.

Example 3.9. Let R be any ring of characteristic p^2, where p is any prime integer and let φ be the R-automorphism of $R[X]$ defined by $\varphi(X) = 1 + X + pX^{p-1}$. We show that φ is a Galois automorphism. Put $\tau(X) = X + 1$ and $g = X^{p-1}$. Using an induction argument we obtain $\varphi^i(X) = \tau^i(X) + p \sum_{j=0}^{i-1} \tau^j(g)$, for $1 \leq i \leq p$. Then $\varphi^i(X) - X$ is invertible for $1 \leq i \leq p - 1$ and $\varphi^p(X) = p + X + p \sum_{j=0}^{p-1} \tau^j(g)$. Thus it is enough to show that $p + p \sum_{j=0}^{p-1} \tau^j(g) = 0$ in $R[X]$. In fact, $\sum_{j=0}^{p-1} \tau^j(g) = \sum_{j=0}^{p-1} (X + j)^{p-1}$, where c_j is a combinatorial number with $c_{p-1} = p$, $s_j = \sum_{\ell=1}^{p-1} \ell^j$, for $1 \leq j \leq p - 1$, and $c_0 = c_1 = 1$. Clearly $s_1 \equiv 0 \pmod{p}$. Now we use the formula $\binom{j+1}{j} s_1 + \binom{j+1}{j+1} s_2 + \cdots + \binom{j+1}{1} s_{j-1} + \binom{j+1}{j} s_j = p^j - p$, for any $j = 1, \ldots, p - 2$ ([3],E16,p.17). Taking $j = 2$ we obtain $s_2 \equiv 0 \pmod{p}$. Continuing this way, taking successively $j = 3, \ldots, p - 2$ we prove that $s_j \equiv 0 \pmod{p}$ for $1 \leq j \leq p - 2$. Also $s_{p-1} = \sum_{\ell=1}^{p-1} \ell^{p-1} \equiv (p - 1) \pmod{p}$. Consequently, $p \sum_{j=0}^{p-1} \tau^j(g) = p(p - 1) = -p$ and the proof is complete.

The following example shows that there always exists a ring R of characteristic p^e such that $R[X]$ has a Galois automorphism.

Example 3.10. Let A be a commutative ring of characteristic p^e and denote by I the ideal of the polynomial ring $A[t]$ generated by the polynomial $h = \sum_{i=1}^{p} (\binom{p}{i}) t^{i-1}$. Put $R = A[t]/I$ and $\alpha = t + I \in R$. Then the characteristic of R is p^e and $\alpha \in N(R)$ because $\alpha^p - 1 = -\sum_{i=1}^{p-1} (\binom{p}{i}) \alpha^i = pb$, for some $b \in R$. Then $\varphi(X) = a + X + \alpha X$ defines an R-automorphism of $R[X]$. It is easy to check that if $a \in U(R)$, then φ is a Galois automorphism of $R[X]$.

Produced by The Berkeley Electronic Press, 1994
Remark 3.11. The above examples and several other particular cases we have considered, suggest that for every ring R of characteristic p^e there should exist Galois automorphisms of $R[X]$. However we were unable to prove this conjecture.

Remark 3.12. Assume that G and H are Galois groups of $R[X]$ and $R[X]^G = R[X]^H$. If R is a connected ring, it follows from the results in [2] that $G = H$. However the result is not true in general. In fact, let R be a commutative ring of characteristic p, $\varphi(X) = X + a$, for $a \in U(R)$, and $\{e_1, \ldots, e_{p-1}\}$ a family of orthogonal idempotents whose sum is 1. Put $\sigma = \sum_{i=1}^{p-1} e_i \varphi^i$. Then we easily see that σ is also a Galois automorphism and $\prod_{i=0}^{p-1} \varphi^i(X) = \prod_{i=0}^{p-1} \sigma^j(X)$. Thus $R[X]^{(\varphi)} = R[X]^{(\sigma)}$, where (φ) and (σ) are the cyclic groups generated by φ and σ, respectively.

Remark 3.13. If R is a non-commutative ring and G is a Galois group of $R[X]$, then G is a Galois group of $Z[X]$ and $R[X] = R \otimes_Z Z[X]$. Then, this is an example in which the results on Galois theory for $R[X]$ over $R[X]^G$ are trivial extensions of the results for $Z[X]$ over $Z[X]^G$ ([5], Theorem 2.1).

Question. It should be interesting to obtain a description of the R-automorphisms of $R[X]$ of order p when the characteristic of R is p^e. We could not give an answer to this question.

References

ON R-AUTOMORPHISMS OF R[X]

M. Ferrero
Instituto de Matemática
Universidade Federal do Rio Grande do Sul
91509–900–Porto Alegre, RS, Brazil

A. Paques
Instituto de Matemática, Estatística
e Ciência da Computação
Universidade Estadual de Campinas
13081–970–Campinas, SP, Brazil

(Received April 30, 1993)