Compactification of Topological Spaces

Takashi Inagaki∗ Masahiro Sugawara†
COMPACTIFICATION OF TOPOLOGICAL SPACES

Takeshi Inagaki and Masahiro Sugawara

One of the writers1 has given the compactification of a T-space R as follows:

Let us denote by R^* the totality of all ultrafilters in R. Then it is proved that the family

\[\{U^* \mid U \text{ is an open set in } R\} \]

can be taken as a basis of open sets in R^* and R^* becomes a compact2 T-space containing the set:

\[\widehat{R} = \{ \mathcal{F} \mid x \in R; \mathcal{F} \text{ is the ultrafilter containing } x\} \]

as a dense subset, moreover, \widehat{R} is homeomorphic with R by the mapping φ defined by

\[\varphi(x) = \mathcal{F}_x. \]

It is the purpose of this note to make clear some relations among our compactification and Wallman's of a T_γ-space and Čech's of a completely regular space.

§1. An extension theorem of continuous functions. First of all we shall prove the

Theorem 1. Let f be a real valued bounded continuous function defined on R. Then there exists a real valued bounded continuous function f^* defined on R^* such that

\[f^*(\mathcal{F}) = \inf_{A \in \mathcal{F}} \sup_{x \in A} f(x) = \sup_{A \in \mathcal{F}} \inf_{x \in A} f(x) \text{ and } f^*(\mathcal{F}_x) = f(x). \]

\textsuperscript{2) A T-space is a topological space which satisfies the conditions:
1) $\emptyset = \emptyset$; 2) $M \supseteq M$; 3) $M \cup N = M \cup N$; 4) $\overline{M} = \overline{M}$, where M and N are subsets of R and \emptyset is the null set as usual.
3) M^* is the totality of all ultrafilters in R, which contains M.
4) The notation $[A \mid B]$ means the totality of all sets A satisfying the condition B.
5) A T-space R is called compact if each filter in R has at least one cluster point.
6) In future, we shall denote by \mathfrak{F} a ultrafilter in R and by \mathfrak{F}_x the ultrafilter containing x.}
Since \(\varphi \) is the homeomorphism of \(R \) on \(\tilde{R} \), if we regard \(\tilde{R} \) as the space \(R \), then the theorem says that \(f \) can be extended on \(R^* \).

Proof. Let \(\mathcal{F} \subseteq R^* \) and let

\[
t = \inf_{A \in \mathcal{F}} \sup_{x \in A} f(x) \quad \text{and} \quad t' = \sup_{A \in \mathcal{F}} \inf_{x \in A} f(x).
\]

Then it is clear that \(t > t' \), but we can show that \(t = t' \). In fact, by definition of \(t \), for every positive number \(\varepsilon \), there exists a set \(A_i \in \mathcal{F} \) such that \(t < \sup_{x \in A_i} f(x) < t + \varepsilon \), and hence for some point \(x_i \in A_i \), \(t - \varepsilon < f(x_i) < t + \varepsilon \). Therefore, if we denote by \(B \) the set \(\{ x \mid t - \varepsilon < f(x) < t + \varepsilon \} \), then \(B \neq \emptyset \). We now show that \(B \in \mathcal{F} \). Since \(\mathcal{F} \) is an ultrafilter, if \(B \in \mathcal{F} \), then \(CB \in \mathcal{F} \) and \(A_i \cap CB \in \mathcal{F} \). Let \(x \) be a point of \(A_i \cap CB \), then \(f(x) < t + \varepsilon \) by definition of \(A_i \), and \(f(x) < t - \varepsilon \) or \(t + \varepsilon < f(x) \) by definition of \(B \). Therefore, we can say that if \(x \in A_i \cap CB \), then \(f(x) < t - \varepsilon \), and hence \(\sup_{x \in A_i \cap CB} f(x) < t - \varepsilon \). This contradicts with the definition of \(t \). Thus we have \(B \in \mathcal{F} \) and \(f(x) < t - \varepsilon \). Therefore, by definition of \(t' \), we have \(t - \varepsilon < t' \), and this shows that \(t < t' \); hence \(t = t' \).

From what we have just proved above, we can define a function \(f^* \) defined on \(R^* \) by the equality

\[
f^*(\mathcal{F}) = \inf_{A \in \mathcal{F}} \sup_{x \in A} f(x) = \sup_{A \in \mathcal{F}} \inf_{x \in A} f(x).
\]

It follows evidently that \(f^* \) is bounded and \(f^*(\mathcal{F}) = f(x) \).

To prove that \(f^* \) is continuous, let \(t = f^*(\mathcal{F}) \). In proving that \(t < t' \) above, we have shown that for every positive number \(\varepsilon \), the set \(G = \{ x \mid t - \varepsilon < f(x) < t + \varepsilon \} \) belongs to \(\mathcal{F} \). Since \(f \) is continuous, \(G \) is open in \(R \) and so \(G^* \) is open in \(R^* \). Now, it follows from the definition of \(f^* \) that \(f^*(G) \subseteq [t - \frac{\varepsilon}{2}, t + \frac{\varepsilon}{2}] \subseteq (t - \varepsilon, t + \varepsilon) \). This shows that \(f^* \) is continuous, Q.E.D.

Remark. As it is easily seen, if \(f \) is continuous, then for any set \(A \), \(\sup_{x \in A} f(x) = \sup_{x \in A^*} f(x) \) and \(\inf_{x \in A} f(x) = \inf_{x \in A^*} f(x) \); therefore the function \(f^* \) can be defined by the equality

\[
f^*(\mathcal{F}) = \inf_{A \in \mathcal{F}} \sup_{x \in A} f(x) = \sup_{A \in \mathcal{F}} \inf_{x \in A} f(x).
\]

1) \(CB \) denote the complement of \(B \), that is, \(CB = R - B \).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol2/iss1/8
§2. Compactification of a T_0-space. In this place, we suppose that R is a T_0-space. For a point $\bar{x} \in R^*$ we define \bar{x} by

$$\bar{x} = \{F \mid F \in \mathcal{F} \text{ and } F \text{ is closed in } R\}.$$

For two points \bar{x}_1 and \bar{x}_2 of R^*, we write $\bar{x}_1 \sim \bar{x}_2$ if $\bar{x}_1 = \bar{x}_2$. Obviously the relation \sim is an equivalence relation, hence the relation \sim divides R^* into disjoint classes of equivalent points.

We introduce the notations:

- R^o = the totality of all classes of equivalent points;
- $[\bar{x}] = \{\bar{x}_1 \mid \bar{x}_1 \sim \bar{x}\}$, the class of equivalent points, which contains \bar{x}.

It is important to remark that if $x \neq y$ then $[\bar{x}] \neq [\bar{y}]$. For, since $x \neq y$ and R is a T_0-space, at least one of $x \in y$ and $y \in x$ holds, from which $\bar{x} \neq \bar{y}$; hence it is not hard to see that $\bar{x} \neq \bar{y}$.

We define the mapping ϕ_1 of the set R^* on the set R^o such that

$$[\bar{x}] = \phi_1(\bar{x}).$$

Then it is evident that ϕ_1 is one-to-one mapping between \tilde{R} and \tilde{R}, by setting

$$\tilde{R}^o = \phi_1(\tilde{R}).$$

Now it is not difficult to see that the family

$$\mathcal{F} = \{F^o \mid \phi_1^{-1}(F^o) = F^*, \text{ where } F \text{ is closed in } R\}$$

can be taken as a basis of closed sets in R^o, and, moreover, R^o becomes a T-space and ϕ_1 is continuous.

From this definition, we can prove the

Theorem 2. R^o is a compact T_0-space and contains a dense subset \tilde{R} which is homeomorphic with R.

Proof. R^o is compact, because R^* is compact, and ϕ_1 is continuous in the topology introduced in R^o.

1) A T_0-space is a T-space such that, for any two different points x and y, at least one of $x \not\sim y$ or $y \not\sim x$ holds.
To show that R^o is a T_v-space, we shall prove first that
\[\phi_1^{-1}(\phi_1(U^*)) = U^* \text{ for any open set } U \text{ in } R. \]
In fact, if $[\xi] \in \phi_1^{-1}(\phi_1(U^*))$, there exists a point $\xi_1 \in U^*$ such that $[\xi] = [\xi_1]$. Hence $U \in [\xi_1]$ and $CU \in [\xi_1]$. Since CU is closed, we have $CU \subseteq [\xi_2]$; and so $U \subseteq [\xi_2]$. This shows that $\phi_1^{-1}(\phi_1(U^*)) \subseteq U^*$. Since it is evident that $\phi_1^{-1}(\phi_1(U^*)) \Rightarrow U^*$, we have $\phi_1^{-1}(\phi_1(U^*)) = U^*$.

Under this remark, we shall show that R^o is a T_v-space. Let $[\xi_1]$ and $[\xi_2]$ be two different points of R^o, then $[\xi_1] \neq [\xi_2]$. Hence, at least one of $[\xi_1]$ and $[\xi_2]$, say $[\xi_1]$, contains a closed set F such that $F \subseteq [\xi_1]$, and so $CF \subseteq [\xi_1]$. Since CF is open, we get $\phi_1^{-1}(\phi_1(CF^*)) = (CF^*)$, and clearly $[\xi_1] \in \phi_1(CF^*)$ and $[\xi_2] \in \phi_1(CF^*)$. Hence it follows that R^o is a T_v-space.

In order to show that R and R^o are homeomorphic, as it is readily seen, it is sufficient to prove that the mapping $\phi_1 \varphi$ sends an open set in R to an open set in R^o. Now let G be an open set in R, then
\[\phi_1 \varphi(G) = \phi_1(G^* \cap \tilde{R}) = \phi_1(\bigcup_{[\xi] \subseteq G^*} [\xi]) = \bigcup_{[\xi] \subseteq G^*} \phi_1([\xi]) = \tilde{R}^o \cap \phi_1(G^*), \]
from which $\phi_1 \varphi(G)$ is open in R^o, because $\phi_1(G^*)$ is open in R^o, Q.E.D.

Theorem 3. Let f be a real valued bounded continuous function defined on R. Then there exists a real valued bounded continuous function f^o defined on R^o such that
\[f^o([\xi]) = f^*(\xi). \]

Proof. Since f is continuous, the function f^* defined by the equation (1) in §1 takes the same value at each point which belongs to an equivalence class in R^*. Thus we can define a function f^o such that
\[f^o([\xi]) = f^*(\xi). \]

To prove that f^o is continuous, let $[\xi]$ be a point of R^o and $t = f^o([\xi]) = f^*(\xi)$. Since f^* is continuous, for every neighborhood $U(t)$ of t, there exists an open set G in R such that $G \subseteq [\xi]$ and $U(t) \Rightarrow f^*(G^*)$. On the other hand, as we proved in the proof of Theorem 2, $G \subseteq [\xi]$ implies $[\xi] \subseteq G^*$ and $\phi_1(G^*)$ is open in R^o. Hence
Let \(U(t) \supseteq f^*(G^*) = f^*(\phi_t(G^*)) \), this shows that \(f^* \) is continuous, Q.E.D.

Let us denote by \(\alpha(R) \) the totality of all dual prime ideals in the lattice \(\mathcal{L} \) composed of all closed sets in \(R \), then we have the

Lemma 1. There is an one-to-one mapping of the set \(R^\circ \) on \(\alpha(R) \).

Proof. To a point \([\overline{X}] \in R^\circ \) we correspond the set \(\overline{X} \), and we write

\[
\overline{X} = \psi([\overline{X}]).
\]

First of all we prove that \(\overline{X} \) is a dual prime ideal. It is evident that \(\overline{X} \) is a dual ideal. In order to show that \(\overline{X} \) is prime, let \(F_1 \) and \(F_2 \) be closed sets in \(R \) such that \(F_1 \cup F_2 \in \overline{X} \). If we suppose that \(F_1 \in \overline{X} \), then, since \(F_1 \) is closed and \(\overline{X} \) is an ultrafilter in \(R \), we have \(F_1 \in \overline{X} \) and so \(CF_1 \in \overline{X} \). Hence it follows that \(CF_1 \cap (F_1 \cup F_2) \in \overline{X} \), from which \(F_1 \in \overline{X} \) and \(F_2 \in \overline{X} \), since \(CF_1 \cap (F_1 \cup F_2) \subseteq F_2 \) and \(F_2 \) is closed. This shows that \(\overline{X} \) is a dual prime ideal, and hence \(\overline{X} \in \alpha(R) \). Moreover, it is evident that if \([\overline{X}_1] \neq [\overline{X}_2] \), then \(\psi([\overline{X}_1]) \neq \psi([\overline{X}_2]) \).

We shall now prove that \(\psi(R^\circ) = \alpha(R) \). In fact, let \(M \) be a dual prime ideal in \(\mathcal{L} \) and let

\[
\mathcal{R} = \{ G \mid G \text{ is open in } R \text{ and } CG \subseteq M \}.
\]

Since \(R \in \mathcal{M} \), we have \(\phi \in \mathcal{R} \). Next, in order to show that \(\mathcal{R} \) has the finite intersection property, take two sets \(G_1 \) and \(G_2 \) of \(\mathcal{R} \). Then \(CG_1 \in \mathcal{M} \), \(CG_2 \in \mathcal{M} \) and \(\mathcal{M} \cap CG_1 \cup CG_2 = C(G_1 \cap G_2) \), since \(\mathcal{M} \) is prime. Therefore, \(G_1 \cap G_2 \in \mathcal{R} \) and \(G_1 \cap G_2 \neq \phi \), from which we say that \(\mathcal{R} \) has the finite intersection property. Now let \(F \in \mathcal{R} \) and \(G \in \mathcal{R} \). If we suppose that \(F \cap G = \phi \), then \(F \subseteq CG \) and so \(CG \in \mathcal{R} \). This contradicts with \(CG \in \mathcal{M} \), and hence \(F \cap G \neq \phi \). From what we have proved above, we can say that the totality of all sets \(F \cap G \), where \(F \in \mathcal{M} \) and \(G \in \mathcal{R} \), forms a basis of a filter. Hence there exists an ultrafilter \(\overline{X} \) which contains the above basis: \(M \cup R \subseteq \overline{X} \). For this ultrafilter \(\overline{X} \), we can show that \(\overline{X} = \mathcal{R} \). In fact, if \(F \in \overline{X} \), then \(F \subseteq \overline{X} \) and \(CF \subseteq \overline{X} \), from which \(CF \subseteq \mathcal{R} \). Hence \(F \subseteq \mathcal{R} \) by definition of \(\mathcal{R} \), and so \(\overline{X} \subseteq \mathcal{R} \).

From what we have just proved, it follows that \(\psi(R^\circ) = \alpha(R) \) and \(\psi \) is an one-to-one mapping between \(R^\circ \) and \(\alpha(R) \), Q.E.D.

We note here that a set \(F^\circ \subseteq R^\circ \) belongs to the closed basis \(\mathcal{F} \) of \(R^\circ \), if and only if there exists a closed set \(F \) in \(R \) such that \(\psi(F^\circ) = \alpha(F) \) by setting

\[
\alpha(F) = \{ M \mid M \text{ is a dual prime ideal in } \mathcal{L} \text{ and } F \in \mathcal{M} \}.
\]
In fact, if F° belongs to \mathcal{F}, there exists a closed set F in R such that $\phi^{-1}_I(F^\circ) = F^*$. Hence $\psi_1(F^\circ) = \psi_1(\phi^{-1}_I(F^*)) = \psi_1(\{F \mid F \in \mathcal{F}_I\}) = \alpha(F)$.

Conversely, let F be a closed set in R and $\psi(F^\circ) = \alpha(F)$. Then, since ψ is one-to-one, we have $\phi^{-1}_I(F^\circ) = \phi^{-1}_I(\psi^{-1}(\psi(F^\circ))) = \phi^{-1}_I(\psi^{-1}(\alpha(F))) = \phi^{-1}_I(\{F \mid F \in \mathcal{F}_I\}) = F^*$, and hence F° is contained in the closed basis \mathcal{F}' of R°.

Thus we have the

Lemma 2. If we introduce the topology in $\alpha(R)$ such that the family $\{\alpha(F) \mid F \text{ is closed in } R\}$ is a closed basis of $\alpha(R)$, then the mapping $\psi(\mathcal{F}_I) = \mathcal{F}_I$ is a homeomorphism of the space R° on the space $\alpha(R)$.

§ 3. Compactification of a T_1-space. In this section, we suppose that R is a T_1-space. Now let

$$
\beta^\circ(R) = \{\mathcal{F}_I \mid \mathcal{F}_I \text{ is a maximal dual ideal in } \mathcal{F}\},
$$

$$
\beta(R) = \psi(\beta^\circ(R)).
$$

Then, it is evident that $\beta(R)$ is a subset of $\alpha(R)$ and consists of all maximal dual prime ideals in \mathcal{F}. Moreover, since $\beta^\circ(R)$ and $\beta(R)$ are regarded as the subspaces of R° and $\alpha(R)$ respectively, $\beta^\circ(R)$ and $\beta(R)$ are homeomorphic with each other.

Since R is a T_1-space, it is important to remark that $[\mathcal{F}_I]$ is \mathcal{F}_I itself and hence $\tilde{R} = R^\circ \subset \beta^\circ(R)$.

Under these remarks, we have the well known

Wallman's Theorem. The space $\beta(R)$ is a compact T_1-space and contains a dense subset \tilde{R} which is homeomorphic with R.

But we give a proof of this theorem for the purpose to make clear the relation among the spaces considered in this note.

Proof. Let \mathcal{W}_1 and \mathcal{W}_2 be any two distinct points of $\beta(R)$. Then, since they are maximal ideals in \mathcal{F}, any one of them, say \mathcal{W}_1, contains a closed set F in R such that $F \in \mathcal{W}_2$. However, $\beta(R) - \alpha(F)$ is open in $\beta(R)$ and contains \mathcal{W}_2 and not \mathcal{W}_1, hence $\beta(R)$ is a T_1-space.

To show that $\beta(R)$ is compact, we take an ultrafilter F in $\beta(R)$. Obviously, since F is a filter in $\alpha(R)$ which is compact, there is a cluster point \mathcal{F}_I of F. As we know, there is an ultrafilter \mathcal{F}_I in R such that $\mathcal{F}_I \in \beta^\circ(R)$ and $\mathcal{F}_I \subset \mathcal{F}_I$. Since $\mathcal{F}_I \subset \mathcal{F}_I$, for any closed set F in R, $\alpha(R) - \alpha(F) \ni \mathcal{F}_I$ implies $\alpha(R) - \alpha(F) \ni \mathcal{F}_I$, and hence we can say...
that in the space $\alpha(R)$ each neighborhood of \mathcal{F}_1 is also a neighborhood of \mathcal{F}. Hence \mathcal{F}_1 is a cluster point of F, and therefore $\beta(R)$ is compact.

It is almost evident that the subset $\mathcal{R}^c = \mathcal{R}$ of $\beta(R)$ is dense and homeomorphic with R, Q.E.D.

By using Theorem 3, we can prove the

Theorem 4. A real valued bounded continuous function f defined on R is extendable to a real valued bounded continuous function f_β defined on $\beta(R)$ such that

$$f_\beta(\mathcal{R}) = f^*(\mathcal{R}).$$

Finally we give the

Theorem 5. In order that $\beta(R)$ be normal, it is necessary and sufficient that R be normal.

Proof. Suppose that $\beta(R)$ is normal, and let F_1 and F_2 be two disjoint closed sets in R. Then, the sets $F_\beta = \beta(R) \cap \alpha(F_1)$ and $F_\beta = \beta(R) \cap \alpha(F_2)$ are disjoint closed sets in $\beta(R)$. Hence there exists a continuous function f_β defined on $\beta(R)$ such that $f_\beta = 0$ on F_β, $f_\beta = 1$ on F_β and $0 < f_\beta < 1$ on $\beta(R)$. If we define a function f by the equality $f(x) = f_\beta(\mathcal{F}_1)$, it is clear that f is continuous and $0 < f < 1$ on R. Moreover, if $x \in F_1$, then $\mathcal{F}_1 \in \beta(R) \cap \alpha(F_1)$ and hence $f(x) = f_\beta(\mathcal{F}_1) = 0$. Similarly, if $x \in F_1$, then $f(x) = 1$. This shows that R is normal.

Conversely, let R be normal and let \mathcal{M}_1 and \mathcal{M}_2 be two distinct points in $\beta(R)$. Then, as \mathcal{M}_1 and \mathcal{M}_2 are maximal dual ideals in \mathcal{F}, there exist disjoint closed sets F_1 and F_2 such that $F_1 \in \mathcal{M}_1$ and $F_2 \in \mathcal{M}_2$. Since R is normal, there exists a continuous function f such that $f(x) = 0$ on F_1, $f(x) = 1$ on F_2 and $0 < f < 1$ on R. Let f_β be the function extended from f by Theorems 1 and 4, then it is clear that $f_\beta(\mathcal{M}_1) = 0$ since $F_1 \in \mathcal{M}_1$, and similarly $f_\beta(\mathcal{M}_2) = 1$. This shows that $\beta(R)$ is a Hausdorff space, and hence, as $\beta(R)$ is compact, $\beta(R)$ is normal, Q.E.D.

§ 4. Compactification of a completely regular space. In this section, we suppose first that R is a complete Hausdorff space. By considering the remark in §1, it is easily seen that, for two points

1) We means by a complete Hausdorff space the Hausdorff space such that, for any two distinct points x and y, there exists a real valued bounded continuous function taking different values at x and y.

Produced by The Berkeley Electronic Press, 2008
The following propositions are equivalent:

(α). There is no real valued continuous function f^* defined on \mathbb{R}^* such that $f^*(\mathcal{F}_1) = 0$, $f^*(\mathcal{F}_2) = 1$ and $0 < f^* < 1$ on \mathbb{R}^*.

(β). Any real valued bounded continuous function f^* defined on \mathbb{R}^* takes the same value at \mathcal{F}_1 and \mathcal{F}_2.

If two points \mathcal{F}_1 and \mathcal{F}_2 satisfies the proposition, we write $\mathcal{F}_1 \sim \mathcal{F}_2$.

Evidently the relation \sim is an equivalence relation, hence the relation divides \mathbb{R}^* into disjoint classes of equivalent points.

We introduce the notations:

\[\tau(\mathbb{R}) = \text{the totality of all classes of equivalent points}; \]
\[\{\mathcal{F}\} = \text{the class which contains } \mathcal{F}. \]

Moreover, we define the mapping ϕ_2 of \mathbb{R}^* on $\tau(\mathbb{R})$ such that

\[\phi_2(\mathcal{F}) = \{\mathcal{F}\}. \]

We shall give the

Lemma 3. If $\mathcal{F}_1 \subseteq \mathcal{F}_2$, then $f^*(\mathcal{F}_1) = f^*(\mathcal{F}_2)$, for every real valued bounded continuous function f^* on \mathbb{R}^*.

Proof. Let $f(x) = f^*(\mathcal{F}_1)$, then f is a real valued bounded continuous function and equality (1) in §1 holds. On the other hand, since $\mathcal{F}_1 \subseteq \mathcal{F}_2$, it follows that $\inf A \sup f(x) \geq \inf A \sup f(x)$ and therefore, it is clear that $f^*(\mathcal{F}_1) = f^*(\mathcal{F}_2)$. Q.E.D.

From the lemma, it is not difficult to see that:

(a). $[\mathcal{F}] \subseteq \{\mathcal{F}\}$;

(b). $\{\mathcal{F}\}$ contains a point \mathcal{F}, such that $[\mathcal{F}] \in \beta^0(\mathbb{R})$.

Since \mathbb{R} is a complete Hausdorff space, for two distinct points x and y, there exists a continuous function f such that $f(x) = 0$, $f(y) = 1$ and $0 \leq f \leq 1$ on \mathbb{R}. Then, by the equality (1) in §1, $f^*(\mathcal{F}_1) = 0$, $f^*(\mathcal{F}_2) = 1$ and $0 \leq f^* \leq 1$. Thus we have

(c). If $x \neq y$, then $\phi_2(\mathcal{F}_1) \neq \phi_2(\mathcal{F}_2)$.

Hence, if we put

\[\tilde{\tau}(\mathbb{R}) = \phi_2(\tilde{\mathbb{R}}), \]

then ϕ_2 gives an one-to-one correspondence between $\tilde{\mathbb{R}}$ and $\tilde{\tau}(\mathbb{R})$.

Moreover, if we take the set:

\[\tilde{\tau}(\mathbb{R}) \]
GOMPACTIFICATION OF TOPOLOGICAL SPACES

{Fγ | φ⁻¹(γ) is closed in \(R^* \)},

as the totality of all closed sets in \(r(R) \), then \(r(R) \) is a T-space and \(φ_2 \) is a continuous mapping.

Thus we can prove more precisely the

Theorem 6. The space \(r(R) \) is a compact Hausdorff space and contains a dense subset \(\overline{r}(R) \). Moreover, a real valued bounded continuous function \(f \) defined on \(R \) can be extended to the function \(f_r \) defined on \(r(R) \) such that

\[
f_r([G]) = f^*(G).
\]

Proof. Since \(φ_2 \) is continuous, it follows that \(r(R) \) is compact.

Let \(\{G_1\} \) and \(\{G_2\} \) be two distinct points in \(r(R) \). Then \(G_1 \neq G_2 \) and, therefore, there exists a continuous function \(f^* \) defined on \(R^* \) such that \(f^*(G_1) = 0, f^*(G_2) = 1 \) and \(0 \leq f^* \leq 1 \) on \(R^* \). Hence, if we put

\[
U_i^* = f^{-1}(\left[0, \frac{1}{2} \right]) \quad \text{and} \quad U_i^* = f^{-1}(\left(\frac{1}{2}, 1 \right]),
\]

then \(U_i^* \) and \(U_i^* \) are disjoint open sets in \(R^* \). Moreover, it is evident, from the definition of the relation \(\approx \), that if \(G \in U_i^* \) then \(\{G\} \in U_i^* \), from which it is easily seen that \(U_i^* = φ_2^{-1}(φ_i(U_i^*)) \), \(i = 1, 2 \). Hence, it follows that \(φ_i(U_i^*) \) and \(φ_i(U_i^*) \) are disjoint open sets in \(r(R) \) such that \(\{G_i\} \in φ_i(U_i^*) \) and \(\{G_2\} \in φ_2(U_i^*) \). Thus \(r(R) \) is a Hausdorff space.

To prove that \(f_r \) is the function extended from \(f \), it is sufficient to verify that \(f_r \) is continuous. Now, let \(\{G\} \) be a point of \(r(R) \), \(t = f_r(\{G\}) \), and let \(U(t) \) be an open set containing \(t \). Then, since \(f_r(\{G\}) = f^*(G) \), the set \(U^* = f^{-1}(U(t)) \) is open in \(R^* \) which contains \(G \). As it is easily seen, from \(U^* = f^{-1}(U(t)) \) and the definition of \(f_r \), that \(f_r^{-1}(U(t)) = φ_i(f^*(U(t))) = φ_i(U_i^*) \). As we proved above, \(φ_i(U_i^*) \) is open in \(R(R) \), which contains \(\{G\} \), thus \(f_r \) is continuous, Q.E.D.

Remark. In the same manner as we used above, we can define two spaces \(\overline{r}(R) \) and \(\overline{r}^o(R) \) from \(R^o \) and \(β^o(R) \) respectively. That is, if \(φ \) and \(φ_i \) are the mapping of \(R^o \) on \(\overline{r}(R) \) and that of \(β^o(R) \) on \(\overline{r}^o(R) \) respectively, then

\[
φ_i([G]) = φ_i(φ_i^{-1}([G])), \quad G \in R^o; \quad \text{and} \quad \phi_i([G]) = φ_i(φ_i^{-1}([G])), \quad G \in β^o(R).
\]

Therefore, if we denote by \(ψ \) and \(ψ_i \) the mapping of \(r(R) \) on \(\overline{r}(R) \) and that of \(r(R) \) on \(r^o(R) \) respectively, such that \(ψ_i(\{G\}) = φ_i(\{G\}) \),
\(\psi_r(\{\beta\}) = \phi_r(\{\beta\}) \), then by considering the properties (a) and (b), we can prove that \(\tau(R) \), \(\tau_1(R) \) and \(\tau^o(R) \) are homeomorphic with each other.

The space \(\tau(R) \) in the Theorem 6 is a continuous image of \(\bar{R} \), but not necessarily homeomorphic with \(\bar{R} \). As the condition of that \(\tau(R) \) and \(\bar{R} \) be homeomorphic with each other, we have the

Lemma 4. In order that \(\tau(R) \) and \(\bar{R} \) be homeomorphic, it is necessary and sufficient that \(R \) be a completely regular space.

Proof. The necessity is evident.

Conversely, suppose that \(R \) be completely regular and we shall show that the mapping \(\phi^{-1}_2 \) of \(\tau(R) \) on \(\bar{R} \) is continuous.

Let \(F \) be a closed set of \(R \) and \(\{\gamma_0\} \) be a point of \(\tau(R) - \phi_2(F* \cap \bar{R}) \). Then \(x \) does not belong to \(F \), and, since \(R \) is completely regular, there exists a real valued continuous function defined on \(R \) such that \(f(x) = 0, f(y) = 1 \) for every point \(y \in F \) and \(0 \leq f \leq 1 \). Let \(f_\gamma \) be the function extended from \(f \) by the Theorems 1 and 6, then it is clear that \(f_\gamma(\{\gamma_0\}) = 0 \) and \(f_\gamma(\{\gamma\}) = 1 \) for every point \(\{\gamma\} \in \phi_2(F*) \). This implies that the open set \(\{\gamma\} \cap [0, \frac{1}{2}] \) of \(\tau(R) \) contains \(\{\gamma_0\} \) and does not intersect with \(\phi_2(F*) \), and hence the open set \(f_\gamma^{-1}(0, \frac{1}{2}) \cap \tau(R) \) of \(\tau(R) \) contains \(\{\gamma_0\} \) and is contained in \(\tau(R) - \phi_2(F* \cap \bar{R}) \). This shows that \(\tau(R) - \phi_2(F* \cap \bar{R}) \) is open in \(\tau(R) \) and so \(\phi_2(F* \cap \bar{R}) \) is closed in \(\tau(R) \), Q.E.D.

Thus, as we know, there is the well known

Čech's Theorem. For a completely regular space \(R \), there is a space \(W \) satisfying the following conditions:

1. \(W \) is a compact Hausdorff space;
2. \(R \subseteq W \) and \(\bar{R} = W \);
3. Any real valued bounded continuous function defined on \(R \) can be extended on \(W \).

Moreover, the spaces which satisfies the three conditions given above are homeomorphic with each other.

In this place, we will give a proof of this theorem for the purpose to make clear the structure of the space \(W \).

Proof. The space \(\tau(R) \) is certainly a space satisfying the conditions (1), (2) and (3), thinking \(\tau(R) = \bar{R} \) be \(R \). Hence the existence is true.
Let W be a space satisfying the conditions (1), (2) and (3), and we will prove that W and $\tau(R)$ are homeomorphic, by dividing the proof into seven parts.

(a). Let M be a subset of W. Then, by using the condition (1), it is not difficult to see that an ultrafilter $\mathcal{F}(M)$ in M converges to only one point w which belongs to \bar{M}, and conversely, if $w \in \bar{M}$, then there exists an ultrafilter $\mathcal{F}(M)$ in M such that $\mathcal{F}(M)$ converges to w.

(b). Let $g(w)$ be a real valued bounded continuous function defined on W. Let \mathcal{F} be an ultrafilter in R such that \mathcal{F} converges to a point w and let $g(w) = t$. Since $g(w)$ is continuous, for every neighborhood $U(t)$ of t there exists a neighborhood $V(w)$ such that $U(t) \ni g(V(w))$, and from which we have:

$$g(w) = \inf_A \sup_{x} g(x) = \sup_A \inf_{x} g(x).$$

If we define a function f such that

$$f(x) = g(x), \ x \in R \subset W,$$

then $f(x)$ is continuous and the function f^* defined by

$$f^*(\mathcal{F}) = \inf_A \sup_{x} f(x) = \sup_A \inf_{x} f(x)$$

is the function obtained in the Theorem 1. Hence it is evident that if \mathcal{F} converges to w, then

$$g(w) = f^*(\mathcal{F}).$$

Conversely, let f^* be a continuous function defined on R^*. Then the function f defined by $f(x) = f^*(\mathcal{F}_w)$ is continuous on R. On the other hand, by the condition (3), there exists a continuous function $g(w)$ defined on W such that $f(x) = g(x)$ for $x \in R$. Since $g(w)$ is continuous, from what we have proved above, we have

$$g(w) = f^*(\mathcal{F}),$$

for any ultrafilter \mathcal{F} in R, which converges to w.

(c). For a point $w \in W$, if we denote by $\{\mathcal{F}\}_w$ the family of all ultrafilters \mathcal{F} in R which converges to w in W, then R^* is divided into disjoint classes $\{\mathcal{F}\}_w$. From (b), it follows that $\{\mathcal{F}\}_w \subset \{\mathcal{F}\}$.

Inagaki and Sugawara: Compactification of Topological Spaces
Produced by The Berkeley Electronic Press, 2008

11
(d). Let w_1 and w_2 be two distinct points of W, then there exists a real valued bounded continuous function $g(w)$ defined on W such that $g(w_1) \neq g(w_2)$. On the other hand, by (a) and the condition (2), there exist two ultrafilters \mathcal{F}_1 and \mathcal{F}_2 in R such that \mathcal{F}_1 converges to w_1 and \mathcal{F}_2 converges to w_2. Therefore, by (b), it follows that $f^*(\mathcal{F}_1) \neq f^*(\mathcal{F}_2)$, from which $\mathcal{F}_1 \neq \mathcal{F}_2$. This shows that $\{\mathcal{F}\} = \{\mathcal{F}_m\}$ for every point $w \in W$. Then we have, for $\{\mathcal{F}\}$ there exists a point $w \in W$ such that $\{\mathcal{F}\} = \{\mathcal{F}_m\}$.

(e). By (d), we can define the function ϕ_2 of W on $\tau(R)$ such that

$$\phi_2(w) = \{\mathcal{F}\}.$$

It is evident that ϕ_2 is one-to-one.

(f). We shall prove that ϕ_2 is continuous. Let $\phi_2(w_0) = \{\mathcal{F}_0\}$ and U_γ be an open set of $\tau(R)$ containing $\{\mathcal{F}_0\}$. By the normality of $\tau(R)$, there exists a real valued continuous function f_γ defined on $\tau(R)$ such that $f_\gamma(\{\mathcal{F}_0\}) = 0$, $f_\gamma(\{\mathcal{F}\}) = 1$ on $\tau(R) - U_\gamma$ and $0 \leq f_\gamma \leq 1$ on $\tau(R)$. If we define the function f^* on $\tau(R)$ such that $f^*(\{\mathcal{F}\}) = f_\gamma(\{\mathcal{F}\})$, then f^* is a real valued bounded continuous function on $\tau(R)$, and, by (b), we get a continuous function g defined on W.

We shall show that the open set $V = g^{-1}(\{0, \frac{1}{2}\})$ of W contains w_0 and $\phi_2(V) \subseteq U_\gamma$. By (b), $g(w_0) = f^*(\mathcal{F}_0) = f_\gamma(\{\mathcal{F}_0\}) = 0$ and so V contains w_0. Let w be a point of V, then $f_\gamma(\phi_2(w)) = f^*(\phi_2^{-1}(\phi_2(w))) = g(w) \in (0, \frac{1}{2})$ and hence $\phi_2(w)$ does not belong to $\tau(R) - U_\gamma$ and this shows that $\phi_2(w) \in U_\gamma$. Thus the proof of the continuity of ϕ_2 is established.

(g). Since W is compact and $\tau(R)$ is a Hausdorff space, from (e) and (f), the mapping ϕ_2 is a homeomorphism. Thus the theorem is completely proved, Q.E.D.

Remark. Finally, if $\tau(R)$ is homeomorphic with $\beta(R)$, then $\beta(R)$ is normal. Then, by Theorem 5, the space R is normal.

Conversely, let R be normal and let \mathcal{F}_1 and \mathcal{F}_2 be two distinct points of $\beta(R)$. Since \mathcal{F}_1 and \mathcal{F}_2 are maximal dual ideals in \mathcal{L}, there exists two distinct closed sets F_1 and F_2 in R such that $F_1 \in \mathcal{F}_1$, $F_1 \in \mathcal{F}_2$, $F_2 \in \mathcal{F}_1$, and $F_2 \in \mathcal{F}_2$. Hence it is evident that $\beta(R) - \alpha(F_1)$ and $\beta(R) - \alpha(F_2)$ are disjoint open sets in $\beta(R)$ and the former contains \mathcal{F}_2, the latter \mathcal{F}_1. Then $\beta(R)$ is a Hausdorff space. Hence $\beta(R)$
satisfies the three conditions (1), (2) and (3) given in the Čech's Theorem, and, therefore, $r(R)$ is homeomorphic with $\beta(R)$.

Department of Mathematics,
Okayama University

(Received May 26, 1952)