Signatures on a Ring

Teruo Kanzaki*
SIGNATURES ON A RING

Teresa Kanzaki

Introduction. The purpose of this paper is to define and to investigate a
generalization of signatures. As is well known, an ordering of a field \(K\) is given
by a signature \(\sigma: K^* \to \{\pm 1\}\), or a ring homomorphism \(\sigma: W(K) \to \mathbb{Z}\). More
generally, an ordering of higher level of \(K\) is given by a character \(\chi: K^* \to S^1\)
which is called a signature of \(K\) in [4]. We give a generalization of such
signatures, and a general theory of signatures of a ring. Let \(R\) be any ring with
identity 1, and \(F\) a field-like semigroup (simply called \(f\)-semigroup) with zero
element 0, unit element 1 and a unique element \(-1\) of order 2, which is defined in
§1. A signature of \(R\) over \(F\) is defined as a map \(\sigma: R \to F\) satisfying
conditions \(\sigma(-1) = -1\), \(\sigma(ab) = \sigma(a)\sigma(b)\), and \(\sigma(a+b) = \sigma(b)\) providing \(\sigma(a) = 0\) or \(\sigma(a) = \sigma(b)\), which includes notions of orderings or higher level orderings
of a field. Indeed, for a field \(R\), if one takes \(F = GF(3) = \{0, 1, -1\}\), the
signature \(\sigma\) gives an ordering of the field \(R\). If one takes \(F = \{0\} \cup S^1\), the
signature \(\sigma\) coincides with one in [4]. This definition is motivated by the results
of Craven [5], [6], [7], and Becker [2], [3]. In §1, we introduce a topology on
the set \(X(R, F)\) of all signatures of \(R\) over \(F\), which is a generalization of the
space of “real spectrum” in [8] and “space of orderings” in [16]. In §3, under
the assumption that \(R\) is a commutative ring and \(F\) is a finite-\(f\)-semigroup, it is
proved that for the quotient ring \(S^{-1}R\) by a multiplicatively closed set \(S\) or \(R\),
the topological space \(X(S^{-1}R, F)\) is homeomorphic to a subspace \(X^f(R, F)\) of
\(X(R, F)\), and for a semilocal commutative ring \(R\), that there is a one to one
correspondence between the set of infinite primes of level 1 and the set of ring
homomorphism of the Witt ring \(W(R)\) onto the integers. Throughout this paper,
we assume that every ring has identity 1, every ring homomorphism maps 1 to
1, and the unit group of the ring \(R\) is denoted by \(R^*\). Furthermore, the number
of elements of a finite set \(F\) is denoted by \(|F|\), and for sets \(A\) and \(B\), \(A \setminus B := \{a \in A \mid a \notin B\}\).

1. Signatures over any \(f\)-semigroup. Let \(R\) be any (non-commutative)
ring with identity 1.

Definition. A multiplicative abelian semigroup \(F\) with unit element 1 and
zero element 0, i.e. \(x1 = 1x = x, x0 = 0x = 0\) for \(\forall x \in F\), is called an \(f\)-semigroup (field-like semigroup), if the subset \(F^* = F \setminus \{0\}\) is a group with a
unique element \(-1\) of order 2.

Any field with characteristic not 2 is an f-semigroup.

Definition. Let \(F\) be an f-semigroup. A map \(\sigma: R \to F\) is called a signature of \(R\) over \(F\), if it satisfies the following conditions:

1) \(\sigma(-1) = -1\),
2) \(\sigma(ab) = \sigma(a)\sigma(b)\) for all \(a, b \in R\),
3) either \(\sigma(a) = 0\) or \(\sigma(a) = \sigma(b)\) implies \(\sigma(a+b) = \sigma(b)\).

By [10], a subset \(P\) of \(R\) which is closed under the addition and multiplication of \(R\), and which does not contain \(-1\), is called a preprime, and a maximal preprime is called a prime of \(R\). A preprime containing 1 will be called an infinite preprime, and a maximal infinite preprime of \(R\). Furthermore, an infinite preprime \(P\) will be called an infinite quasiprime, if \(P \cap -P\) is a two sided ideal of \(R\) such that \(R/(P \cap -P)\) is an integral domain.

Notation. For a signature \(\sigma: R \to F\) of \(R\) over \(F\) and \(a \in F\), we denote by \(F^*\), \(G(\sigma)\), \(\mathcal{V}_\sigma(a)\) and \(P(\sigma)\) the following sets; \(F^* = F \setminus \{0\}\), \(G(\sigma) = \text{Im} \sigma \cap F^*\), \(\mathcal{V}_\sigma(a) = \{r \in R \mid \sigma(r) = a\}\) and \(P(\sigma) = \mathcal{V}_\sigma(a) \cup \mathcal{V}_\sigma(-a)\).

Proposition 1.1. Let \(\{\mathcal{V}_\alpha \mid \alpha \in F\}\) be a family of subsets of \(R\). There exists a signature \(\sigma: R \to F\) of \(R\) over \(F\) with \(\mathcal{V}_\sigma(\alpha) = \mathcal{V}_\alpha\) for all \(\alpha \in F\), if and only if the following conditions hold:

1) \(R = \bigcup_{\alpha \in F} \mathcal{V}_\alpha\), and \(\mathcal{V}_\alpha \cap \mathcal{V}_\beta = \phi\) for \(\alpha \neq \beta\) in \(F\),
2) \(-1 \in \mathcal{V}_{-1}\),
3) \(\mathcal{V}_a \mathcal{V}_b \subseteq \mathcal{V}_{ab}\), if \(\mathcal{V}_a \neq \phi\) and \(\mathcal{V}_b \neq \phi\),
4) \(\mathcal{V}_a + \mathcal{V}_b \subseteq \mathcal{V}_a\) and \(\mathcal{V}_a + \mathcal{V}_b \subseteq \mathcal{V}_b\) for \(\mathcal{V}_a \neq \phi\).

The proof is immediately from the definition of signature.

Corollary 1.2. Let \(\sigma: R \to F\) be a signature.

1) \(\mathcal{V}_\sigma(a) = P(\sigma) \cap -P(\sigma)\) is a prime ideal, and \(P(\sigma)\) is an infinite quasiprime of \(R\). \(G(\sigma)\) is a subsemigroup of \(F^*\) containing \(-1\).
2) If \(G(\sigma)\) is a finite set, then it is a group with even order.

Lemma 1.3. Let \(\sigma\) and \(\tau\) be signatures of \(R\) over \(F\), and assume that \(G(\sigma)\) is a subgroup of \(F^*\).

1) If \(\mathcal{V}_\sigma(a) \subseteq \mathcal{V}_\tau(a)\), then the following conditions are equivalent:
 1) \(\mathcal{V}_\sigma(a) = \mathcal{V}_\tau(a)\),
SIGNATURES ON A RING

2) \(\mathfrak{V}_a(\sigma) \cap \mathfrak{V}_a(\tau) = \emptyset \) for some \(a \in G(\sigma) \).
3) \(\mathfrak{V}_a(\sigma) \cap \mathfrak{V}_a(\tau) = \emptyset \) for all \(a \in G(\sigma) \).

Suppose \(P(\sigma) \subseteq P(\tau) \). Then \(\mathfrak{V}_a(\sigma) = \mathfrak{V}_a(\tau) \) if and only if \(\mathfrak{V}_a(\sigma) \subseteq \mathfrak{V}_a(\tau) \).

Proof. (1) \(\implies 3 \) and (3) \(\implies 2 \) are easy.

(2) \(\implies 1 \): Suppose \(\mathfrak{V}_a(\sigma) \neq \mathfrak{V}_a(\tau) \), then \(H = \{ a \in G(\sigma) \mid \mathfrak{V}_a(\sigma) \cap \mathfrak{V}_a(\tau) \neq \emptyset \} \) is a non-empty subset of \(G(\sigma) \). By (3) in (1.1), it follows that \(a \in H \) and \(\beta \in G(\sigma) \) imply \(a\beta \in H \). Since \(G(\sigma) \) is a group we get \(H = G(\sigma) \).

(2) is easy from (1).

Definition. By \(X(R, F) \), we denote the set of all signatures of \(R \) over \(F \). On the \(f \)-semigroup \(F \), we can define a topology such that \(\{0\} \) is a closed subsets and \(\{a\} \) is an open subset of \(F \) for every \(a \in F^* \). For the discrete space \(R \), the power space \(F^\# \) has an open base consisting of \(\{ f \in F^\# \mid f(a_i) \in U_i ; i = 1, 2, \ldots, n \} \) for every finite subset \(\{a_1, a_2, \ldots, a_n\} \) of \(R \) and any open subsets \(U_1, U_2, \ldots, U_n \) of \(F \). We introduce a topology on \(X(R, F) \) as a subspace of \(F^\# \).

Proposition 1.4. The topological space \(X(R, F) \) has the following properties:

1) If \(F \) is a finite set, then \(X(R, F) \) is a compact space.
2) For any \(a \in R \) and \(a \in F^* \), \(H_a(a) = \{ \sigma \in X(R, F) \mid \sigma(a) = a \} \) is an open subset of \(X(R, F) \). The finite intersections of \(H_a(a) \)'s for \(a \in R \) and \(a \in F^* \) form an open basis of \(X(R, F) \), so \(X(R, F) \) is a \(T_0 \)-space.
3) For any \(a \in R \) and \(a \in F \), \(H_a(a) = \{ \sigma \in X(R, F) \mid \sigma(a) = 0 \} \) and \(H^*(a) = H(a) \cup H_a(a) \) are closed subset of \(X(R, F) \).

Proof. (1): Suppose \(|F| < \infty \). By \(F_a \), we denote the discrete space on the set \(F \) in order to distinguish from the above topology on \(F \). It is easy to see that \(X(R, F) \) is a closed subset of \((F_a)^\# \). Since \(X(R, F) \) is a compact subspace of \((F_a)^\# \) which is compact by Tychonoff's theorem, so is the subspace \(X(R, F) \) of \(F^\# \) which is the image of the continuous identity map \(1 : (F_a)^\# \to F^\# \).

(2): From the definitions of the topology on \(F \) and \(F^\# \), it follows that the subsets \(H_a(a) \) for \(a \in R \) and \(a \in F^* \) form a subbasis of open sets in \(X(R, F) \). Suppose \(\sigma \neq \tau \) in \(X(R, F) \). There is an \(a \in F^* \) with \(\mathfrak{V}_a(\sigma) \neq \mathfrak{V}_a(\tau) \), and there exists an element \(a \in R \) such that either \(a \in \mathfrak{V}_a(\sigma) \) with \(a \notin \mathfrak{V}_a(\tau) \) or \(a \in \mathfrak{V}_a(\tau) \) with \(a \notin \mathfrak{V}_a(\sigma) \), that is, \(H_a(a) \) is an open subset of \(X(R, F) \) such that either \(\sigma \in H_a(a) \) with \(\tau \notin H_a(a) \) or \(\tau \in H_a(a) \) with \(\sigma \notin H_a(a) \). Hence, \(X(R, F) \) is \(T_0 \)-space.

(3): Since \(X(R, F) = \bigcup_{a \in F} H_a(a) \) for any \(a \in R \), it follows that \(H_a(a) \) and
H^a(a) are closed subsets in X(R, F).

Notation. By F, we denote the category of f-semigroups in which morphism $f : F_1 \to F_2$ satisfies $f(-1) = -1$, $f(0) = 0$ and $f(xy) = f(x)f(y)$ for any $x, y \in F_1$. By R and T, we denote the category of rings with identity 1, and the category of topological spaces, respectively.

Proposition 1.5. For any morphisms $f : F_1 \to F_2$ in F and $g : R_2 \to R_1$ in R, map $X(g, f) : X(R_1, F_1) \to X(R_2, F_2)$: $\sigma \mapsto f \cdot \sigma \cdot g$ is continuous, so $X(-, -) : R^* \times F \to T$ is a functor.

Proof. Let $f : F_1 \to F_2$ and $g : R_2 \to R_1$ be morphisms in categories F and R, respectively. To show that $X(g, f)$ is continuous, it is sufficient to show that for any $\sigma \in X(R_1, F_1)$ and an open subset $H_{a'}(a')$ containing $X(g, f)(\sigma) (= f \cdot \sigma \cdot g)$ of $X(R_2, F_2)$, $X(g, f)^{-1}(H_{a'}(a'))$ is an open subset of $X(R_1, F_1)$. Since $f \cdot \sigma \cdot g(a') = a' \neq 0$ and $f^{-1}(a') \subseteq F^*$. $X(g, f)^{-1}(H_{a'}(a')) = \bigcup_{r \in f^{-1}(a')} H_{a'}(a')$ is an open subset of $X(R_1, F_1)$.

Theorem 1.6. Let a be a two sided ideal of R and $\psi_a : R \to R/a$; $r \mapsto [r] = r + a$ the canonical ring homomorphism. Then, $X_\sigma(R, F) : = \{ \tau \in X(R, F) | a \subseteq \psi_\sigma(\tau) \}$ is a closed subset of $X(R, F)$, and the map $X(\psi_a, I)$ induces a homeomorphism $X(R/a, F) \cong X_\sigma(R, F)$.

Proof. For any $\sigma \in X(R, F) \setminus X_\sigma(R, F)$, $a \notin \psi_\sigma(\sigma)$ and there is an $a \in a$ with $a \notin \psi_\sigma(\sigma)$, hence $\sigma \in H_{a\sigma}(a) \cap H_{\sigma\sigma}(a) \cap X_\sigma(R, F) = \emptyset$, so $X_\sigma(R, F)$ is a closed subset of $X(R, F)$. For any $\sigma \in X_\sigma(R, F)$, a signature $[\sigma] : R/a \to F$ is naturally defined by $[\sigma]([r]) = \sigma(r)$ for $[r] \in R/a$, because of $\sigma(a + r) = \sigma(r)$ for all $a \in a$ ($\subseteq \psi_\sigma(\sigma)$). Hence, $X(\psi_a, I) : X/(R/a, F) \to X_\sigma(R, F)$ is a bijection, and is a homeomorphism, because of $X(\psi_a, I)(H_\sigma([r])) = X_\sigma(R, F) \cap H_\sigma(r)$ for any $r \in F$ and $a \in F^*$.

Notation. For any $\sigma \in X(R, F)$, we use notations $\phi_\sigma \text{ and } X_\sigma(R, F)$ instead of $\psi_{\sigma \psi_\sigma}(R, F)$ and $X_{\sigma \psi_\sigma}(R, F)$, i.e. $\phi_\sigma : R \to R/\psi_\sigma(\psi_\sigma(\sigma); r \mapsto [r] = r + \psi_\sigma(\sigma)$ and $X_\sigma(R, F) : = \{ \tau \in X(R, F) | \psi_\sigma(\sigma) \subseteq \psi_\sigma(\tau) \}$, respectively.

Corollary 1.7. For any $\sigma \in X(R, F)$, $X_\sigma(R, F)$ is a closed subset of $X(R, F)$, and $X(\phi_\sigma, I) : X(R/\psi_\sigma(\sigma), F) \to X_\sigma(R, F)$ is a homeomorphism.

Remark 1.8. (1) For $\sigma \in X(R, F)$, $\sigma(R^*)$ is a subgroup of F^*, and $\sigma(R^*)$
SIGNATURES ON A RING

\(\subseteq G(\sigma) \). If \(u \in R^* \) and \(\sigma(u) = \alpha \), then \(u^{-1} \in \mathcal{S}_\sigma^{-1}(\sigma) \) and \(\mathcal{S}_\sigma(\sigma) = u\mathcal{S}_1(\sigma) = \mathcal{S}_1(\sigma)u \).

(2) For any \(u \in R^* \), \(H_0(u) = \emptyset \) and \(H_*(u) = H_*(u) \) is an open subset of \(X(R, F) \) for all \(\alpha \in F^* \). If \(R \) is a division ring, then \(X(R, F) \) is Hausdorff and totally disconnected. Furthermore, if \(|F| < \infty \), then \(X(R, F) \) is a Boolean space, i.e. a totally disconnected, compact and Hausdorff space.

(3) For any \(a, b \in R \) and \(\alpha, \beta \in F \), the following equalities and inequalities hold:

1. \(H_*(\alpha) = H_*(-\alpha) \) and \(H_*(\alpha) \cap H_*(\alpha) = H_0(\alpha) \).
2. \(H_*(\alpha) \cap H_*(\beta) \subseteq H_*(\alpha \beta) \) and \(H_*(\alpha) \cap H_*(\beta) \subseteq H_*(\alpha + \beta) \).
3. \(H_0(\alpha \beta) = H_0(\alpha), H_0(0) = H_1(1) = X(R, F) \) and \(H_0(1) = H_*(1) = \phi \) for all \(\alpha \in F^* \) with \(\alpha \neq 1 \).

From (1.8), the following proposition immediately follows:

Proposition 1.9. For any \(\sigma \in X(R, F) \), the conditions (1) and (2) are equivalent, and (1) \(\implies \) (3). If \(R \) is commutative, then the converse (3) \(\implies \) (1) holds.

1. \(\sigma(R^*) = G(\sigma) \).
2. For any \(\alpha \in G(\sigma) \), there is an \(u \in R^* \) with \(\mathcal{S}_\sigma(\sigma) = u\mathcal{S}_1(\sigma) = \mathcal{S}_1(\sigma)u \).
3. \(R^*/(R^* \cap \mathcal{S}_1(\sigma)) \cong G(\sigma) \) and \(\mathcal{S}_\sigma(\sigma)\mathcal{S}_\sigma(\sigma) = \mathcal{S}_\sigma(\sigma) \) for every \(\alpha, \beta \in G(\sigma) \).

2. **Signature over a finite f-semigroup.** In this section, we assume that \(F \) is a finite set, and deal with signatures \(\sigma : R \to F \) of \(R \) over a finite f-semigroup \(F \) so that \(G(\sigma) \) is a finite group with an even order.

Lemma 2.1. For any \(\sigma \in X(R, F) \) and a prime ideal \(\mathcal{P} \) of \(R \) with an integral residue domain \(R/\mathcal{P} \), it follows that

1. \(G_0(\sigma) := \{ \alpha \in G(\sigma) \mid \mathcal{P}_\sigma(\sigma) \not\subseteq \mathcal{P} \} \) is a subgroup of \(G(\sigma) \), so is \(G_1(\sigma) : = \{ \alpha \in G(\sigma) \mid \mathcal{P}_\sigma(\sigma) \not\subseteq \mathcal{P}_\sigma(\tau) \} \) for any \(\tau \in X(R, F) \), and
2. \(\mathcal{P}_\sigma(\sigma) \not\subseteq \mathcal{P} \) (resp. \(\mathcal{P}_\sigma(\sigma) \not\subseteq \mathcal{P}_\sigma(\tau) \)) implies \(G_0(\sigma) = G(\sigma) \) (resp. \(G_1(\sigma) = G(\sigma) \)).

Proof. (1) follows from that \(|F| < \infty \) and \(R/\mathcal{P} \) is an integral domain.

(2): For any \(\alpha \in G(\sigma), \mathcal{P}_\sigma(\sigma) \subseteq \mathcal{P} \) implies that \(\mathcal{P}_\sigma(\sigma) + \mathcal{P}_\sigma(\sigma) \subseteq \mathcal{P}_\sigma(\sigma) \subseteq \mathcal{P} \) and \(\mathcal{P}_\sigma(\sigma) \subseteq \mathcal{P} \), so (2) follows.

Proposition 2.2. For \(\sigma, \tau \in X(R, F) \) with \(P(\sigma) \subseteq P(\tau) \), there is a group
epimorphism \(f : G_\tau(\sigma) \to G(\sigma) \) such that
\[
\mathcal{P}_\sigma(\tau) \subseteq \bigcup_{\alpha \in \mathcal{P}_\tau(\sigma)} \mathcal{P}_\sigma(\sigma) \subseteq \mathcal{P}_\sigma(\tau) \cup \mathcal{P}_\rho(\tau)
\]
for all \(\beta \in G(\tau) \).

Proof. A map \(f : G_\tau(\sigma) \to G(\sigma) \) can be defined by making the value \(f(a) = \tau(a) \) with \(a \in \mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \) for \(a \in G_\tau(\sigma) \). Because, for \(a \in G_\tau(\sigma) \) and any \(a, a' \in \mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \), we have \(1 = 1(ba) = \tau(b) \tau(a) \) and \(1 = \tau(ba') = \tau(b) \tau(a') \) for any \(b \in \mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \) (\(\neq \phi \)). Since \(\mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \) (\(\subseteq \mathcal{P}(\sigma) \setminus \mathcal{P}(\tau) \subseteq \mathcal{P}(\tau) \setminus \mathcal{P}_\sigma(\tau) = \mathcal{P}_1(\tau) \)). Since for \(a, a' \in G_\tau(\sigma), a \in \mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \) and \(a' \in \mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \) imply \(aa' \in \mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \), we get \(f(a, a') = \tau(aa') = \tau(a) \tau(a') = f(a)f(a') \). so \(f \) is a homomorphism. For any \(\beta \in G(\tau) \), there is an \(a \in G(\sigma) \) with \(\mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \neq \phi \), because of \(\mathcal{P}_\sigma(\sigma) \cap \mathcal{P}_\sigma(\tau) \subseteq \mathcal{P}_\sigma(\tau) \cap \mathcal{P}_\sigma(\tau) = \phi \). Hence, there is a \(b \in \mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) \) with \(f(a) = \tau(b) = \beta \), so \(f \) is surjective. Suppose \(\beta \in G(\tau) \) and \(x \in \mathcal{P}_\tau(\sigma) \). Since \(\mathcal{P}_\sigma(\sigma) \setminus \mathcal{P}_\sigma(\tau) = \phi \), there exists an \(a \in G(\sigma) \) with \(x \in \mathcal{P}_\sigma(\sigma) \), so we get \(f(a) = \beta \) and \(\mathcal{P}_\sigma(\sigma) \subseteq \mathcal{P}_\sigma(\tau) \cup \mathcal{P}_\rho(\tau) \) for all \(a \in G_\tau(\sigma) \) with \(f(a) = \beta \).

Definition. Let \(G \) and \(H \) be groups. A partial map \(f : G \to H \) which is a homomorphism of a subgroup \(G_1 \) onto \(H \) will be called a partial epimorphism, and for \(b \in H, f^{-1}(H) \) and \(f^{-1}(b) \) denote subsets \(f^{-1}(H) := G \), \(f^{-1}(b) := \{ x \in G_1 \mid f(x) = b \} \) of \(G \).

Theorem 2.3. Let \(\sigma \) and \(\tau \) be elements of \(X(R, F) \). \(P(\sigma) \subseteq P(\tau) \) holds if and only if there is a partial epimorphism \(f : G(\sigma) \to G(\tau) \) with \(\mathcal{P}(\sigma) \subseteq \bigcup_{\mu \in \mathcal{P}(\tau)} \mathcal{P}(\sigma) \subseteq \mathcal{P}(\tau) \cup \mathcal{P}(\rho) \) for every \(\beta \in G(\tau) \).

Proof. By (2.2), the "only if" part is proved. Suppose that \(f : G(\sigma) \to G(\tau) \) is a partial epimorphism and \(\mathcal{P}(\sigma) \subseteq \bigcup_{\mu \in \mathcal{P}(\tau)} \mathcal{P}(\sigma) \subseteq \mathcal{P}(\tau) \cup \mathcal{P}(\rho) \) for every \(\beta \in G(\tau) \). Then we have \(\bigcup_{\mu \in \mathcal{P}(\tau)} \mathcal{P}(\sigma) \subseteq \bigcup_{\mu \in \mathcal{P}(\tau)} (\bigcup_{\mu \in \mathcal{P}(\tau)} \mathcal{P}(\sigma)) \subseteq \bigcup_{\mu \in \mathcal{P}(\tau)} \mathcal{P}(\sigma) \), and so \(\mathcal{P}(\sigma) \subseteq \mathcal{P}(\tau) \). Since \(\mathcal{P}_1(\sigma) \subseteq \bigcup_{\mu \in \mathcal{P}(\tau)} \mathcal{P}(\sigma) \subseteq \mathcal{P}(\tau) \cup \mathcal{P}(\rho) \), we get \(P(\sigma) = \mathcal{P}(\sigma) \cup \mathcal{P}_1(\sigma) \subseteq \mathcal{P}(\tau) \).

Corollary 2.4. Let \(\sigma \) and \(\tau \) be elements of \(X(R, F) \).

1. \(P(\sigma) \subseteq P(\tau) \) and \(\mathcal{P}(\sigma) = \mathcal{P}(\tau) \) hold, if and only if there is an epimorphism \(f : G(\sigma) \to G(\tau) \) with \(\mathcal{P}(\sigma) = \bigcup_{\mu \in \mathcal{P}(\tau)} \mathcal{P}(\sigma) \) for every \(\beta \in G(\tau) \).
2. \(P(\sigma) \subseteq P(\tau) \) and \(|G(\sigma)| = |G(\tau)| \) hold, if and only if there is an isomorphism \(f : G(\sigma) \to G(\tau) \) with \(\mathcal{P}(\sigma) = \mathcal{P}(\tau) \) for every
\(a \in G(\sigma). \)

(3) \(P(\sigma) = P(\tau) \) holds, if and only if there is an isomorphism \(f : G(\sigma) \rightarrow G(\tau) \) with \(\tau = f \cdot \sigma \) (i.e. \(\mathcal{P}_a(\sigma) = \mathcal{P}_{f(\sigma)}(\tau) \) for every \(a \in G(\sigma). \))

Proof. (1) : Suppose \(P(\sigma) \subseteq P(\tau) \) and \(\mathcal{P}_0(\sigma) = \mathcal{P}_0(\tau). \) By (2.2), there is an epimorphism \(f : G_1(\sigma) \rightarrow G(\tau) \) with \(\mathcal{P}_a(\tau) \subseteq \bigcup_{a \in f^{-1}(\beta)} \mathcal{P}_a(\sigma) \subseteq \mathcal{P}_0(\tau) \cup \mathcal{P}_a(\tau) \) for all \(\beta \in G(\tau). \) The identity means that \(\mathcal{P}_a(\tau) = \bigcup_{a \in f^{-1}(\beta)} \mathcal{P}_a(\sigma) \) and \(G_1(\sigma) = G(\sigma). \) The converse is easy by (2.3).

(2) follows from that a partial epimorphism \(f : G(\sigma) \rightarrow G(\tau) \) with \(|G(\sigma)| = |G(\tau)| \) is an isomorphism.

(3) is easy from (1) and (2).

Definition. On \(X(R, F), \) we can define an equivalent relation \(\sim \) as follows: For \(\sigma, \tau \in X(R, F), \) \(\sigma \sim \tau \) if and only if there is an isomorphism \(f : G(\sigma) \rightarrow G(\tau) \) with \(\tau = f \cdot \sigma, \) i.e. \(P(\sigma) = P(\tau). \) By \(X^*(R, F), \) we denote the quotient set \(X(R, F)/\sim. \) Then, we can identify \(X^*(R, F) \) with the sets \(P(\sigma) \) for all \(\sigma \in X(R, F), \) and introduce the Zariski topology on \(X^*(R, F), \) that is, the finite intersection of \(D(a) := \{ P(\sigma) \mid a \notin P(\sigma), \sigma \in X(R, F) \} \) for all \(a \in R. \)

Proposition 2.5. The map \(P(-) : X(R, F) \rightarrow X^*(R, F); \) \(\sigma \sim \rightarrow P(\sigma) \) is a continuous map, so \(X^*(R, F) \) is a compact space.

Proof. For any \(a \in R, \) \(P^{-1}(D(a)) = \{ \sigma \in X(R, F) \mid \sigma(a) \neq 0, 1 \} = \bigcup_{a \in G(\sigma) - 1} H_0(\sigma), \) so \(P^{-1}(D(a)) \) is an open subset of \(X(R, F). \)

Definition. A subset \(Y \) of \(X(R, F) \) is said to be irreducible, if for any closed subset \(A \) and \(B \) of \(X(R, F), \) \(Y \subseteq A \cup B \) implies either \(Y \subseteq A \) or \(Y \subseteq B. \)

The following lemma is immediately obtained from the above definition:

Lemma 2.6. A subset \(Y \) of \(X(R, F) \) is irreducible, if and only if for any \(H_0(a_1), H_0(a_2), \ldots, H_0(a_n), \) \(Y \subseteq \bigcup_{i=1}^{n} H_0(a_i) \) implies \(Y \subseteq H_0(a_i) \) for some \(i. \)

Theorem 2.7. If \(Y \) is a non-empty irreducible subset of \(X(R, F) \), there exists a \(\sigma \in X(R, F) \) such that the closure \(\text{Cl}(\{\sigma\}) \) of \(\{\sigma\} \) coincides with the closure \(\text{Cl}(Y) \) of \(Y, \) and the following identities hold : \(P(\sigma) = \bigcap_{\tau \in Y} P(\tau) \) and \(\mathcal{P}_a(\sigma) = (\bigcap_{\tau \in Y} \mathcal{P}_a(\tau)) \setminus \mathcal{P}_a(\sigma) \) for \(a \in F^*. \)
Proof. Let Y be a non-empty irreducible subset of $X(R, F)$. We set $\mathcal{S}_a(Y) := \cap_{r \in R} \mathcal{S}_a(r) (\subseteq \{a \in R \mid Y \subseteq H_o(a)\})$ and $\mathcal{S}_a(Y) := (\cap_{r \in R} \mathcal{S}_a(r) \cup \mathcal{S}_a(Y)) \setminus \mathcal{S}_a(Y) (\subseteq \{a \in R \mid Y \not\subseteq H_o(a)\})$ for $a \in F^*$. Then, we have $\mathcal{S}_a(Y) \cup \mathcal{S}_a(Y) = \{a \in R \mid Y \subseteq H_o(a)\}$ for every $a \in F^*$. It is easy to check the conditions of (1.1) for the set $\{\mathcal{S}_a(Y) \mid a \in F\}$. But, we try only to check for conditions 1) and 3).

1): To show $R = \bigcup_{a \in F} \mathcal{S}_a(Y)$, suppose $a \in R \setminus \mathcal{S}_a(Y)$. Put $\{a, a_2, \ldots, a_r\} = \{\tau(a) \mid \tau \in Y\} \cap F^* (\neq \emptyset)$, then it means $Y \subseteq H_o(a) \cup H_o(a_2) \cup \cdots \cup H_o(a_r)$, so $Y \subseteq H_o(a_i)$ for some a_i, since Y is irreducible. Hence, we get $a \in \mathcal{S}_a(Y)$.

3): To show $\mathcal{S}_a(Y) \cap \mathcal{S}_b(Y) \subseteq \mathcal{S}_{ab}(Y)$, suppose $\mathcal{S}_a(Y) \neq \emptyset$ and $\mathcal{S}_b(Y) \neq \emptyset$. If $a \neq 0$, either $a = 0$ or $b = 0$, so $\mathcal{S}_a(Y) \cap \mathcal{S}_b(Y) \subseteq \mathcal{S}_a(Y) (= \mathcal{S}_{ab}(Y))$ holds. Suppose $a \neq 0$. If $a \in \mathcal{S}_a(Y)$ and $b \in \mathcal{S}_b(Y)$, $\tau(ab) = \tau(a) \tau(b)$ is either $a \beta$ or $b \alpha$ for every $\tau \in Y$, that is, $ab \in \mathcal{S}_a(Y) \cup \mathcal{S}_b(Y)$. If $ab \in \mathcal{S}_a(Y)$, i.e. $\tau(ab) = 0$ for all $\tau \in Y$, then $Y \subseteq H_o(ab) = H_o(a) \cup H_o(b)$, so we get either $Y \subseteq H_o(a)$ or $Y \subseteq H_o(b)$, i.e. either $a \in \mathcal{S}_a(Y)$ or $b \in \mathcal{S}_b(Y)$, which contradicts to $\mathcal{S}_a(Y) \cap \mathcal{S}_b(Y) = \emptyset$. Hence, we get $ab \notin \mathcal{S}_a(Y)$ and $ab \in \mathcal{S}_{ab}(Y)$. Thus, by (1.1) there is a signature $\sigma \in X(R, F)$ which satisfies $\mathcal{S}_a(\sigma) = \mathcal{S}_a(Y)$ for all $a \in F$. Since $\{a \in R \mid \sigma \in H_o(a)\} = \{a \in R \mid Y \subseteq H_o(a)\}$ holds for all $a \in F$, we get $C(\sigma) = C(Y)$ and $P(\sigma) = \cap_{\tau \in Y} P(\tau)$.

Definition. By $X_d(R, F)$, or simply $X_d(R)$, we denote a subspace $\{\sigma \in X(R, F) \mid |G(\sigma)| = 2\}$ of $X(R, F)$, and by $X_d(R)$ a subspace $\{P(\sigma) \mid \sigma \in X_d(R)\}$ of $X^*(R, F)$.

Proposition 2.8. (1) $X_d(R)$ is a closed subset of $X(R, F)$, so it is compact.

(2) The map $P(-) : X_d(R) \rightarrow X_d^*(R) ; \sigma \mapsto P(\sigma)$ is homeomorphism, so we may regard as $X_d(R) = X_d^*(R)$.

(3) The finite intersections of $H_1(a) \cap X_d(R)$ for $a \in R$ form an open basis of $X_d(R)$.

Proof. If $\sigma \in X(R, F) \setminus X_d(R)$, there is an $a \in R$ with $\sigma(a) \notin \{1, -1\}$, which means $\sigma \in H_o(a)$ and $H_o(a) \cap X_d(R) = \emptyset$. Thus, we get (1).

(2): It is easy to see that $P(-) : X_d(R) \rightarrow X_d^*(R)$ is a bijection. By (2.5), $P(-)$ is continuous and the image of $H_1(a) \cap X_d(R)$ by $P(-)$ is $\{P(\sigma) \in X_d^*(R) \mid \sigma(a) = 1, \sigma \in X_d(R)\} = \{P(\sigma) \in X_d^*(R) \mid -a \notin P(\sigma)\} = D(-a) \cap X_d^*(R)$ which is an open subset of $X_d^*(R)$, so $P(-) : X_d(R) \rightarrow X_d^*(R)$ is a homeomorphism.
(3) is obvious.

Remark 2.9. Let σ and τ be elements in $X_2(R)$.

1. $P(\sigma) \subseteq P(\tau)$ if and only if $\mathcal{P}_1(\sigma) \supseteq \mathcal{P}_1(\tau)$.
2. $P(\sigma) \subseteq P(\tau)$ and $\mathcal{P}_0(\sigma) = \mathcal{P}_0(\tau)$ imply $\sigma = \tau$.
3. Suppose $P(\sigma) \subseteq P(\tau)$. Then, for any $a \in R$, we have that $\sigma \in H^*_1(a) \Rightarrow \tau \in H^*_1(a)$, $\sigma \in H_0(a) \Rightarrow \tau \in H_0(a)$ and $\tau \in H_1(a) \Rightarrow \sigma \in H_1(a)$. Furthermore, if $P(\sigma) \neq P(\tau)$, there exists an $r \in R$ with $\sigma \in H_1(r)$ and $\tau \notin H_1(r)$.

Definition. An infinite preprime P with $P \cup -P = R$ will be said to be of level 1. For an infinite preprime P, we denote by P^* a subset $P \setminus (P \cap -P)$ ($= P \setminus -P$) of P. If P is an infinite preprime of level 1, then $(P \cap -P)$ is a two sided ideal of R.

The following lemma is easy:

Lemma 2.10. Let P be an infinite preprime of level 1. Then the following conditions are equivalent:

1. P is an infinite quasiprime.
2. $P^* \cdot P^* \subseteq P^*$.
3. For $x \in R$ and $y \in P^*$, either $xy \in P$ or $yx \in P$ implies $x \in P$.

Proposition 2.11. (1) Let P be an infinite quasiprime of level 1. Then, $P^* + P \subseteq P^*$ holds. Suppose $x \in R$ and $y \in P^*$. If $xy \in P^*$ or $yx \in P^*$ (resp. $xy \in (P \cap -P)$ or $yx \in (P \cap -P)$), then $x \in P^*$ (resp. $x \in (P \cap -P)$).

2. $X^*_2(R)$ is the set of all infinite quasiprimes of level 1.

Proof. (1): Suppose that P is an infinite quasiprime of level 1, $y \in P^* (= R \setminus -P)$ and $z \in P$. $-(y+z) \in P$ implies $-(y+z)+z \in P$, but $-y \notin P$, hence $y+z \notin P$, i.e. $y+z \in P^*$. We get $P^* + P \subseteq P^*$. If for $x \in R$, $xy \in P^*$ (resp. $xy \in P \cap -P$), then by (2.10), $x \in P$ (resp. $x \in P \cap -P$). Since $x \in P \cap -P$, implies $xy \in P \cap -P$, i.e. $xy \notin P^*$, we get that $xy \in P^*$ implies $x \in P \setminus (P \cap -P) = P^*$.

(2): For any $P(\sigma) \subseteq X^*_2(R)$, by (1.2), $P(\sigma)$ is an infinite quasiprime of level 1. Conversely, suppose that P is any infinite quasiprime of level 1. (2.10), (1) in (2.11) and (1.1) mean that there is a $\sigma \in X_2(R)$ such that $\mathcal{P}_0(\sigma) = P \cap -P, \mathcal{P}_1(\sigma) = P^*$ and $\mathcal{P}_{-1}(\sigma) = -P^*$. Hence, we get $P = P(\sigma) \subseteq X^*_2(R)$.

Produced by The Berkeley Electronic Press, 1992
Proposition 2.12. Let Y be any totally ordered non-empty subset of $(X(T)(R), \subseteq)$.

1. Regarding as $Y \subseteq X(T)(R) = X_0(R) \subseteq X(R, F)$, Y is irreducible subset of $X(R, F)$, and there is a $\sigma \in X_0(R)$ such that $C(\{\sigma\}) = C(Y)$ and $P(\sigma) = \cap_{\tau \in Y} P(\tau) = \text{Inf}(Y)$ in $(X(T)(R), \subseteq)$.

2. There exists the Sup(Y) in $(X(T)(R), \subseteq)$.

3. For any $\sigma \in X_0(R)$, there is a maximal element in $\{P(\tau) \in X(T)(R) | P(\sigma) \subseteq P(\tau)\}$, and there is a minimal element in $\{P(\rho) \in X(T)(R) | P(\rho) \supseteq P(\sigma)\}$.

Proof. Let Y be a totally ordered subset of $(X(T)(R), \subseteq)$. Suppose $Y \subseteq H_i(a_1) \cup \cdots \cup H_i(a_r) \cup H_0(b_1) \cup \cdots \cup H_0(b_s)$. If $Y \not\subseteq H_i(a_i)$ and $Y \not\subseteq H_0(b_j)$ for every i and j, then there exist elements σ_i and τ_j of Y such that $\sigma_i \not\in H_i(a_i)$ and $\tau_j \not\in H_0(b_j)$ for $i = 1, 2, \cdots, r$ and $j = 1, 2, \cdots, s$. Since Y is totally ordered, there is a unique minimal element $P(\rho)$ in $P(\sigma), \cdots, P(\tau)$, $P(\tau_1), \cdots, P(\tau_s)$. By (2.9), it follows that $\rho \notin H_i(a_i)$ and $\rho \notin H_0(b_j)$ for every $i = 1, 2, \cdots, r$ and $j = 1, 2, \cdots, s$, which is a contradiction. Hence, Y is included in some $H_i(a_i)$ or $H_0(b_j)$, so Y is irreducible.

2: Since Y is totally ordered, it follows that $P : \cup_{\tau \in Y} P(\tau)$ is an infinite preprime of level 1, $P \cap P = \cup_{\tau \in Y} (P(\tau) \cap P(\tau)) = \cup_{\tau \in Y} \wp(\tau)$ and $R/(P \cap P)$ is an integral domain. Hence, P is an infinite quasiprime of level 1 which is contained in $X(T)(R)$ by (2.11) and coincides with Sup(Y).

3 is obtained by Zorn's lemma.

Lemma 2.13. (cf. [8], (2.1)). Let σ and τ be elements in $X_0(R)$.

1. $P(\sigma) \not\subseteq P(\tau)$ and $P(\tau) \not\subseteq P(\sigma)$ imply $\wp(\sigma) \cap \wp^-(\tau) \neq \phi$.

2. If there exists a $\rho \in X_0(R)$ with $P(\rho) \subseteq P(\sigma) \cap P(\tau)$, either $P(\sigma) \subseteq P(\tau)$ or $P(\tau) \subseteq P(\sigma)$ holds.

3. A set $\{P(\rho) \in X(T)(R) \mid P(\sigma) \subseteq P(\rho)\}$ has a unique maximal element with respect to the ordering \subseteq.

Proof. (1) Suppose $P(\sigma) \not\subseteq P(\tau)$ and $P(\tau) \not\subseteq P(\sigma)$, then there are $a \in P(\sigma) \setminus P(\tau)$ and $b \in P(\tau) \setminus P(\sigma)$ which mean $a \in \wp(\tau) \cap P(\sigma)$ and $b \in \wp(\sigma) \cap P(\tau)$. Accordingly, we get that $a - b \in (P(\sigma) + \wp(\tau)) \cap (\wp(\tau) - P(\tau)) \subseteq \wp(\sigma) \cap \wp^-(\tau)$, so $\wp'(\sigma) \cap \wp^-(\tau) = \phi$.

(2) Suppose that $P(\rho) \subseteq P(\sigma) \cap P(\tau)$, $P(\sigma) \not\subseteq P(\tau)$ and $P(\tau) \not\subseteq P(\rho)$ hold for some $\rho, \sigma, \tau \in X(T)(R)$. By (1), we get $\wp(\sigma) \cap \wp^-(\tau) = \phi$. However, it is contrary to $\wp(\sigma) \cap \wp^-(\tau) = \phi$. Therefore, it is immediate from (2) and (2.12).
Notation. By \(X_\sharp(R) \) and \(X_\natural(R) \), we denote \(X_\sharp(R) := \{ \sigma \in X_\natural(R) \mid P(\sigma) \) is maximal in \((X_\sharp(R), \subseteq) \) \} and \(X_\natural(R) := \{ \sigma \in X_\natural(R) \mid P(\sigma) \) is minimal in \((X_\sharp(R), \subseteq) \) \}.

Remark 2.14. If \(R \) is commutative, then \(X_\sharp(R) \) coincides with the set of infinite primes of level 1 in \(R \).

Proposition 2.15. (1) \(X_\sharp(R) \) and \(X_\natural(R) \) are Hausdorff spaces as subspaces of \(X_\natural(R) \).

(2) \(X_\natural(R) \) is dense in \(X_\natural(R) \), i.e. \(\text{Cl}(X_\natural(R)) = X_\natural(R) \).

(3) For any \(\sigma \in X_\natural(R) \), a subset \(\{ \tau \in X_\natural(R) \mid P(\sigma) \subseteq P(\tau) \} \) is a closed subset of \(X_\natural(R) \), so is a subset \(\{ \tau \} \) for every element \(\tau \in X_\natural(R) \).

Proof. (1): If \(\sigma \) and \(\tau \) are distinct elements in \(X_\sharp(R) \) (resp. \(X_\natural(R) \)), then \(P(\sigma) \not\subseteq P(\tau) \) and \(P(\tau) \not\subseteq P(\sigma) \). By (2.13), there is an \(a \in \mathcal{V}_1(\sigma) \cap \mathcal{V}_{-1}(\tau) \) which satisfies \(a = H_{\mathcal{V}_1}(\sigma) \cap H_{\mathcal{V}_{-1}}(\tau) = \phi \).

(2): For any \(\sigma \in X_\natural(R) \), by (2.12) there is a \(\rho \in X_\natural(R) \) with \(P(\sigma) \subseteq P(\rho) \). (2.9) means that for any \(a \in R \), \(\sigma \in H_{\mathcal{V}_1}(a) \) implies \(\rho \in H_{\mathcal{V}_1}(a) \), that is, \(X_\natural(R) \) is dense in \(X_\natural(R) \).

(3): For a \(\sigma \in X_\natural(R) \), we put \(Y = \{ P(\tau) \in X_\natural(R) \mid P(\sigma) \subseteq P(\tau) \} \). If \(\rho \in X_\natural(R) \setminus Y \), then by (2.9) we have \(P(\sigma) \not\subseteq P(\rho) \) and \(\mathcal{V}_1(\rho) \not\subseteq \mathcal{V}_1(\sigma) \), so there is an \(a \in \mathcal{V}_1(\rho) \setminus \mathcal{V}_1(\sigma) \). \(H_{\mathcal{V}_1}(a) \) is an open subset with \(\rho \in H_{\mathcal{V}_1}(a) \) and \(H_{\mathcal{V}_1}(a) \cap Y = \phi \), that is, \(Y \) is closed in \(X_\natural(R) \).

3. Signatures of a commutative ring. In this section, we assume that \(R \) is a commutative ring with identity 1, and \(F \) is a finite f-semigroup.

Notation. Let \(S \) be a multiplicatively closed subset of \(R \) such that \(1 \in S \) and \(0 \not\in S \). By \(S^{-1}R \), we denote the quotient ring by \(S \), and by \(\phi^S : R \to S^{-1}R \), the canonical ring homomorphism. By \(X^S(R, F) \), we denote a subset \(X^S(R, F) := \{ \sigma \in X(R, F) \mid \mathcal{V}_0(\sigma) \cap S = \phi \} \). If \(\lambda \in X(R, F) \) and \(S = R \setminus \mathcal{V}_0(\lambda) \) for the prime ideal, we denote by \(X^S(R, F) \), \(R^{(S)} \) and \(\phi^S \) instead of \(X^S(R, F) \), \(S^{-1}R \) and \(\phi^S \) that is, \(X^S(R, F) := \{ \sigma \in X(R, F) \mid \mathcal{V}_0(\sigma) \subseteq \mathcal{V}_0(\lambda) \} \), \(R^{(S)} := (R \setminus \mathcal{V}_0(\lambda))^{-1}R \) and \(\phi^S : R \to R^{(S)} \).

Theorem 3.1. Let \(S \) be a multiplicatively closed subset of \(R \) with \(1 \in S \) and \(0 \not\in S \). The map \(X(\phi^S, I) \) induces a homeomorphism of \(X(S^{-1}R, F) \) onto the subspace \(X^S(R, F) \) of \(X(R, F) \), and \(G(\pi) = G(X(\phi^S, I)(\pi)) \) holds for every \(\pi \in \).
X(S^{-1}R, F).

Proof. First, we shall show that \(\text{Im} X(\phi^s, I) = X^s(R, F) \) and \(X(\phi^s, I) \) is a bijection. For any \(\pi \in X(S^{-1}R, F) \), it is easy that \(\phi^s(\pi \cdot \phi^s) \cap S = \pi(\phi^s(S) = \phi, \pi(\phi^s(S) \cap S = \phi) \) and \(X(\phi^s, I)(\pi) = \pi \cdot \phi^s \in X^s(R, F) \). Conversely, for a \(\sigma \in X^s(R, F) \), we can define a map \(\pi : S^{-1}R \to F \) as follows: For any \(x \in S^{-1}R \), there are \(s \in S \) and \(r \in R \) with \(\phi^s(s)x = \phi^s(r) \). Then, we put \(\pi(x) = \sigma(s) \cdot \sigma(r) \), so the map \(\pi \) is well defined because of \(\phi^s(\sigma) \cap S = \phi \). It is easy to see that \(\pi \) is a unique signature satisfying \(X(\phi^s, I)(\pi) = \pi \cdot \phi^s = \sigma \). Hence, we get that \(X(\phi^s, I) : X(S^{-1}R, F) \to X^s(R, F) \) is a bijection. Since \(|F| < \infty \), it follows that \(G(\pi) = G(\pi \cdot \phi^s) \) is a finite subgroup of \(F^* \). Let \(|G(\pi)| = n \). For any \(a \in S^{-1}R \) and \(a \in G(\pi) \), there are \(s \in S \) and \(r \in R \) with \(\phi^s(s)a = \phi^s(r) \) and \(H_a(a) = H_a(\phi^s(s)a) = H_a(\phi^s(s^{-1}r)) \) hold. We get that \(X(\phi^s, I)(H_a(a)) = \{ \pi \cdot \phi^s \in X^s(R, F) | \pi(\phi^s(s^{-1}r)) = a \} = H_a(s^{-1}r) \cap X^s(R, F) \) is an open subset of \(X^s(R, F) \), hence \(X(\phi^s, I) : X(S^{-1}R, F) \to X^s(R, F) \) is a homeomorphism. If \(X(\phi^s, I)(\pi) = \pi \cdot \phi^s = \sigma \) for \(\pi \in X(S^{-1}R, F) \), it is easy to see that \(G(\pi) = G(\sigma) \).

Corollary 3.2. (1) Let \(\mathcal{P} \) be a prime ideal of \(R \), and let \(S = R \setminus \mathcal{P} \). The map \(X(\phi^s, I) \) induces a homeomorphism \(X(S^{-1}R, F) \to X^s(R, F) \).

(2) For any \(\lambda \in X(R, F) \), \(X(\phi^s, I) : X(R^{(s)}, F) \to X^s(R, F) \) is a homeomorphism.

Notation 3.3. For any \(\lambda \in X(R, F) \), \(\lambda \) belongs to \(X^s(R, F) \). By \(\lambda^* \), we denote the signature \(\lambda^* : R^{(s)} \to F \) with \(\lambda = \lambda^* \cdot \phi^s \) determined by \(\lambda \) in (3.2). Then, \(\lambda^*(\langle R^{(s)} \rangle^*) = G(\lambda^*) = G(\lambda) \) hold, (cf. (1.9)).

Remark 3.4. Let \(R \) be a semilocal ring with the maximal ideals \(m_1, m_2, \cdots, m_r \) and \(\sigma \in X(R, F) \). If \(\alpha \in \cap_{i=1}^{r} G_i(\sigma) \), then \(\mathcal{P}_\sigma(\sigma) \cap R^* \neq \phi \), that is, there is a \(u \in R^* \) with \(\mathcal{P}_\sigma(\sigma) = u \mathcal{P}_\sigma(\sigma) \), where \(G_i(\sigma) = G_{m_i}(\sigma) = \{ a \in G(\sigma) | \mathcal{P}_\sigma(\sigma) \notin m_i \} \). Hence, if \(G_i(\sigma) = G(\sigma) \) for every \(i = 1, 2, \cdots, r \), then the conditions in (1.9) hold.

Proof. Suppose \(\alpha \in \cap_{i=1}^{r} G_i(\sigma) \). Using the induction on the number \(k \) of maximal ideals \(m_1, m_2, \cdots, m_k \), we show that there is a \(u \in \mathcal{P}_\sigma(\sigma) \) with \(u \notin m_i \) for \(i = 1, 2, \cdots, k \). Put \(|G(\sigma)| = n \). If \(\mathcal{P}_\sigma(\sigma) \cap m_i = \phi \), then we may exclude such a maximal ideal \(m_i \). Hence we may suppose \(\mathcal{P}_\sigma(\sigma) \cap m_i = \pi \neq \phi \) for \(i = 1, 2, \cdots, k \), using the assumption on induction for \(m_1, m_2, \cdots, m_{i-1}, m_{i+1}, \cdots, m_k \), we can find \(u_i \in \mathcal{P}(\sigma) \) with \(u_i \notin m_j \) for \(j = 1, 2, \cdots, i-1, i+1, \cdots, k \). If \(u_1 \)}
In the last of this section, we note a relation between $X_2(R)$ and the set of ring homomorphisms of the Witt ring $W(R)$ on to the integers Z. Let $W(R)$ be the Witt ring of bilinear spaces over R (cf. [1], p. 19). By $\text{Sig}(R)$, we denote the set of ring-homomorphisms of $W(R)$ on to Z. For $a \in R^*$, $[a]$ denotes the element of $W(R)$ with its representative $\langle a \rangle$, where $\langle a \rangle$ denotes a bilinear space of rank one with value a modulo R^*.2.

Lemma 3.5. For any $\lambda \in X_2(R)$, the signature λ^*, defined in (3.3), determines a ring homomorphism $\lambda^* : W(R^{(a)}) \to Z$, which is denoted by λ^* using the same notation. Therefore, a map $\theta : X_2(R) \to \text{Sig}(R) ; \lambda \mapsto \lambda^* \cdot W(\phi^*)$ is defined.

Proof. For $\lambda \in X_2(R)$, $\lambda^* : R^{(a)} \to F$ is a signature with $\lambda^* \cdot \phi^* = \lambda$ and $G(\lambda^*) = G(\lambda) = \{1, -1\}$. $\mathcal{S}_1(\lambda^*)$ satisfies the following conditions; $\mathcal{S}_1(\lambda^*) + \mathcal{S}_1(\lambda^*) \subseteq \mathcal{S}_1(\lambda^*), \mathcal{S}_1(\lambda^*) \cdot \mathcal{S}_1(\lambda^*) \subseteq \mathcal{S}_1(\lambda^*), \mathcal{S}_1(\lambda^*) \cap -\mathcal{S}_1(\lambda^*) = \emptyset$ and $\mathcal{S}_1(\lambda^*) \cup -\mathcal{S}_1(\lambda^*) = R^{(a)}$. Hence, we can define an ordering on the local ring $R^{(a)}$ which determines a ring homomorphism $\lambda^* : W(R^{(a)}) \to Z$ with $\lambda^*([a]) = \lambda^*(a) (\in G(\lambda^*) = \{1, -1\} \subseteq Z)$ for every $a \in (R^{(a)})^*$ (cf. (2.2) and (2.5) in [12]).

Proposition 3.6. Let \mathcal{S} be a prime ideal of R, and let $S = R \setminus \mathcal{S}$.

1. If P is an infinite quasiprime of level 1 in $S^{-1}R$, then so is the inverse image $(\mathcal{S})^{-1}(P)$ in R.

2. Let $\lambda \in X_2(R)$ and $\mu \in \text{Sig}(R)$, and $Q = \{a \in R \mid a \in S, \mu([\mathcal{S}(a)] = 1\}$. If $Q \subseteq \mathcal{S}_1(\lambda)$, then there is an R-algebra homomorphism $f : S^{-1}R \to R^{(a)}$ with $\mu = \lambda^* \cdot W(f)$.

Proof. (1): For any infinite quasiprime P in $S^{-1}R$, it is easy to see that $(\mathcal{S})^{-1}(P)$ is an infinite preprime and $(\mathcal{S})^{-1}(P \cap - P) = (\mathcal{S})^{-1}(P) \cap -(\mathcal{S})^{-1}(P)$ is a prime ideal of R.

(2): Since Q is multiplicatively closed and $Q \cup -Q = S$, it follows that $Q^{-1}Q = \{\phi^*(a)^{-1} \cdot \phi^*(b) \in S^{-1}R \mid a, b \in Q\}$ is a positive cone of an ordering on $S^{-1}R$ defined by μ. Since $Q \subseteq \mathcal{S}_1(\lambda)$, there is a natural R-algebra homomorphism $f : S^{-1}R \to \mathcal{S}_1(\lambda)^{-1}R = R^{(a)}$. Since f carries the positive cone $Q^{-1}Q$ of
ordering on $S^{-1}R$ into the positive cone $P_1(\lambda^*)$ of ordering on $R^{(1)}$, so we get $\mu = \lambda^* \cdot W(f)$.

Corollary 3.7. If $\lambda, \lambda' \in X_2(R)$ with $P(\lambda) \subseteq P(\lambda')$, then there is an R-algebra homomorphism $g : R^{(1)} \rightarrow R^{(1)}$ with $\lambda'^* = \lambda^* \cdot W(g)$.

Proof. Since $P(\lambda) \subseteq P(\lambda')$ implies $\mathfrak{P}_1(\lambda') \subseteq \mathfrak{P}_1(\lambda)$, the proof is immediately from (3.6).

Theorem 3.8. The map $\theta : X_2(R) \rightarrow \text{Sig}(R)$ is surjective, and $\theta(X_2^*(R)) = \text{Sig}(R)$, that is, for any ring homomorphism $\mu : W(R) \rightarrow \mathbb{Z}$, there is an infinite prime P of level 1 in R such that $\mu([a]) = 1$ for all $a \in P \cap R^*$.

Proof. To show that $\theta : X_2(R) \rightarrow \text{Sig}(R)$; $\lambda \sim \rightarrow \lambda^* \cdot W(\phi^5)$ is surjective, suppose $\mu \in \text{Sig}(R)$. By Lemma 1 and Proposition 1 in [9], there is a maximal ideal m of R, and for $S = R \setminus m$ there is a ring homomorphism $\nu : W(S^{-1}R) \rightarrow \mathbb{Z}$ with $\mu = \nu \cdot W(\phi^5)$. We put $Q' = \{ \sum_i a_i \in S^{-1}R \mid a_i \in (S^{-1}R)^* \} \cup \mathfrak{P}$. By Theorem 4.1 in [14], it follows that $Q' + Q' \subseteq Q'$, $Q' \cdot Q' \subseteq Q'$, and $\mathfrak{P} = (S^{-1}R) \setminus (Q' \cup Q')$ is a prime ideal of $S^{-1}R$ with $\mathfrak{P} + Q' \subseteq Q'$. Hence, $P = \mathfrak{P} \cup Q'$ is an infinite quasiprime of level 1 in $S^{-1}R$, and so is also $(\phi^5)^{-1}(P)$ in R by (3.6). Hence, there is a $\lambda \in X_2(R)$ with $P(\lambda) = (\phi^5)^{-1}(P)$. We shall show $\theta(\lambda) = \mu$. We put $Q = \{ a \in S \mid \nu([\phi^5(a)]) = 1 \}$. From the fact that $\phi^5(Q) = Q'$ and $(\phi^5)^{-1}(Q') = \mathfrak{P}_1(\lambda)$, it follows that $Q \subseteq \mathfrak{P}_1(\lambda)$, and using (3.6), there is an R-algebra homomorphism $f : S^{-1}R \rightarrow R^{(1)}$ making the following diagram commute:

Thus, we get $\mu = \nu \cdot W(\phi^5) = \lambda^* \cdot W(\phi^5) = \theta(\lambda)$. In the second place, we shall show $\theta(X_2^*(R)) = \text{Sig}(R)$. For any $\mu \in \text{Sig}(R)$, we can find a $\lambda \in X_2(R)$ with $\theta(\lambda) = \mu$. By (2.13), we can also find a $\lambda' \in X_2^*(R)$ with $P(\lambda) \subseteq P(\lambda')$. By (3.7), there is an R-algebra homomorphism $g : R^{(1)} \rightarrow R^{(1)}$ with $\lambda'^* = \lambda^* \cdot W(g)$.
Therefore, we get $\mu = \theta(\lambda')$ by the following commutative diagram:

\[
\begin{array}{ccc}
W(R) & \xrightarrow{\mu} & Z \\
\downarrow{\mu} & & \downarrow{\lambda^*} \\
W(\phi^t) & \xleftarrow{\lambda^*} & W(R^{(tt)}) \\
\downarrow{\phi^t} & & \downarrow{\phi^t} \\
W(g) & \xleftarrow{\lambda^*} & W(R^{(tt)})
\end{array}
\]

Corollary 3.9. If R is a semilocal ring, then the map θ induces a bijection $X^n(R) \to \text{Sig}(R)$.

Proof. To show that $\theta : X^n(R) \to \text{Sig}(R)$ is a bijection, we suppose that $\mu \in \text{Sig}(R)$ and $\sigma, \tau \in X^n(R)$ with $\theta(\sigma) = \theta(\tau) = \mu$. By Appendix B in [14], a subset $Q = \{\sum_{i=1}^n a_i b_i \in R | a_i, a_2, \cdots, a_n \in R^*, b_1, b_2, \cdots, b_n \in R; \mu([a_i]) = 1, \sum_{i=1}^n b_i R = R\}$ of R satisfies that $Q + Q \subseteq Q, QQ \subseteq Q, 1 \in Q$, and $\mathfrak{p} = R \setminus (Q \cup -Q)$ is a prime ideal of R with $\mathfrak{p} + Q \subseteq Q$. Hence, $P = \mathfrak{p} \cup Q$ is an infinite quasiprime of R, and there is a $\lambda \in X^n(R)$ with $P(\lambda) = P$. We can easily check that $\mathfrak{p}_1(\lambda) = Q, Q \subseteq \mathfrak{p}_1(\sigma)$ and $Q \subseteq \mathfrak{p}_1(\tau)$. Accordingly, by (2.9), we get $P(\sigma) \subseteq P(\lambda)$ and $P(\tau) \subseteq P(\lambda)$, so $P(\sigma) = P(\tau) = P(\lambda)$, that is, $\sigma = \tau$.

References

114

T. KANZAKI

DEPARTMENT OF MATHEMATICS AND PHYSICS
FACULTY OF SCIENCE AND TECHNOLOGY
KINKI UNIVERSITY
HIGASHI-Osaka, Osaka 557, Japan

(Received November 10, 1991)