An Example of an Indecomposable Module which is not Injective

Shoji Morimoto\(^*\) Takefumi Shudo\(^{†}\)

\(^*\)Hagi Koen Gakuin High School
\(^{†}\)Fukuoka Dental College

AN EXAMPLE OF AN INDECOMPOSABLE MODULE WHICH IS NOT INJECTIVE

Dedicated to Professor Manabu Harada on his 60th birthday

SHOJI MORIMOTO and TAKEFUMI SHUDO

It is well-known that every torsionfree divisible module is injective over a commutative integral domain. First we show that this theorem can be improved by using the concept of weakly σ-injective modules over a left Ore domain. Also in [2], we show that for a non-singular module M if M has no nonzero injective submodule, then so does M^λ for all index sets λ. Finally, we give an example to show that the above proposition is fualse in general.

Throughout this note R is a ring with identity and modules are unitary left R-modules unless otherwise stated. We denote the category of modules by R-mod and the injective hull of a module M by $E(M)$. As for terminologies and basic properties concerning torsion theories and preradicals, we refer to [3]. Let ρ be a preradical. We call it stable if $T(\rho)$ is closed under essential extensions. Also the left linear topology corresponding to a left exact preradical ρ is denoted by $\mathcal{D}(\rho)$. Now for two preradicals ρ and τ, we shall say that ρ is larger than τ if $\rho(M) \supseteq \tau(M)$ for all modules M.

We put $\mathcal{D} = \{r \in R \mid rs \neq 0$ and $sr \neq 0$ for all $s \neq 0 \in R\}$. We call a ring R left Ore if for each $r \in R$ and $s \in \mathcal{D}$ there exist $r' \in R$ and $s' \in \mathcal{D}$ such that $s'r = r's \neq 0$. Also we put $\sigma(M) = \{x \in M \mid rx = 0$ for some $r \in \mathcal{D}\}$. In general, $\sigma(M)$ is not a submodule of M.

However

Proposition 1. If R is a left Ore domain, then σ is the Goldie torsion functor G.

Proof. By [3, p. 138, Example 2], σ is a left exact radical. By assumption, every non-zero ideal of R is essential in R. Thus $\mathcal{D}(Z)$ is the set of non-zero ideal of R, where Z is the singular torsion functor. Thus $\sigma \leq Z$. Conversely let r be a non-zero element of R and let $s + Rr$ be in R/Rr. Then $s's = r'r$ for some r' and s' in R by assumption. Thus R/Rr is in $T(\sigma)$ and so Rr is in $\mathcal{D}(\sigma)$. Hence every non-zero ideal of R belongs to $\mathcal{D}(\sigma)$. Since σ is a radical, so is Z, namely, $Z = G$. Hence $\sigma = G$.

125
Definition. Let τ be a preradical. We call a module H (resp. weakly τ-injective) if for all exact sequences of modules $O \to A \to B \to C \to O$ with $C \subseteq T(\tau)$ (resp. $B \subseteq T(\tau)$), the functor $\text{Hom}_R(-, H)$ preserves the exactness.

Lemma 2 [1, Theorem 1.11.]. Let τ be a left exact preradical. Then the following conditions are equivalent:

(i) Every τ-injective module is injective.

(ii) $\bar{\tau}$ is larger than the Goldie torsion functor G, where $\bar{\tau}$ is the smallest radical larger than τ.

By the above lemma, every σ-injective module is injective.

Theorem 3. Let R be a left Ore domain. For a module M, the following conditions are equivalent:

(i) M is divisible and weakly σ-injective.

(ii) M is injective.

Proof. (ii) \Rightarrow (i) is clear. (i) \Rightarrow (ii). By Proposition 1, $\sigma = G$. Thus it is sufficient to show that M is σ-injective by Lemma 1.2. We assume that $\sigma(E(M)/M) \neq O$. Then there exists $x = x + M$ (x is in $E(M)$ and is not in M) such that $rx = 0$ for some $r \neq 0$ in R. Since M is divisible and rx is in M, $rx = rm$ for some m in M, namely $r(x - m) = 0$. Thus $x - m$ is in $\sigma(E(M))$. Since M is weakly σ-injective, $\sigma(E(M)) = \sigma(M)$ and so $x - m$ is in M. Hence x is in M. This is a contradiction. Thus M is σ-injective.

Since σ is left exact, every σ-torsionfree module is weakly σ-injective. Thus we have the following famous result:

Corollary 4. Let R be a commutative integral domain and M a torsionfree module. Then M is injective if and only if it is divisible.

We call a ring R left hereditary if every left ideal of R is projective. From Theorem 3 and [3, Proposition 4.5], we have

Corollary 5. Let R be a left Ore domain. Then the following conditions are equivalent:

(i) Every divisible module is weakly σ-injective.

(ii) Every divisible module is σ-injective.

(iii) Every divisible module is injective.

(iv) R is left hereditary.
First we give an example of a module which is divisible but not injective.

Let \(Z \) be the ring of integers, \(\mathcal{Q} \) the field of rational numbers and \(Z_p \) the localization of \(Z \) with respect to \(p \mathbb{Z} \) for a prime number \(p \).

Example 6. Let \(R \) be the polynomial ring over \(Z_p \) and \(K \) the quotient field of \(R \). Then \(K/R \) is not injective.

Proof. We put \(I = pR + xR \). Let \(f \) be a map from \(I \) to \(K/R \) with \(f(pa_0 + ax + \cdots + anx^n) = (p/x)(a_0 + ax + \cdots + anx^n) + ((1-p)/p)(a_0 + ax + \cdots + anx^n) + R \), where \(a_i (i = 0, 1, \cdots, n) \) are in \(Z_p \). Then \(f(p) = p/x + R \) and \(f(x) = 1/p + R \). Suppose that \(K/R \) is injective. Then there exists an \(R \)-homomorphism \(g : R \to K/R \) such that \(g(a) = f(a) \) for all \(a \in I \). We put \(g(1) = k + R (k \in K) \). Then \(g(p) = pk + R = p/x + R = f(p) \) and \(g(x) = xk + R = 1/p + R = f(x) \). Since \(pk - p/x \in R \) and \(xk - x/p \in R \), \(k = \frac{p + c_0x + c_1x^2 + \cdots + c_mx^{m-1}}{px} = 1 + \frac{pd_0 + pd_1x + \cdots + pd_mx^n}{px} \) for some \(c_i, d_i \in Z_p \) (\(i = 0, 1, \cdots, m \)) and \(d_j \in Z_p \) (\(j = 0, 1, \cdots, n \)). Thus \(1 + pd_0 = p \) and so \(d_0 = (p - 1)/p \) does not belong to \(Z_p \). This is a contradiction. Hence \(K/R \) is not injective.

If a module \(M \) is nonsingular, then \(M^d \) has no nonzero injective submodule if and only if \(M \) has no nonzero injective submodule, where \(M^d \) is a direct product of copies of \(M \) for an index set \(\Lambda \) [2, Theorem 2.9]. But this is not true for some singular module \(M \).

Lemma 7. Let \(R \) be a commutative integral domain with quotient field \(K \neq R \). Then the following assertions hold.

1. \(K \) is an injective \(R \)-module.
2. \((K/R)^{R-\{0\}}\) has a nonzero injective submodule.

Proof. (1). Since \(K \) is divisible and is in \(F(\sigma) \), it is injective. (2). We consider a correspondence \(\phi : K \to (K/R)^{R-\{0\}} \) defined by \(\phi(k) = (\cdots, k/r_{\sigma}, \cdots) \). Then \(\phi \) is an \(R \)-homomorphism and \(\text{Ker}(\phi) = \{ k \in K \mid k/r_{\sigma} \in R \text{ for all } r_{\sigma} \in R - \{0\} \} \). Clearly \(\phi \) is a monomorphism. By (1), \((K/R)^{R-\{0\}}\) has a nonzero injective submodule.

Example 8. Let \(R = Z_p + xQ[[x]] \), where \(Q[[x]] \) is the ring of formal power series over \(Q \) and \(K \) the quotient field of \(R \). Then \(K/R \) has no nonzero
injective submodule but \((K/R)^{R-10}\) has a nonzero injective submodule.

Proof. It is sufficient to show that \(K/R\) is indecomposable and it is not injective. First we show that \(K/R\) is indecomposable. We assume that \(K/R = A/R \oplus B/R\), where \(A\) and \(B\) are \(R\)-submodules of \(K\) containing \(R\) with \(K = A + B\) and \(A \cap B = R\). We claim that \(1/x\) belongs either to \(A\) or to \(B\). Since
\(1/x\) is in \(A + B\), there exist \(a \in A\) and \(\beta \in B\) such that
\(1 = ax + \beta x\). Thus \(ax = 1 - \beta x\) is in \(B\) and so \(ax\) is in \(R\). Simillary \(\beta x\) is in \(R\). Therefore \(ax = a_0 + a_1x + \cdots + a_nx^n + \cdots\) and \(\beta x = b_0 + b_1x + \cdots + b_nx^n + \cdots\) for some \(a_0\) and \(b_0\) is \(Z_p\) and \(a_i\) and \(b_i\) \((i = 1, 2, \cdots)\) in \(Q\). Since \(1 = ax + \beta x\), \(a_0 + b_0 = 1\) and \(a_i + b_i = 0\) for \(i \geq 1\). Thus either \(a_0\) or \(b_0\) is a unit. If \(a_0\) (resp. \(b_0\)) is a unit, then \(ax\) (resp. \(\beta x\)) is unit in \(R\) and so \(1/x = a(ax)^{-1}\) (resp. \(\beta(\beta x)^{-1}\)) is in \(A\) (resp. \(B\)). Thus we may assume that \(1/x\) is in \(A\). Then \(Q[[x]]\) is an \(R\)-submodule of \(A\). In fact take \(\gamma = c_0 + c_1x + c_2x^2 + \cdots\) be in \(Q[[x]]\). If \(c_0 = 0\), then \(\gamma\) is in \(R < A\). On the other hand, if \(c_0 \neq 0\), then \(c_0 = (1/x) \cdot c_0x \in A\).
Since \(c_1x + c_2x^2 + \cdots\) is in \(R\), \(\gamma\) is in \(A\) and so \(Q[[x]]\) is an \(R\)-submodule of \(A\).
Next we show that \(a/x\) belongs to \(A\) for every \(a \in A\). Indeed, let \(a/x = a' + \beta'\) \((a' \in A\) and \(\beta' \in B\)). Then \(a = x a' + x \beta'\) and so \(x \beta' = a - x a'\). Thus \(x \beta'\) is in \(A \cap B = R\). We put \(x \beta' = d_0 + d_1x + d_2x^2 + \cdots\), where \(d_0 \in Z_p\) and \(d_i \in Z\) \((i = 1, 2, \cdots)\). Then \(x \beta' = c_0/x + \sum d_i x^{i-1}\). Since \(c_0/x\) is in \(A\) and \(\sum d_i x^{i-1}\) is in \(Q[[x]]\), \(\beta'\) is in \(A\). Hence \(a/x\) is in \(A\). As is easily seen, each element of \(K\) is of the form \(h(x)/x^m\), where \(h(x)\) is in \(Q[[x]]\) and \(m\) is a non-negative integer. Thus \(K = A\), namely \(K/R\) is indecomposable. Secondly we show that \(K/R\) is not injective. We put \(I = xQ[[x]]\) and \(I_n = (x/p^n)R\) for \(n = 0, 1, 2, \ldots\).
Then we have an infinite ascending chain \(I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq I_{n+1} \subseteq \cdots\) with \(\bigcup_{n=0} I_n = I\). Note that any homomorphism \(\varphi_n\) from \(I_n\) to \(K/R\) is uniquely determined by an element \(a_n\) of \(K/R\) which can be arbitrarily chosen and by the equation \(\varphi_n(a) = a a_n\) for all \(a \in I_n\). Let \(\{a_i\}\) be a sequence of integers such that \(0 \leq a_i < p\) for all \(i \geq 0\). For each \(n\), let \(f_n = (1/x) \sum a_i p^i\) be an element of \(K\) and \(a_n = f_n + R\) an element of \(K/R\). Then we have \(a_{n+1} - a_n = (1/x) a_n + p^{n+1} + R\). Since \(a_{n+1} p\) is in \(Z\), \((x/p^n)(a_{n+1} - a_n) = 0\) for \(n = 0, 1, 2, \ldots\).
Let \(\varphi_n\) be the \(R\)-homomorphism from \(I_n\) to \(K/R\) corresponding to \(a_n\) as noted above. Then the above equations imply that the system \((I_n, \varphi_n)\) forms a direct system and \(\varphi_n I_n = I\), we have the following commutative diagram

\[
\begin{array}{c}
\xymatrix{
I_0
\ar[r] & I_1
\ar[r] & I_2
\ar[r] & \cdots
\ar[r] & I_n
\ar[r] & I_{n+1}
\ar[r] & \cdots
\end{array}
\]

http://escholarship.lib.okayama-u.ac.jp/mjou/vol34/iss1/10
AN EXAMPLE OF AN INDECOMPOSABLE MODULE

\[
\begin{array}{c}
\psi_n \\
\downarrow \\
\phi_m \\
\downarrow \\
\lim I_n \\
\phi = \lim \phi_n \\
\varphi_n \\
\varphi_m \\
\varphi_m \\
\varphi = \varphi_n \\
K/R
\end{array}
\]

where \(\varphi(a) = \varphi_n(a) = a\alpha_n \) for all \(a \in I_n \).

Assume that \(K/R \) is injective. Then there exists an element \(\alpha \) of \(K/R \) such that \(\varphi(s) = s\alpha \) for all \(s \in I \). If we take \(s = x/p^n \in I_n \), then \(\varphi(s) = s\alpha = s\alpha_n = \varphi_n(s) \) and so \((x/p^n)(\alpha - \alpha_n) = 0 \). If we put \(\alpha = f + R \), where \(f \in K \), it follows that \((x/p^n)(f - f_n) \in R \) for all \(n \), namely, \(xf = \Sigma_{i=0}^{n-1} x_{a_i} p^i \), where \(a_0 \in Z_p \) and \(b_i \in \Omega \) for \(i \geq 1 \). Then we have \(b_n = \Sigma_{i=n}^{\infty} x_{a_i} p^i + x_{a_0} p^0 \) for some \(c_0 \in Z_p \). Thus the sequence \(\Sigma_{i=n}^{\infty} x_{a_i} p^i \) converges to \(b_0 \) with respect to the \(p \)-adic topology on \(Z_p \), that is, the \(p \)-adic number \(\Sigma_{i=n}^{\infty} x_{a_i} p^i \) represents a rational number. This is absurd because the sequence \(\{ a_i \} \) of integers can be arbitrarily chosen. It follows that \(K/R \) is not injective.

Acknowledgements. The authors wish to thank to Professor A. Facchini for his helpful suggestions about example 8.

REFERENCES

S. MORIMOTO
HAGI KOEN GAKUIN HIGH SCHOOL
HIGASHITAMACHI, HAGI, YAMAGUCHI, JAPAN 758

T. SHUDO
DEPARTMENT OF GENERAL EDUCATION
FUKUOKA DENTAL COLLEGE
SAWARA-KU, FUKUOKA 814-01, JAPAN

(Received October 18, 1991)