Strong Convergence Theorems for Nonexpansive Mappings by Viscosity Approximation Methods in Banach Spaces

Xiaolong Qin∗ Yongfu Su†

Changqun Wu‡

∗Tianjin Polytechnic University
†Tianjin Polytechnic University
‡Henan University

Copyright ©2008 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
Strong Convergence Theorems for Nonexpansive Mappings by Viscosity Approximation Methods in Banach Spaces

Xiaolong Qin, Yongfu Su, and Changqun Wu

Abstract

KEYWORDS: Nonexpansive map; Iteration scheme; Sunny and nonexpansive retraction; viscosity method
STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS BY VISCOSITY APPROXIMATION METHODS IN BANACH SPACES

XIAOLONG QIN, YONGFU SU AND CHANGQUN WU

1. Introduction and Preliminaries

Let E be a real Banach space and let J denotes the normalized duality mapping from E into 2^E^* given by

$$J(x) = \{f \in E^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2\}, \quad x \in E,$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. Recall that a self mapping $f : C \to C$ is a contraction on C if there exists a constant $\alpha \in (0, 1)$ such that

$$\|f(x) - f(y)\| \leq \alpha \|x - y\|, \quad x, y \in C.$$

We use Π_C to denote the collection of all contractions on C. That is, $\Pi_C = \{f | f : C \to C \text{ a contraction}\}$. Note that each $f \in \Pi_C$ has a unique fixed point in C. Also, recall that T is nonexpansive if

$$\|Tx - Ty\| \leq \|x - y\| \quad \text{for all } x, y \in C.$$

A point $x \in C$ is a fixed point of T provided $Tx = x$. Denote by $F(T)$ the set of fixed points of T; that is, $F(T) = \{x \in C : Tx = x\}$. Given a real number $t \in (0, 1)$ and a contraction $f \in \Pi_C$. We define a mapping $T_t x = tf(x) + (1 - t)Tx, \quad x \in C$. It is obviously that T_t is a contraction on
C. In fact, for \(x, y \in C \), we obtain
\[
\|T_t x - T_t y\| \leq \|t(f(x) - f(y)) + (1 - t)(Tx - Ty)\|
\leq \alpha t\|x - y\| + (1 - t)\|Tx - Ty\|
\leq \alpha t\|x - y\| + (1 - t)\|x - y\|
= (1 - t(1 - \alpha))\|x - y\|.
\]

Let \(x_t \) be the unique fixed point of \(T_t \). That is, \(x_t \) is the unique solution of the fixed point equation
\[
(1.1) \quad x_t = tf(x_t) + (1 - t)Tx_t.
\]

A special case has been considered by Browder [1] in a Hilbert space as follows. Fix \(u \in C \) and define a contraction \(S_t \) on \(C \) by
\[
S_t x = tu + (1 - t)Tx, \quad x \in C.
\]

If we use \(z_t \) to denote the unique fixed point of \(S_t \), which yields that \(z_t = tu + (1 - t)Tz_t \).

In 1967, Browder [1] proved the following theorem.

Theorem 1.1 In a Hilbert space, as \(t \to 0 \), \(z_t \) converges strongly to a fixed point of \(T \) that is closest to \(u \), that is, the nearest point projection of \(u \) onto \(F(T) \).

Also, In 1967, Halpern [5] firstly introduced this iteration scheme
\[
(1.2) \quad \begin{cases}
 x_0 = x \in C \text{ chosen arbitrarily,} \\
 x_{n+1} = \alpha_n u + (1 - \alpha_n)Tx_n,
\end{cases}
\]
which is the special cases of
\[
(1.3) \quad \begin{cases}
 x_0 = x \in C \text{ chosen arbitrarily,} \\
 x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n)Tx_n.
\end{cases}
\]

In [9], Moudafi proposed a viscosity approximation method of selecting a particular fixed point of a given nonexpansive mapping in Hilbert spaces. If \(H \) is a Hilbert space, \(T : C \to C \) is a nonexpansive self-mapping on a nonempty closed convex \(C \) of \(H \) and \(f : C \to C \) is a contraction, he proved the following theorems.

Theorem 1.2 (Moudafi [9]). The sequence \(\{x_n\} \) generated by the scheme
\[
x_n = \frac{1}{1 + \epsilon_n}Tx_n + \frac{\epsilon_n}{1 + \epsilon_n}f(x_n)
\]
converges strongly to the unique solution of the variational inequality:
\[
\bar{x} \in F(T), \quad \text{such that } \langle (I - f)\bar{x}, \bar{x} - x \rangle \leq 0, \quad \forall x \in F(T),
\]
where \(\{\epsilon_n\} \) is a sequence of positive numbers tending to zero.
Theorem 1.3 (Moudafi [9]). With an initial $z_0 \in C$ defined the sequence \{z_n\} by

$$z_{n+1} = \frac{1}{1 + \epsilon_n} Tz_n + \frac{\epsilon_n}{1 + \epsilon_n} f(z_n).$$

Supposed that $\lim_{n \to \infty} \epsilon_n = 0$, and $\sum_{n=1}^{\infty} \epsilon = \infty$ and $\lim_{n \to \infty} \left| \frac{1}{\epsilon_{n+1}} - \frac{1}{\epsilon_n} \right| = 0$. Then \{z_n\} converges strongly to the unique solution of the variational inequality:

$$\bar{x} \in F(T) \text{ such that } \langle (I - f)\bar{x}, \bar{x} - x \rangle \leq 0, \forall x \in F(T).$$

Theorem 1.4 (Xu [14]). Let E be a uniformly smooth Banach space, C a closed convex subset of E and $T : C \to C$ a nonexpansive mapping with $F(T) \neq \emptyset$, and $f \in \Pi_C$. Then the path \{x_t\} defined by $x_t = tf(x_t) + (1 - t)Tx_t$, $t \in (0, 1)$, converges strongly to a point in $F(T)$. If we define $Q : \Pi_C \to F(T)$ by $Q(f) = \lim_{t \to 0} x_t$, the $Q(f)$ solves the variational inequality

$$\langle (I - f)Q(f), j(Q(f) - x) \rangle, f \in \Pi_C, x \in F(T).$$

Theorem 1.5 (Xu [14]). Let E be a uniformly smooth Banach space, C a closed convex subset of E and $T : C \to C$ a nonexpansive mapping with $F(T) \neq \emptyset$ and $f \in \Pi_C$. Assume that $\alpha_n \in (0, 1)$ satisfies the following conditions

(i) $\lim_{n \to \infty} \alpha_n = 0$;

(ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$;

(iii) either $\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = 1$ or $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| \leq \infty$. Then the sequence \{x_n\} generated by

$$x_0 \in C, \quad x_{n+1} = \alpha_nf(x_n) + (1 - \alpha_n)Tx_n, \quad n = 0, 1, 2, \ldots$$

converges strongly to a fixed point of T.

Two classical iteration processes are often used to approximate a fixed point of a nonexpansive mapping. The first one is introduced by Mann [8] and is defined as

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n)Tx_n, \quad n \geq 0,$$

where the initial guess x_0 is taken in C arbitrarily and the sequence \{\alpha_n\}_{n=0}^{\infty} is in the interval $[0, 1]$.

Qin et al.: Strong Convergence Theorems for Nonexpansive Mappings by
The second iteration process is referred to as Ishikawa’s iteration process [6] which is defined recursively by

\[
\begin{align*}
 y_n &= \beta_n x_n + (1 - \beta_n)Tx_n, \\
 x_{n+1} &= \alpha_n x_n + (1 - \alpha_n)Ty_n,
\end{align*}
\]

where the initial guess \(x_0\) is taken in \(C\) arbitrarily, \(\{\alpha_n\}\) and \(\{\beta_n\}\) are sequences in the interval \([0, 1]\). But both (1.4) and (1.5) have only weak convergence, in general (see [4] for an example). For example, Reich [11], shows that if \(E\) is a uniformly convex and has a Fréchet differentiable norm and if the sequence \(\{\alpha_n\}\) is such that \(\alpha_n(1 - \alpha_n) = \infty\), then the sequence \(\{x_n\}\) generated by processes (1.4) converges weakly to a point in \(F(T)\). (An extension of this result to processes (1.5) can be found in [13].) Therefore, many authors attempt to modify (1.4) and (1.5) to have strong convergence. Recently, Kim and Xu [7] introduced the following iteration process in the framework of Banach spaces.

\[
\begin{align*}
 z_n &= \gamma_n x_n + (1 - \gamma_n)T_2x_n, \\
 y_n &= \beta_n x_n + (1 - \beta_n)T_1z_n, \\
 x_{n+1} &= \alpha_n f(x_n) + (1 - \alpha_n)y_n,
\end{align*}
\]

where the sequence \(\{\alpha_n\}\) in \((0, 1)\) and \(\{\beta_n\}\), \(\{\gamma_n\}\) are sequences in \([0, 1]\). We prove, under certain appropriate assumptions on the sequences \(\{\alpha_n\}\), \(\{\beta_n\}\) and \(\{\gamma_n\}\), that \(\{x_n\}\) defined by (1.7) converges to a common fixed point of \(T_1\) and \(T_2\), which solves some variational inequality.
If \(\{\gamma_n\} = 1 \) in (1.7) this can be viewed as a modified Mann iteration process

\[
\begin{align*}
 y_n &= \beta_n x_n + (1 - \beta_n) T_1 x_n, \\
 x_{n+1} &= \alpha_n f(x_n) + (1 - \alpha_n) y_n.
\end{align*}
\]

If \(\{\gamma_n\} = 1 \) and \(\{\beta_n\} = 0 \) in (1.7), then (1.7) reduces to (1.3) which considered by Xu [14].

It is our purpose in this paper is to introduce this composite iteration scheme for approximating a common fixed point of two nonexpansive mappings by using viscosity methods in the framework of uniformly smooth Banach spaces. we establish the strong convergence of the sequence \(\{x_n\} \) defined by (1.7). Our results improve and extend the ones announced by Kim and Xu [7], Xu [14] and some others.

We need the following definitions and lemmas for the proof of our main results.

The norm of \(E \) is said to be Gâteaux differentiable (and \(E \) is said to be smooth) if

\[
\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}
\]

exists for each \(x, y \) in its unit sphere \(U = \{x \in E : \|x\| = 1\} \). It is said to be uniformly Fréchet differentiable (and \(E \) is said to be uniformly smooth) if the limit in (1.9) is attained uniformly for \((x, y) \in U \times U \).

Lemma 1.1 A Banach space \(E \) is uniformly smooth if and only if the duality map \(J \) is single-valued and norm-to-norm uniformly continuous on bounded sets of \(E \).

Lemma 1.2 In a Banach space \(E \), there holds the inequality

\[
\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x + y) \rangle, \quad x, y \in E
\]

where \(j(x + y) \in J(x + y) \).

Lemma 1.3 (Xu [15], [16]). Let \(\{\alpha_n\} \) be a sequence of nonnegative real numbers satisfying the property

\[
\alpha_{n+1} \leq (1 - \gamma_n)\alpha_n + \gamma_n \sigma_n, \quad n \geq 0,
\]

where \(\{\gamma_n\}_{n=0}^\infty \subset (0, 1) \) and \(\{\sigma_n\}_{n=0}^\infty \) such that

(i) \(\lim_{n \to \infty} \gamma_n = 0 \) and \(\sum_{n=0}^\infty \gamma_n = \infty \),

(ii) either \(\lim \sup_{n \to \infty} \sigma_n \leq 0 \) or \(\sum_{n=0}^\infty |\gamma_n \sigma_n| < \infty \).

Then \(\{\alpha_n\}_{n=0}^\infty \) converges to zero.
Recall that if C and D are nonempty subsets of a Banach space E such that C is nonempty closed convex and $D \subset C$, then a map $Q : C \to D$ is sunny ([2], [12]) provided $Q(x + t(x - Q(x))) = Q(x)$ for all $x \in C$ and $t \geq 0$ whenever $x + t(x - Q(x)) \in C$. A sunny nonexpansive retraction is a sunny retraction, which is also nonexpansive. Sunny nonexpansive retractions play an important role in our argument. They are characterized as follows [2, 3, 12]: if E is a smooth Banach space, then $Q : C \to D$ is a sunny nonexpansive retraction if and only if there holds the inequality

$$\langle x - Qx, J(y - Qx) \rangle \leq 0 \text{ for all } x \in C \text{ and } y \in D.$$

Reich [10] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C into itself, then there is a sunny nonexpansive retraction from C onto D and it can be constructed as follows.

Lemma 1.4 (Reich [10]). Let E be a uniformly smooth Banach space and let $T : C \to C$ be a nonexpansive mapping with a fixed point $x_t \in C$ of the contraction $C \ni x \mapsto tu + (1 - t)Tx$ converging strongly as $t \to 0$ to a fixed point of T. Define $Q : C \to F(T)$ by $Qu = s - \lim_{t \to 0} x_t$. Then Q is the unique sunny nonexpansive retract from C onto $F(T)$; that is, Q satisfies the property

$$\langle u - Qu, J(z - Qu) \rangle \leq 0, \quad u \in C, \quad z \in F(T).$$

Lemma 1.5 (Xu [14]). Let E be a uniformly smooth Banach space and let $T : C \to C$ be a nonexpansive mapping with a fixed point $x_t \in C$ of the contraction $C \ni x \mapsto tu + (1 - t)Tx$ converging strongly as $t \to 0$ to a fixed point of T. Define $Q : \Pi_C \to F(T)$ by

$$(1.10) \quad Qf = s - \lim_{t \to 0} x_t, \quad f \in \Pi_C.$$

Then $Q(f)$ solves the variational inequality

$$(1.11) \quad \langle (I - f)Q(f), J(Q(f) - p) \rangle \leq 0, \quad f \in \Pi_C, p \in F(T).$$

In particular, if $f = u$ is a constant, then (1.10) is reduced to the sunny nonexpansive retract from C onto $F(T)$:

$$(1.12) \quad \langle u - Qu, J(p - Qu) \rangle \leq 0, \quad u \in C, \quad p \in F(T).$$

2. Main Results

Theorem 2.1 Let C be a closed convex subset of a uniformly smooth Banach space E and let $T_1, T_2 : C \to C$ be a pair of nonexpansive mappings such that $F(T_1T_2) = F(T_1) \cap F(T_2) \neq \emptyset$. The initial guess $x_0 \in C$ is chosen
arbitrarily and given sequences \(\{\alpha_n\}_{n=0}^\infty \) in \((0,1)\) and \(\{\beta_n\}_{n=0}^\infty \) and \(\{\gamma_n\}_{n=0}^\infty \) in \([0,1]\), the following conditions are satisfied

(i) \(\sum_{n=0}^\infty \alpha_n = \infty \), \(\alpha_n \to 0 \);
(ii) \(\beta_n \to 0 \), \(\gamma_n \to \beta \);
(iii) \(\sum_{n=0}^\infty |\alpha_{n+1} - \alpha_n| < \infty \), \(\sum_{n=0}^\infty |\beta_{n+1} - \beta_n| < \infty \) and \(\sum_{n=0}^\infty |\gamma_{n+1} - \gamma_n| \leq \infty \).

Let \(\{x_n\}_{n=1}^\infty \) be the composite process defined by

\[
\begin{align*}
 z_n &= \gamma_n x_n + (1 - \gamma_n) T_2 x_n, \\
 y_n &= \beta_n x_n + (1 - \beta_n) T_1 z_n, \\
 x_{n+1} &= \alpha_n f(x_n) + (1 - \alpha_n) y_n.
\end{align*}
\]

Then \(\{x_n\}_{n=1}^\infty \) converges strongly to some common fixed point \(p \in F(T_1) \cap F(T_2) \) which solves the variational inequality

\[
(2.1) \quad \langle (I - f) Q(f), J(Q(f) - p) \rangle \leq 0, \quad f \in \Pi_C, p \in F(T_1) \cap F(T_2).
\]

Proof. First we observe that \(\{x_n\}_{n=0}^\infty \) is bounded. Indeed, taking a fixed point \(p \) of \(F(T_1) \cap F(T_2) \), we note that

\[
(2.2) \quad \|z_n - p\| \leq \gamma_n \|x_n - p\| + (1 - \gamma_n) \|T_2 x_n - p\| \leq \|x_n - p\|.
\]

It follows that

\[
(2.3) \quad \|y_n - p\| \leq \beta_n \|x_n - p\| + (1 - \beta_n) \|T_1 z_n - p\| \\
 \leq \beta_n \|x_n - p\| + (1 - \beta_n) \|z_n - p\| \\
 \leq \|x_n - p\|.
\]

It follows from (2.3) that

\[
\|x_{n+1} - p\| \leq \alpha_n \|f(x_n) - p\| + (1 - \alpha_n) \|y_n - p\| \\
 \leq \alpha_n \|f(x_n) - f(p)\| + \alpha_n \|f(p) - p\| + (1 - \alpha_n) \|x_n - p\| \\
 \leq \max\{\frac{1}{1 - \alpha} \|f(p) - p\|, \|x_n - p\|\}.
\]

Now, an induction yields

\[
(2.4) \quad \|x_n - p\| \leq \max\{\frac{1}{1 - \alpha} \|f(p) - p\|, \|x_0 - p\|\}. \quad n \geq 0,
\]

which implies that \(\{x_n\} \) is bounded, so are \(\{T_2 x_n\} \), \(\{f(x_n)\} \), \(\{y_n\} \) and \(\{T_1 z_n\} \).

Since condition (i), we obtain

\[
(2.6) \quad \|x_{n+1} - y_n\| = \alpha_n \|f(x_n) - y_n\| \to 0, \quad as \ n \to \infty.
\]

Next, we claim that

\[
(2.6) \quad \|x_{n+1} - x_n\| \to 0.
\]
In order to prove (2.6) from

\[
\begin{aligned}
 x_{n+1} &= \alpha_n f(x_n) + (1 - \alpha_n)y_n, \\
x_n &= \alpha_{n-1} f(x_n) + (1 - \alpha_{n-1})y_n.
\end{aligned}
\]

We have

\[
x_{n+1} - x_n = (1 - \alpha_n)(y_n - y_{n-1}) + (\alpha_n - \alpha_{n-1})(y_{n-1} - f(x_{n-1})) + \alpha_n(f(x_n) - f(x_{n-1})).
\]

It follows that

(2.7) \[|x_{n+1} - x_n| \leq (1 - \alpha_n)|y_n - y_{n-1}| + |\alpha_n - \alpha_{n-1}||y_{n-1} - f(x_{n-1})| + \alpha_n|x_n - x_{n-1}|.\]

Similarly, Since

\[
\begin{aligned}
y_n &= \beta_n x_n + (1 - \beta_n)T_1 z_n, \\
y_{n-1} &= \beta_{n-1} x_{n-1} + (1 - \beta_{n-1})T_1 z_{n-1}.
\end{aligned}
\]

We obtain

\[
y_n - y_{n-1} = (1 - \beta_n)(T_1 z_n - T_1 z_{n-1}) + \beta_n(x_n - x_{n-1}) + (T_1 z_{n-1} - x_{n-1})(\beta_{n-1} - \beta_n).
\]

It follow that

(2.8) \[|y_n - y_{n-1}| \leq (1 - \beta_n)|T_1 z_n - T_1 z_{n-1}| + \beta_n|x_n - x_{n-1}| + \|T_1 z_{n-1} - x_{n-1}||\beta_{n-1} - \beta_n|.
\]

On the other hand, from

\[
\begin{aligned}
z_n &= \gamma_n x_n + (1 - \gamma_n)T_2 x_n, \\
z_{n-1} &= \gamma_{n-1} x_{n-1} + (1 - \gamma_{n-1})T_2 z_{n-1},
\end{aligned}
\]

we also can obtain

\[
z_n - z_{n-1} = (1 - \gamma_n)(T_2 x_n - T_2 x_{n-1}) + \gamma_n(x_n - x_{n-1}) + (\gamma_{n-1} - \gamma_n)(T_2 x_{n-1} - x_{n-1}),
\]

which yields that

(2.9) \[|z_n - z_{n-1}| \leq |x_n - x_{n-1}| + |\gamma_{n-1} - \gamma_n||T_2 x_{n-1} - x_{n-1}|.
\]

Substituting (2.9) into (2.8), we get

(2.10) \[|y_n - y_{n-1}| \leq (1 - \beta_n)(|x_n - x_{n-1}| + |\gamma_{n-1} - \gamma_n||T_2 x_{n-1} - x_{n-1}|) + \beta_n|x_n - x_{n-1}| + \|T_1 z_{n-1} - x_{n-1}||\beta_{n-1} - \beta_n|.
\]
Similarly, substitute (2.11) into (2.7) yields that
\[
\|x_{n+1} - x_n\| \leq (1 - \alpha_n)(\|x_n - x_{n-1}\| + |\gamma_n - \gamma_n|\|T_2x_{n-1} - x_{n-1}\|
\]
\[
+ \|T_1z_{n-1} - x_{n-1}\||\beta_{n-1} - \beta_n| + |\alpha_{n-1} - \alpha_n||y_n - f(x_{n-1})| + \alpha_{n-1}\|x_n - x_{n-1}\|
\]
\[
\leq (1 - (1 - \alpha)\alpha_n)\|x_n - x_{n-1}\|
\]
\[
+ M_1(|\alpha_{n-1} - \alpha_n| + |\beta_{n-1} - \beta_n| + |\gamma_{n-1} - \gamma_n|),
\]
where \(M_1\) is a constant such that
\[
M_1 \geq \max\{\|y_n - f(x_{n-1})\|, \|x_{n-1} - T_2x_{n-1}\|, \|x_{n-1} - T_1z_{n-1}\|\}
\]
for all \(n\). By assumptions (i)-(iii), we have that
\[
\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} (1 - \alpha)\alpha_n = \infty,
\]
and
\[
\sum_{n=1}^{\infty} (|\beta_n - \beta_{n-1}| + |\alpha_n - \alpha_{n-1}| + |\gamma_n - \gamma_{n-1}|) < \infty.
\]
Hence, Lemma 1.3 is applicable to (2.12) and we obtain (2.6) holds. Observe that
\[
\|T_1 T_2 x_n - x_n\|
\]
\[
\leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n\| + \|y_n - T_1 z_n\| + \|T_1 z_n - T_1 T_2 x_n\|
\]
\[
\leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n\| + \beta_n \|x_n - T_1 z_n\| + \|z_n - T_2 x_n\|
\]
\[
\leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n\| + \beta_n \|x_n - T_1 z_n\| + \gamma_n \|x_n - T_2 x_n\|.
\]
Since assumption \(\lim_{n \to \infty} \beta_n = \lim_{n \to \infty} \gamma_n = 0\), (2.5) and (2.6), we know
\[
\|T_1 T_2 x_n - x_n\| \to 0.
\]
Put \(T = T_1 T_2\). Since \(T_1\) and \(T_2\) are nonexpansive, we have \(T\) is also nonexpansive. Next, we claim that
\[
\limsup_{n \to \infty} (f(q) - q, J(x_n - q)) \leq 0,
\]
where \(q = Qf = \lim_{t \to 0} x_t\) with \(x_t\) being the fixed point of the contraction \(x \mapsto tf(x) + (1 - t)Tx\), where \(T = T_1 T_2\). From \(x_t\) solves the fixed point
equation
\[x_t = tf(x_t) + (1-t)Tx_t. \]
Thus we have
\[\|x_t - x_n\| = \|(1-t)(Tx_t - x_n) + t(f(x_t) - x_n)\|. \]
It follows from Lemma 1.2 that
\[\|x_t - x_n\|^2 \leq (1-t)^2\|Tx_t - x_n\|^2 + 2t(f(x_t) - x_n, J(x_t - x_n)) \]
\[+ 2t^2\|f(x_t) - x_t, J(x_t - x_n)\| + 2t\|x_t - x_n\|^2, \]
where
\[f_n(t) = (2\|x_t - x_n\| + \|x_n - Tx_n\|)|x_n - Tx_n| \to 0, \text{ as } n \to 0. \]
It follows that
\[\langle x_t - f(x_t), J(x_t - x_n) \rangle \leq \frac{t}{2}\|x_t - x_n\|^2 + \frac{1}{2t}f_n(t). \]
Let \(n \to \infty \) in (2.18) and note (2.17) yields
\[\limsup_{n \to \infty} \langle x_t - f(x_t), J(x_t - x_n) \rangle \leq \frac{t}{2}M_2, \]
where \(M_2 > 0 \) is a constant such that \(M_2 \geq \|x_t - x_n\|^2 \) for all \(t \in (0, 1) \) and \(n \geq 1 \). Taking \(t \to 0 \) from (2.19), we have
\[\limsup_{n \to \infty} \limsup_{n \to \infty} \langle x_t - f(x_t), J(x_t - x_n) \rangle \leq 0. \]
So, for any \(\epsilon > 0 \), there exists a positive number \(\delta_1 \) such that, for \(t \in (0, \delta_1) \), we get
\[\limsup_{n \to \infty} \langle x_t - f(x_t), J(x_t - x_n) \rangle \leq \frac{\epsilon}{2}. \]
On the other hand, since \(x_t \to q \) as \(t \to 0 \), from Lemma 1.1, there exists \(\delta_2 > 0 \) such that, for \(t \in (0, \delta_2) \) we have
\[\langle f(q) - q, J(x_n - q) - J(x_n - x_t) \rangle - \langle x_t - f(x_t), J(x_t - x_n) \rangle \]
\[\leq \langle f(q) - q, J(x_n - q) - J(x_n - x_t) \rangle - \langle f(q) - q, J(x_n - x_t) \rangle \]
\[+ \langle f(q) - q, J(x_n - x_t) \rangle - \langle x_t - f(x_t), J(x_t - x_n) \rangle \]
\[\leq \|f(q) - q\| \|J(x_n - q) - J(x_n - x_t)\| \]
\[+ \|f(q) - f(x_t) - q + x_t, J(x_n - q)\| \]
\[\leq \|f(q) - q\| \|J(x_n - q) - J(x_n - x_t)\| \]
\[+ \|f(q) - f(x_t) - q + x_t\| \|x_n - q\| \]
\[< \frac{\epsilon}{2}. \]
Picking \(\delta = \min\{\delta_1, \delta_2\}, \forall t \in (0, \delta) \), we have
\[\langle f(q) - q, J(x_n - q) \rangle \leq \langle x_t - f(x_t), J(x_t - x_n) \rangle + \frac{\epsilon}{2}. \]
STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS

That is,
\[
\limsup_{n \to \infty} \langle f(q) - q, J(x_n - q) \rangle \leq \limsup_{n \to \infty} \langle x_t - f(x_t), J(x_t - x_n) \rangle + \frac{\epsilon}{2}.
\]
It follows from (2.21) that
\[
\limsup_{n \to \infty} \langle f(q) - q, J(x_n - q) \rangle \leq \epsilon.
\]
Since \(\epsilon\) is chosen arbitrarily, we have
(2.21).
\[
\limsup_{n \to \infty} \langle f(q) - q, J(x_n - q) \rangle \leq 0
\]
Finally, we show that \(x_n \to q\) strongly and this concludes the proof. Indeed, using Lemma 1.2 again we obtain
\[
\|x_{n+1} - q\|^2 = \|(1 - \alpha_n)(y_n - q) + \alpha_n(f(x_n) - q)\|^2
\]
\[
\leq (1 - \alpha_n)^2\|y_n - q\|^2 + 2\alpha_n\langle f(x_n) - q, J(x_{n+1} - q) \rangle
\]
\[
\leq (1 - \alpha_n)^2\|y_n - q\|^2 + 2\alpha_n\|x_n - q\|\|x_{n+1} - q\|
\]
\[
+ 2\alpha_n\langle f(q) - q, J(x_{n+1} - q) \rangle
\]
\[
\leq (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n\|x_n - q\|^2 + \|x_{n+1} - q\|^2)
\]
\[
+ 2\alpha_n\langle f(q) - q, J(x_{n+1} - q) \rangle.
\]
Therefore, we obtain
\[
\|x_{n+1} - q\|^2
\]
\[
\leq \frac{1 - 2(1 - \alpha)\alpha_n + \alpha_n^2}{1 - \alpha\alpha_n}\|x_n - q\|^2 - \frac{2\alpha_n}{1 - \alpha\alpha_n}\langle f(q) - q, J(x_{n+1} - q) \rangle
\]
\[
\leq \frac{1 - 2(1 - \alpha)\alpha_n + \alpha_n^2}{1 - \alpha\alpha_n}\|x_n - q\|^2 - \frac{2\alpha_n}{1 - \alpha\alpha_n}\langle f(q) - q, J(x_{n+1} - q) \rangle + M_2\alpha_n^2
\]
\[
= (1 - \frac{2(1 - \alpha)\alpha_n}{1 - \alpha\alpha_n})\|x_n - q\|^2
\]
\[
+ \frac{2(1 - \alpha)\alpha_n}{1 - \alpha\alpha_n}(\frac{M_2(1 - \alpha\alpha_n)\alpha_n}{2(1 - \alpha)} + \frac{1}{1 - \alpha}\langle f(q) - q, J(x_{n+1} - q) \rangle).
\]
Now we apply Lemma 1.3 and use (2.21) to see that \(\|x_n - q\| \to 0\). This completes the proof.

As corollaries of Theorem 2.1, we have the following.

Corollary 2.2 Let \(C\) be a closed convex subset of a uniformly smooth Banach space \(E\) and let \(T_1 : C \to C\) be a nonexpansive mapping such that
\(F(T_1) \neq \emptyset \). The initial guess \(x_0 \in C \) is chosen arbitrarily and given sequences \(\{\alpha_n\}_{n=0}^{\infty} \) in \((0,1)\) and \(\{\beta_n\}_{n=0}^{\infty} \) in \([0,1]\), the following conditions are satisfied

(i) \(\sum_{n=0}^{\infty} \alpha_n = \infty, \ \alpha_n \to 0; \)

(ii) \(\beta_n < a, \) for some \(a \in [0,1); \)

(iii) \(\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty, \ \sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty. \)

Let \(\{x_n\}_{n=1}^{\infty} \) be the composite process defined by (1.8), then \(\{x_n\}_{n=1}^{\infty} \) converges strongly to some fixed point \(p \in F(T_1) \) which \(Q(f) \) solves the variational inequality

\[
\langle (I-f)Q(f), J(Q(f)-p) \rangle \leq 0, \quad f \in \Pi_C, p \in F(T_1).
\]

Proof. By taking \(\{\gamma_n\} = 1 \), we can obtain the desired conclusion. This completes the proof.

Corollary 2.3 (Xu [14]). Let \(E \) be a uniformly smooth Banach space, \(C \) a closed convex subset of \(E \) and \(T : C \to C \) a nonexpansive mapping with \(F(T) \neq \emptyset, \) and \(f \in \Pi_C. \) Assume that \(\alpha_n \in (0,1) \) satisfies the following conditions

(i) \(\lim_{n \to \infty} \alpha_n = 0; \)

(ii) \(\sum_{n=0}^{\infty} \alpha_n = \infty; \)

(iii) \(\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| \leq \infty. \) Then the sequence \(\{x_n\} \) generated by

\[
x_0 \in C, \quad x_{n+1} = \alpha_n f(x_n) + (1-\alpha_n)Tx_n, \quad n = 0, 1, 2, \ldots
\]

converges strongly to \(Q(f) \), which solves the variational inequality

\[
\langle (I-f)Q(f), J(Q(f)-p) \rangle \leq 0, \quad f \in \Pi_C, p \in F(T).
\]

Proof. By taking \(\{\gamma_n\} = 1 \) and \(\{\beta_n\}=0 \), we can obtain the desired conclusion. This completes the proof.

REFERENCES

XIAOLONG QIN
DEPARTMENT OF MATHEMATICS, TIANJIN POLYTECHNIC UNIVERSITY, TIANJIN 300160,
PR CHINA
e-mail address: qxlxajh@163.com

YONGFU SU
DEPARTMENT OF MATHEMATICS, TIANJIN POLYTECHNIC UNIVERSITY, TIANJIN 300160,
PR CHINA
e-mail address: suyongfu@tjpu.edu.cn

CHANGQUN WU
SCHOOL OF BUSINESS AND ADMINISTRATION, HENAN UNIVERSITY, KAIFENG 475001,
PR CHINA
e-mail address: kyls2003@yahoo.com.cn

(Received December 7, 2006)