On Φ-recurrent $N(k)$-contact Metric Manifolds

Uday Chand De* Aboul Kalam Gazi†

*Mathematics University
†Mathematics University

Copyright ©2008 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
On Φ-recurrent $N(k)$-contact Metric Manifolds

Uday Chand De and Aboul Kalam Gazi

Abstract

In this paper we prove that a Φ-recurrent $N(k)$-contact metric manifold is an η-Einstein manifold with constant coefficients. Next, we prove that a 3-dimensional Φ-recurrent $N(k)$-contact metric manifold is of constant curvature. The existence of a Φ-recurrent $N(k)$-contact metric manifold is also proved.

KEYWORDS: N(k)-contact metric manifolds, eta-Einstein manifold, Phi-recurrent N(k)-contact metric manifolds
ON Φ -RECURRENT $N(k)$-CONTACT METRIC MANIFOLDS

Dedicated to PROFESSOR DAVID E. BLAIR

UDAY CHAND DE AND ABOUL KALAM GAZI

Abstract. In this paper we prove that a ϕ-recurrent $N(k)$-contact metric manifold is an η-Einstein manifold with constant coefficients. Next, we prove that a 3-dimensional ϕ-recurrent $N(k)$-contact metric manifold is of constant curvature. The existence of a ϕ-recurrent $N(k)$-contact metric manifold is also proved.

1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakened by many authors in several ways to a different extent. As a weaker version of local symmetry, T.Takahashi [1] introduced the notion of local ϕ-symmetry on a Sasakian manifold. Generalizing the notion of local ϕ-symmetry, one of the authors, De, [2] introduced the notion of ϕ-recurrent Sasakian manifold. In the context of contact geometry the notion of ϕ-symmetry is introduced and studied by Boeckx, Bueken and Vanhecke [3] with several examples.

In the present paper we study ϕ-recurrent $N(k)$-contact metric manifold which generalizes the result of De, Shaikh and Biswas [2]. The paper is organized as follows:

Section 2 contains necessary details about contact metric manifolds, some preliminaries and a brief account of (k,μ) manifolds and the basic results. In Section 3, it is proved that a ϕ-recurrent $N(k)$-contact metric manifold is a special type of η-Einstein manifold. Also it is shown that the characteristic vector field of the $N(k)$-contact metric manifold and the vector field associated to the 1-form of recurrence are co-directional. In Section 4, it is also proved that a 3-dimensional ϕ-recurrent $N(k)$-contact metric manifold is of constant curvature. The last section provides the existence of the ϕ-recurrent $N(k)$-contact metric manifold by an example which is neither symmetric nor locally ϕ-symmetric.

Mathematics Subject Classification. Primary 53C15; Secondary 53C40.

Key words and phrases. $N(k)$-contact metric manifolds, η-Einstein manifold, ϕ-recurrent $N(k)$-contact metric manifolds.

The authors are thankful to the referee for valuable suggestions towards the improvement of this paper.
2. Contact Metric Manifolds

A \((2n+1)\)-dimensional manifold \(M^{2n+1}\) is said to admit an almost contact structure if it admits a tensor field \(\phi\) of type \((1,1)\), a vector field \(\xi\) and a 1-form \(\eta\) satisfying
\[
(a) \quad \phi^2 = -I + \eta \otimes \xi, \quad (b) \quad \eta(\xi) = 1, \quad (c) \quad \phi \xi = 0, \quad (d) \quad \eta \circ \phi = 0.
\]

An almost contact metric structure is said to be normal if the induced almost complex structure \(J\) on the product manifold \(M^{2n+1} \times \mathbb{R}\) defined by
\[
J(X, f \frac{d}{dt}) = (\phi X - f \xi, \eta(X) \frac{d}{dt})
\]
is integrable, where \(X\) is tangent to \(M\), \(t\) is the coordinate of \(\mathbb{R}\) and \(f\) is a smooth function on \(M \times \mathbb{R}\). Let \(g\) be a compatible Riemannian metric with almost contact structure \((\phi, \xi, \eta)\), that is,
\[
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).
\]
Then \(M\) becomes an almost contact metric manifold equipped with an almost contact metric structure \((\phi, \xi, \eta, g)\). From (2.1) it can be easily seen that
\[
(a) g(X, \phi Y) = -g(\phi X, Y), \quad (b) g(X, \xi) = \eta(X),
\]
for all vector fields \(X, Y\). An almost contact metric structure becomes a contact metric structure if
\[
g(X, \phi Y) = d\eta(X, Y),
\]
for all vector fields \(X, Y\). The 1-form \(\eta\) is then a contact form and \(\xi\) is its characteristic vector field. We define a \((1,1)\) tensor field \(h\) by
\[
h = \frac{1}{2} \mathcal{L}_\xi \phi,
\]
where \(\mathcal{L}\) denotes the Lie-differentiation. Then \(h\) is symmetric and satisfies \(h\phi = -\phi h\). We have \(Tr:h = Tr:\phi = 0\) and \(h\xi = 0\). Also,
\[
\nabla_X \xi = -\phi X - \phi h X,
\]
holds in a contact metric manifold. A normal contact metric manifold is a Sasakian manifold. An almost contact metric manifold is Sasakian if and only if
\[
(\nabla_X \phi)(Y) = g(X, Y)\xi - \eta(Y)X, \quad X, Y \in TM,
\]
where \(\nabla\) is the Levi-Civita connection of the Riemannian metric \(g\). A contact metric manifold \(M^{2n+1}(\phi, \xi, \eta, g)\) for which \(\xi\) is a Killing vector is said to be a \(K\)-contact manifold. A Sasakian manifold is \(K\)-contact but not conversely. However a 3-dimensional \(K\)-contact manifold is Sasakian [4]. It is well known that the tangent sphere bundle of a flat Riemannian manifold admits a
contact metric structure satisfying $R(X,Y)\xi = 0$ ([5]). On the other hand, on a Sasakian manifold the following holds:

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y.$$

As a generalization of both $R(X,Y)\xi = 0$ and the Sasakian case; D. Blair, T. Koufogiorgos and B. J. Papantoniou [6] considered the (k, μ)-nullity condition on a contact metric manifold and gave several reasons for studying it. The (k, μ)-nullity distribution $N(k, \mu)$ ([6], [7]) of a contact metric manifold M is defined by

$$N(k, \mu) : p \to N_p(k, \mu) = \{W \in T_pM : R(X,Y)W = (kI + \mu h)(g(Y,W)X - g(X,W)Y)\},$$

for all $X, Y \in TM$, where $(k, \mu) \in \mathbb{R}^2$. A contact metric manifold M^{2n+1} with $\xi \in N(k, \mu)$ is called a (k, μ)-manifold. In particular on a (k, μ)-manifold, we have

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY].$$

On a (k, μ)-manifold $k \leq 1$. If $k = 1$, the structure is Sasakian ($h = 0$ and μ is indeterminant) and if $k < 1$, the (k, μ)-nullity condition determines the curvature of M^{2n+1} completely [6]. In fact, for a (k, μ)-manifold, the condition of being a Sasakian manifold, a K-contact manifold, $k = 1$ and $h = 0$ are all equivalent.

In a (k, μ)-manifold the following relations hold ([6], [8]):

$$h^2 = (k - 1)\phi^2, \quad k \leq 1,$$

$$\nabla_X \phi(Y) = g(X + hX, Y)\xi - \eta(Y)(X + hX),$$

$$R(\xi, X)Y = k[g(X,Y)\xi - \eta(Y)X] + \mu[g(hX,Y)\xi - \eta(Y)hX],$$

$$S(X, \xi) = 2nk\eta(X),$$

$$S(X, Y) = [2(n - 1) - n\mu]g(X,Y) + [2(n - 1) + \mu]g(hX,Y) + [2(1 - n) + n(2k + \mu)]\eta(X)\eta(Y), \quad n \geq 1,$$

$$r = 2n(2n - 2 + k - n\mu),$$

$$S(\phi X, \phi Y) = S(X, Y) - 2nk\eta(X)\eta(Y) - 2(2n - 2 + \mu)g(hX,Y),$$

where S is the Ricci tensor of type $(0, 2)$, Q is the Ricci-operator, that is, $g(QX,Y) = S(X,Y)$ and r is the scalar curvature of the manifold. From (2.5), it follows that

$$\nabla_X \eta)(Y) = g(X + hX, \phi Y).$$
Also in a \((k, \mu)\)-manifold

\begin{equation}
\eta(R(X,Y)Z) = k[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] \\
\quad + \mu[g(hY,Z)\eta(X) - g(hX,Z)\eta(Y)]
\end{equation}

holds.

The \(k\)-nullity distribution \(N(k)\) of a Riemannian manifold \(M\) \[9\] is defined by

\[N(k) : p \mapsto N_p(k) = \{ Z \in T_pM : R(X,Y)Z = g(Y,Z)X - g(X,Z)Y \}, \]

\(k\) being a constant. If the characteristic vector field \(\xi \in N(k)\), then we call a contact metric manifold an \(N(k)\)-contact metric manifold \[10\]. If \(k = 1\), then \(N(k)\)-contact metric manifold is Sasakian and if \(k = 0\), then \(N(k)\)-contact metric manifold is locally isometric to the product \(E^{n+1} \times S^n(4)\) for \(n > 1\) and flat for \(n = 1\). If \(k < 1\), the scalar curvature is \(r = 2n(2n - 2 + k)\).

In \[11\], \(N(k)\)-contact metric manifold were studied in some detail. For more details we refer to \[12\] \[13\].

In \(N(k)\)-contact metric manifold the following relations hold:

\begin{align}
(2.18) & \quad h^2 = (k - 1)\phi^2, \quad k \leq 1, \\
(2.19) & \quad (\nabla_X \phi)(Y) = g(X + hX, Y)\xi - \eta(Y)(X + hX), \\
(2.20) & \quad R(\xi, X)Y = k[g(X,Y)\xi - \eta(Y)X], \\
(2.21) & \quad S(X, \xi) = 2nk\eta(X), \\
(2.22) & \quad S(X, Y) = 2(n - 1)g(X,Y) + 2(n - 1)g(hX,Y) \\
& \quad + [2(1 - n) + 2nk]\eta(X)\eta(Y), \quad n \geq 1, \\
(2.23) & \quad r = 2n(2n - 2 + k), \\
(2.24) & \quad S(\phi X, \phi Y) = S(X, Y) - 2nk\eta(X)\eta(Y) - 4(n - 1)g(hX,Y), \\
(2.25) & \quad (\nabla_X \eta)(Y) = g(X + hX, \phi Y), \\
(2.26) & \quad R(X, Y)\xi = k[\eta(Y)X - \eta(X)Y], \\
(2.27) & \quad \eta(R(X,Y)Z) = k[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)].
\end{align}
3. ϕ-recurrent $N(k)$-contact metric manifolds

Definition 1. ([1]) A Sasakian manifold is said to be locally ϕ-symmetric if the relation

$$\phi^2((\nabla_W R)(X,Y)Z) = 0$$

holds for all vector fields X, Y, Z, W orthogonal to ξ.

Definition 2. ([2]) A $N(k)$-contact metric manifold is said to be ϕ-recurrent if and only if there exists a non-zero 1-form A such that

$$\phi^2((\nabla_W R)(X,Y)Z) = A(W)R(X,Y)Z,$$

for all vector fields X, Y, Z, W. Here X, Y, Z, W are arbitrary vector fields which are not necessarily orthogonal to ξ.

If the 1-form A vanishes identically, then the manifold is said to be a locally ϕ-symmetric manifold.

Definition 3. ([6]) A contact manifold is said to be η-Einstein if the Ricci tensor S of type $(0,2)$ satisfies the condition

$$S(X,Y) = a g(X,Y) + b \eta(X)\eta(Y),$$

where a and b are smooth functions on M^{2n+1}.

Now we prove the main theorem of the paper.

Theorem 3.1. A ϕ-recurrent $N(k)$-contact metric manifold is an η-Einstein manifold with constant coefficients.

Proof. By virtue of (2.1)(a) and (3.1) we have

$$-(\nabla_W R)(X,Y)Z + \eta((\nabla_W R)(X,Y)Z)\xi = A(W)R(X,Y)Z,$$

from which it follows that

$$-(\nabla_W R)(X,Y)Z,U) + \eta((\nabla_W R)(X,Y)Z)\eta(U) = A(W)g(R(X,Y)Z,U).$$

Let $\{e_i\}$, $i = 1, 2, 3, \ldots, 2n + 1$, be an orthonormal basis of the tangent space at any point of the manifold. Putting $X = U = \{e_i\}$ in (3.4) and taking summation over $i, 1 \leq i \leq 2n + 1$, we get

$$-(\nabla_W S)(Y,Z) + \sum_{i=1}^{2n+1} \eta((\nabla_W R)(e_i,Y)Z)\eta(e_i) = A(W)S(Y,Z).$$

The second term of (3.5) by putting $Z = \xi$ takes the form

$$g((\nabla_W R)(e_i,Y)\xi,\xi)g(e_i,\xi),$$

which is denoted by E. In this case E vanishes.
We have
\[g(\nabla_W R(e_i, Y)\xi, \xi) = g(\nabla_W R(e_i, Y)\xi, \xi) - g(R(\nabla_W e_i, Y)\xi, \xi) \]
\[- g(R(e_i, \nabla_W Y)\xi, \xi) - g(R(e_i, Y)\nabla_W \xi, \xi) \]
for \(p \in M \). Using (2.3)(b) and (2.27) we obtain
\[g(R(e_i, \nabla_W Y)\xi, \xi) = g(k[\eta(\nabla_W Y) e_i - \eta(e_i)\nabla_W Y], \xi) \]
\[= k[\eta(\nabla_W Y) \eta(e_i) - \eta(e_i)\eta(\nabla_W Y)] = 0. \]

Thus we obtain
\[g(\nabla_W R(e_i, Y)\xi, \xi) = g(\nabla_W R(e_i, Y)\xi, \xi) - g(R(e_i, Y)\nabla_W \xi, \xi). \]

In virtue of (3.7), (2.26) and (2.3)(a) we get
\[g(\nabla_W R(e_i, Y)\xi, \xi) + g(R(e_i, Y)\xi, \nabla_W \xi) = 0, \]
which implies
\[g((\nabla_W R)(e_i, Y)\xi, \xi) = -g(R(e_i, Y)\xi, \nabla_W \xi) - g(R(e_i, Y)\nabla_W \xi, \xi) = 0. \]

Using (2.5) and applying skew-symmetry of \(R \) we get
\[g((\nabla_W R)(e_i, Y)\xi, \xi) \]
\[= g(R(e_i, Y)\xi, \phi W + \phi h W) + g(R(e_i, Y)(\phi W + \phi h W)\xi, \xi) \]
\[= g(R(\phi W + \phi h W)\xi, \xi) + g(R(\phi W + \phi h W)Y, e_i). \]

Hence we obtain
\[E = \sum_{i=1}^{2n+1} g(R(\phi W + \phi h W)\xi, \xi)g(\xi, e_i) \]
\[+ g(R(\xi, \phi W + \phi h W)Y, e_i)g(\xi, e_i) \]
\[= g(R(\phi W + \phi h W)\xi, \xi) + g(R(\xi, \phi W + \phi h W)Y, \xi) = 0. \]

Replacing \(Z \) by \(\xi \) in (3.5) and using (2.21) we have
\[-(\nabla_W S)(Y, \xi) = 2nkA(W)\eta(Y). \]

Now we have
\[(\nabla_W S)(Y, \xi) = \nabla_W S(Y, \xi) - S(\nabla_W Y, \xi) - S(Y, \nabla_W \xi). \]

Using (2.21) and (2.5) in the above relation, it follows that
\[(\nabla_W S)(Y, \xi) = 2nk(\nabla_W \eta)(Y) + S(Y, \phi W + \phi h W). \]

In virtue of (3.7), (2.26) and (2.3)(a) we get
\[(\nabla_W S)(Y, \xi) = -2nk(\phi W + \phi h W, Y) + S(Y, \phi W + \phi h W). \]
By (3.6) and (3.8) we have

\begin{equation}
2nkg(\phi W + \phi hW, Y) - S(Y, \phi W + \phi hW) = 2nkA(W)\eta(Y).
\end{equation}

Replacing \(Y \) by \(\phi Y \) in (3.9) and using (2.1)(d), (2.2), (2.25) we get

\[2nkg(\phi W + \phi hW, \phi Y) - S(\phi Y, \phi W + \phi hW) = 0\]

or,

\[2nkg(W + hW, Y) - \eta(W + hW)\eta(Y)] - S(Y, W + hW)
+ 2nk\eta(W + hW)\eta(Y) + 4(n - 1)g(hY, W + hW) = 0\]

or,

\[2nkg(Y, W) + 2nkg(Y, hW) - S(Y, W) - S(Y, hW)
+ 4(n - 1)g(Y, hW) + 4(n - 1)g(Y, hW^2) = 0\]

since, \(g(X, hY) = g(X, Y) \). Now by (2.23), (2.18) and (2.1)(a) this implies

\[S(Y, W) + S(Y, hW) = 2nkg(Y, W) + [2nk + 4(n - 1)]g(Y, hW)
+ 4(n - 1)(k - 1)g(Y, -W + \eta(W)\xi)\]

or,

\[S(Y, W) + 2(n - 1)g(Y, hW) - 2(n - 1)(k - 1)g(Y, W)
+ 2(n - 1)(k - 1)\eta(Y)\eta(W) = [2nk - 4(n - 1)(k - 1)]g(Y, W)
+ [2nk + 4(n - 1)]g(Y, hW) + 4(n - 1)(k - 1)\eta(Y)\eta(W),\]

which implies,

\begin{equation}
S(Y, W) = 2(n + k - 1)g(Y, W)
+ 2(nk + n - 1)g(Y, hW) + 2(n - 1)(k - 1)\eta(Y)\eta(W).
\end{equation}

Replacing \(W \) by \(hW \) and using (2.23), (2.18) and (2.1)(a) we get from (3.10)

\[-2kg(Y, hW) = -2nk(k - 1)g(Y, W) + 2nk(k - 1)\eta(Y)\eta(W)\]

Since we may assume that \(k \neq 0 \), this implies

\begin{equation}
g(Y, hW) = n(k - 1)g(Y, W) - n(k - 1)\eta(Y)\eta(W).
\end{equation}

From (3.10) and (3.11) we get

\[S(Y, W) = 2[(n + k - 1) + n(k - 1)(nk + n - 1)]g(Y, W)
+ 2[(n - 1)(k - 1) - n(k - 1)(nk + n - 1)]\eta(Y)\eta(W)\]

or,

\begin{equation}
S(Y, W) = ag(Y, W) + b\eta(Y)\eta(W),
\end{equation}

where \(a = 2[(n + k - 1) + n(k - 1)(nk + n - 1)] \), \(b = 2[(n - 1)(k - 1) - n(k - 1)(nk + n - 1)] \) are constant. So, the manifold is an \(\eta \)-Einstein manifold with constant coefficients. Hence the theorem is proved. \(\Box \)
Now, from (3.3) we have
\[(3.13) \quad (\nabla_W R)(X,Y)Z = \eta((\nabla_W R)(X,Y)Z)\xi - A(W)R(X,Y)Z.\]
From (3.13) and the second Bianchi identity we get
\[(3.14) \quad A(W)\eta(R(X,Y)Z) + A(X)\eta(R(Y,W)Z) + A(Y)\eta(R(W,X)Z) = 0.\]
Using (2.28), we get from (3.14)
\[(3.15) \quad k[A(W)(g(Y,Z)\eta(X) - g(X,Z)\eta(Y)) + A(X)(g(W,Z)\eta(Y)
- g(Y,Z)\eta(W)) + A(Y)(g(X,Z)\eta(W) - g(W,Z)\eta(X))] = 0.\]
Putting \(Y = Z = \{e_i\}\) in (3.15) and taking summation over \(i, 1 \leq i \leq 2n+1\), we get
\[k(2n - 1)[A(W)\eta(X) - A(X)\eta(W)] = 0,\]
which implies that
\[(3.16) \quad A(W)\eta(X) = A(X)\eta(W).\]
Replacing \(X\) by \(\xi\) in (3.16), it follows that
\[(3.17) \quad A(W) = \eta(\rho)\eta(W),\]
for any vector field \(W\), where \(A(\xi) = g(\xi, \rho) = \eta(\rho)\), \(\rho\) being the vector field associated to the 1-form \(A\), that is, \(g(X, \rho) = A(X)\). Hence we can state the following theorem:

Theorem 3.2. In a \(\phi\)-recurrent \(N(k)\)-contact metric manifold \((M^{2n+1}, g)\), \(n > 1\), the characteristic vector field \(\xi\) and the vector field \(\rho\) associated to the 1-form \(A\) are co-directional and the 1-form \(A\) is given by (3.17).

4. 3-dimensional \(\phi\)-recurrent \(N(k)\)-contact metric manifolds

In a 3-dimensional Riemannian manifold we have
\[(4.1) \quad R(X,Y)Z = g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X
- S(X,Z)Y + \frac{r}{2}[g(X,Z)Y - g(Y,Z)X],\]
where \(Q\) is the Ricci-operator, that is, \(g(QX,Y) = S(X,Y)\) and \(r\) is the scalar curvature of the manifold. Now putting \(Z = \xi\) in (4.1) and using (2.3)(b) and (2.21), we get
\[(4.2) \quad R(X,Y)\xi = \eta(Y)QX - \eta(X)QY
+ 2k[\eta(Y)X - \eta(X)Y] + \frac{r}{2}[\eta(X)Y - \eta(Y)X].\]
Using (2.27) in (4.2), we have
\[(4.3) \quad (k - \frac{r}{2})[\eta(Y)X - \eta(X)Y] = \eta(X)QY - \eta(Y)QX.\]
Puting $Y = \xi$ in (4.3) and using (2.21), we get

\begin{equation}
QX = (\frac{r}{2} - k)X + (3k - \frac{r}{2})\eta(X)\xi.
\end{equation}

Therefore, it follows from (4.4) that

\begin{equation}
S(X, Y) = (\frac{r}{2} - k)g(X, Y) + (3k - \frac{r}{2})\eta(X)\eta(Y).
\end{equation}

Thus from (4.1), (4.4) and (4.5), we get

\begin{equation}
R(X, Y)Z = (\frac{r}{2} - 2k)[g(Y, Z)X - g(X, Z)Y] + (3k - \frac{r}{2})[g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y].
\end{equation}

Taking the covariant differentiation to the both sides of the equation (4.6), we get

\begin{equation}
(\nabla_W R)(X, Y)Z = \frac{dr(W)}{2}[g(Y, Z)X - g(X, Z)Y - g(Y, Z)\eta(X)\xi + g(X, Z)\eta(Y)\eta(X)\xi - \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y] + (3k - \frac{r}{2})[g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y](\nabla_W \xi) + (3k - \frac{r}{2})[\eta(Y)\eta(Z)X - \eta(X)\eta(Y)](\nabla_W \eta)(Z) + (3k - \frac{r}{2})[g(Y, Z)\xi - \eta(Z)Y](\nabla_W \eta)(X) - (3k - \frac{r}{2})[g(X, Z)\xi - \eta(Z)X](\nabla_W \eta)\eta(\xi).
\end{equation}

Noting that we may assume that all vector fields X, Y, Z, W are orthogonal to ξ and using (2.1)(b), we get

\begin{equation}
(\nabla_W R)(X, Y)Z = \frac{dr(W)}{2}[g(Y, Z)X - g(X, Z)Y - g(Y, Z)\eta(X)\xi] + (3k - \frac{r}{2})[g(Y, Z)\eta(Y)\eta(Z)X - g(X, Z)\eta(Y)\eta(X)\xi] + (3k - \frac{r}{2})[\eta(Y)\eta(Z)X - \eta(X)\eta(Y)](\nabla_W \eta)(Z).
\end{equation}

Applying ϕ^2 to the both sides of (4.8) and using (2.1)(a) and (2.1)(c), we get

\begin{equation}
\phi^2(\nabla_W R)(X, Y)Z = \frac{dr(W)}{2}[g(X, Z)Y - g(Y, Z)X].
\end{equation}

By (3.1) the equation (4.9) reduces to

\begin{equation}
A(W)R(X, Y)Z = \frac{dr(W)}{2}[g(X, Z)Y - g(Y, Z)X].
\end{equation}
Putting \(W = \{ e_i \} \), where \(\{ e_i \} \), \(i = 1, 2, 3 \), is an orthonormal basis of the tangent space at any point of the manifold and taking summation over \(i \), \(1 \leq i \leq 3 \), we obtain

\[
R(X, Y)Z = \lambda [g(X, Z)Y - g(Y, Z)X],
\]

where \(\lambda = \frac{dr(e_i)}{2A(e_i)} \) is a scalar, since \(A \) is a non-zero 1-form. Then by Schur’s theorem \(\lambda \) will be a constant on the manifold. Therefore, \(M^3 \) is of constant curvature \(\lambda \). Thus we get the following theorem:

Theorem 4.1. A 3-dimensional \(\phi \)-recurrent \(N(k) \)-contact metric manifold is of constant curvature.

5. Existence of \(\phi \)-recurrent \(N(k) \)-contact metric manifolds

In this section we give an example of \(\phi \)-recurrent \(N(k) \)-contact metric manifold which is neither symmetric nor locally \(\phi \)-symmetric. We take the 3-dimensional manifold \(M = \{ (x, y, z) \in \mathbb{R}^3 : x \neq 0 \} \), where \((x, y, z) \) are the standard coordinates in \(\mathbb{R}^3 \). Let \(\{ E_1, E_2, E_3 \} \) be linearly independent global frame on \(M \) given by

\[
E_1 = \frac{2}{x} \frac{\partial}{\partial y}, \quad E_2 = \frac{2}{x} \frac{\partial}{\partial x} - \frac{4z}{x} \frac{\partial}{\partial y} + xy \frac{\partial}{\partial z}, \quad E_3 = \frac{\partial}{\partial z}.
\]

Let \(g \) be the Riemannian metric defined by

\[
g(E_1, E_3) = g(E_2, E_3) = g(E_1, E_2) = 0,
\]

\[
g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1.
\]

Let \(\eta \) be the 1-form defined by \(\eta(U) = g(U, E_3) \) for any \(U \in \chi(M) \). Let \(\phi \) be the \((1, 1) \) tensor field defined by \(\phi E_1 = E_2, \phi E_2 = -E_1, \phi E_3 = 0 \). Then using the linearity of \(\phi \) and \(g \) we have \(\eta(E_3) = 1, \phi^2 U = -U + \eta(U)E_3 \) and \(g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W) \) for any \(U, W \in \chi(M) \). Moreover \(hE_1 = -E_1, hE_2 = E_2 \) and \(hE_3 = 0 \). Thus for \(E_3 = \xi, (\phi, \xi, \eta, g) \) defines a contact metric structure on \(M \). Hence we have \([E_1, E_2] = 2E_3 + \frac{2}{x}E_1, [E_1, E_3] = 0, [E_2, E_3] = 2E_1 \).

The Riemannian connection \(\nabla \) of the metric \(g \) is given by

\[
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y)
\]

\[
- g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).
\]

Taking \(E_3 = \xi \) and using the above formula for Riemannian metric \(g \), it can be easily calculated that

\[
\nabla_{E_1} E_3 = 0, \quad \nabla_{E_2} E_3 = 2E_1, \quad \nabla_{E_3} E_3 = 0, \quad \nabla_{E_3} E_1 = 0, \quad \nabla_{E_1} E_2 = \frac{2}{x} E_1,
\]

\[
\nabla_{E_2} E_1 = -2E_3, \quad \nabla_{E_2} E_2 = 0, \quad \nabla_{E_3} E_2 = 0, \quad \nabla_{E_1} E_1 = -\frac{2}{x} E_2.
\]
From the above it can be easily seen that \((\phi, \xi, \eta, g)\) is a \(N(k)\)-contact metric manifold with \(k = -\frac{4}{x} \neq 0\).

Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows:

\[
R(E_2, E_3)E_2 = -\frac{4}{x}E_1, \quad R(E_2, E_3)E_1 = \frac{4}{x}E_2,
\]

and the components which can be obtained from these by symmetry property. We shall now show that in such a \(N(k)\)-contact metric manifold the curvature tensor \(R\) is \(\phi\)-recurrent. Since \(\{E_1, E_2, E_3\}\) form a basis of \(M^3\), any vector field \(X \in \chi(M)\) can be taken as

\[
X = a_1E_1 + a_2E_2 + a_3E_3
\]

where \(a_i \in \mathbb{R}^+\) (= the set of all positive real numbers), \(i = 1, 2, 3\). Thus the covariant derivatives of the curvature tensor are given by

\[
(\nabla_X R)(E_2, E_3)E_1 = -\frac{8a_2}{x^2}E_2,
\]

\[
(\nabla_X R)(E_2, E_3)E_2 = \frac{8a_2}{x^2}E_1.
\]

Let us now consider the non-vanishing 1-form \(A(X) = \frac{2a_2}{x}\), at any point \(p \in M\). In our \(M^3\), (2.1) reduces with the 1-form to the following equations:

\[
\phi^2((\nabla_X R)(E_2, E_3)E_1) = A(X)R(E_2, E_3)E_1,
\]

\[
\phi^2((\nabla_X R)(E_2, E_3)E_2) = A(X)R(E_2, E_3)E_2.
\]

This implies that the manifold under consideration is a \(\phi\)-recurrent \(N(k)\)-contact metric manifold, which is neither symmetric nor locally \(\phi\)-symmetric. So, we can state the following:

Theorem 5.1. There exists a \(\phi\)-recurrent \(N(k)\)-contact metric manifold, which is neither symmetric nor locally \(\phi\)-symmetric.

References

Uday Chand De
Department of Mathematics
University of Kalyani
Kalyani, 741235, West Bengal, India

Aboul Kalam Gazi
Department of Mathematics
University of Kalyani
Kalyani, 741235, West Bengal, India

(Received November 26, 2006)
(Revised April 13, 2007)