Colocalization of oxytocin and phosphorylated form of elongation factor 2 in the rat hypothalamus

Toru Fujisawa* Akiyoshi Moriwaki† Masayuki Matsushita‡
Kazuhiro Tomizawa** Hideki Matsui††

*Okayama University,
†Okayama University,
‡Okayama University,
**Okayama University,
††Okayama University,
Colocalization of oxytocin and phosphorylated form of elongation factor 2 in the rat hypothalamus

Toru Fujisawa, Akiyoshi Moriwaki, Masayuki Matsushita, Kazuhito Tomizawa, and Hideki Matsui

Abstract

Oxytocin (OT) is one of the neuropituitary hormones and is synthesized in the neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON). Previous studies have shown that the mRNAs encoding OT are delivered from the soma to both dendrites and axons of the neurons in the PVN and SON. However, it has not been elucidated whether a translational regulation mechanism to enable local synthesis of the hormone exists in the axons of the neurons of PVN and SON. Elongation factor 2 (EF2) is essential for polypeptide synthesis during protein translation. Moreover, phosphorylation of EF2 by EF2 kinase enhances the translation of certain mRNA species. In the present study, in order to shed light on the mechanisms involved in the translational regulation of OT synthesis, we investigated the localization of phosphorylated EF2. Phospho-EF2 was localized in the soma of the neurons in PVN and SON, and in the swellings of the median eminence where axonal tracts of the neurons in the PVN and SON exist. The phosphorylated form was also observed in the rat hypophysis. Moreover, phospho-EF2 and OT were colocalized in a part of the neurons in the PVN and SON. These results suggest that OT may be partially translated in the axons of neurons in the PVN and SON, and then secreted from the pituitary.

KEYWORDS: oxytocin, PVN, SON, elongation factor 2, local translation

*Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL PMID: 17593952 [PubMed - in process]
Colocalization of Oxytocin and Phosphorylated Form of Elongation Factor 2 in the Rat Hypothalamus

Toru Fujisawa, Akiyoshi Moriwaki, Masayuki Matsushita, Kazuhito Tomizawa, and Hideki Matsui

Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan, and
Department of Human Nutrition, Chugoku Gakuen University, Okayama 701-0197, Japan

Oxytocin (OT) is one of the neuropituitary hormones and is synthesized in the neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON). Previous studies have shown that the mRNAs encoding OT are delivered from the soma to both dendrites and axons of the neurons in the PVN and SON. However, it has not been elucidated whether a translational regulation mechanism to enable local synthesis of the hormone exists in the axons of the neurons of PVN and SON. Elongation factor 2 (EF2) is essential for polypeptide synthesis during protein translation. Moreover, phosphorylation of EF2 by EF2 kinase enhances the translation of certain mRNA species. In the present study, in order to shed light on the mechanisms involved in the translational regulation of OT synthesis, we investigated the localization of phosphorylated EF2. Phospho-EF2 was localized in the soma of the neurons in PVN and SON, and in the swellings of the median eminence where axonal tracts of the neurons in the PVN and SON exist. The phosphorylated form was also observed in the rat hypophysis. Moreover, phospho-EF2 and OT were colocalized in a part of the neurons in the PVN and SON. These results suggest that OT may be partially translated in the axons of neurons in the PVN and SON, and then secreted from the pituitary.

Key words: oxytocin, PVN, SON, elongation factor 2, local translation

The neurohypophysial nonapeptide oxytocin (OT) is a highly conserved molecule synthesized as preprooxytocin in particular neurons in the hypothalamus [1]. The processed OT peptide is released into the peripheral circulation in response to a variety of physiological stimuli such as suckling, parturition, or certain kinds of stress [2]. The peripheral functions of OT induce normal labor through uterine contraction and normal development of offspring through lactation [1, 2]. OT is also released from the dendrites and axons into the central nervous system, where it presumably plays a role as a neurotransmitter or as a modulator of synaptic plasticity [3, 4].

It has been thought that the precursor of OT is subject to modification and processing in the soma of neurons in the PVN and SON and is then transported to nerve terminals in the posterior pituitary [1]. However, recent studies have shown that OT mRNA is sorted to both dendrites and axons [4, 5]. These results suggest that there must be translational machinery and regulatory mechanisms to
enable local synthesis of OT in response to stimuli in
the nerve terminals at the posterior pituitary, and
OT mRNA is locally translated there.

Dendrites are equipped with components of the
translation machinery [6-8]. However, it is unclear
whether the axons of the oxytocinergic neurons in
the PVN and SON have such machinery. Evidence
for the axonal translation of OT has not been
obtained. Elongation factor 2 (EF2) is essential for
protein translation. EF2 catalyses the movement of
peptidyl-tRNA from the A site to the P site on the
ribosome, thereby regulating polypeptide synthesis
during translation [9]. Moreover, EF2 is phospho-
rylated by a Ca\(^{2+}\)/calmodulin-dependent protein
kinase, EF2 kinase [10]. The phosphorylation of
EF2 inhibits its activity and generally leads to an
inhibition of total protein synthesis, but increasing
evidence also indicates that EF2 phosphorylation
selectively enhances translation of certain mRNA
species [11, 12].

To investigate the occurrence and mechanism of
the local translation of OT, in the present study we
examined the localization of OT and phospho-EF2 in
the neurons of PVN and SON.

Materials and Methods

Animals. Male Wistar rats (Japan SLC,
Hamamatsu, Japan) weighing 200-230g were used.
They were housed individually in plastic cages on
a standard light and dark cycle at 23 ± 1°C with free
access to tap water and laboratory chow (Charles
River, Wilmington, MA, USA). All animal use pro-
cedures were approved by the Okayama University
Animal Care committee and were in strict accordance
with the Japan Physiological Society’s Guiding
Principles for the Care and Use of Animals in the
Field of Physiological Sciences.

Immunohistochemistry. The animals were
deeply anesthetized with sodium pentobarbital (40 mg/
kg i.p.) and perfused transcardially with 100 ml of
physiological saline followed by 900 ml of 4% para-
formaldehyde and 0.2% picric acid in 100 mM phos-
phate buffer (pH7.4). The brains were carefully
excised and immersed in the same solution for 24h at
4°C and then cryoprotected overnight with 30%
sucrose in 100 mM phosphate buffer (pH7.4). The
brains were cut crosswise into several blocks and the
blocks containing the hypothalamus were coronally
and serially cut into sections of 30-μm thickness
using a freezing microtome. After sectioning, the
slices were immersed in 100 mM Tris-buffered saline
(pH7.4) (TBS). Every fourth section was used to
detect phospho-EF2 and the next section was used to
detect OT. The sections were washed with TBS
containing 0.1% Tween 20 (T-TBS) containing 0.3%
hydrogen peroxide to reduce the background and pre-
incubated for 3h at 25°C with T-TBS containing 5%
dried nonfat milk. Free-floating sections were gently
rocked for 18h at 4°C with the primary antibody
solution either T-TBS containing anti-phospho-EF2
antibody (1: 5,000) or polyclonal OT antibody
(1: 10,000, Pierce, Rockford, IL, USA). The produc-
tion and characterization of the anti-phospho-EF2
antibodies were described previously [11]. The
sections were washed and bound IgG was detected using
biotinylated antisera and avidin-conjugated peroxi-
dase [13] using the Vectastain Elite ABC kit (Vector
Laboratories, Burlingame, CA, USA). As a control
for OT immunostaining, some sections were incu-
bated with OT antisera preadsorbed with OT.
Several sections were counterstained with Cresyl
Violet.

Some of the sections immunostained with anti-
phospho-EF2 were then gently rocked for 18h at
4°C with the solution containing polyclonal OT anti-
body (1: 5,000, Pierce). The sections were washed
and bound IgG was detected using biotinylated anti-
sera and avidin-conjugated alkaline phosphatase using
the Vectastain ABC kit (Vector Laboratories).

Western blotting analysis. The animals were
decapitated under nitrous oxide anesthesia. The
removed brains were dipped into ice-cold physiologi-
cal saline. The hypophysis and median eminence
were excised from 2 rats and sonicated for 10 sec
with 4 volumes of lysis buffer using a microtip soni-
cator. The lysis buffer contained 10 mM Tris
(pH7.4), 1% Triton X-100, 1% sodium lauryl sul-
fate, 5 mM EDTA, 1 mM phenylmethyl sulphonyl
fluoride, 0.28 U/ml aprotinin, 50 μg/ml leupeptin, 1
mM benzamidine and 7 μg/ml pepstatin. Protein con-
tent was determined by the method of Bradford using
a kit from Bio-Rad (Hercules, CA, USA). After
centrifugation (16,000 g for 5 min), aliquots contain-
ing approximately 10 μg protein were separated by
SDS-PAGE (12% polyacrylamide).
The proteins were transferred electrophoretically to nitrocellulose sheets (Hybond-C, GE Healthcare, Piscataway, NJ, USA). The blots were washed once with 100 mM Tris-buffered saline, pH 7.4 (TBS), and then incubated for 3h with TBS containing 0.1% Tween 20 (T-TBS) plus 5% dried nonfat milk (Difco, Becton and Company, Sparks, MD, USA). The blots were then transferred to fresh TBS-T/milk containing polyclonal rabbit anti-phospho-EF2 antibody (1: 500) or polyclonal rabbit anti-total EF2 antiserum (1: 500). The production and characterization of these antibodies were described previously [14, 15]. After incubation for 18h at 4°C, the blots were washed 3 times in TBS and then immunoreactivity was detected using the enhanced chemiluminescence method (ECL, GE Healthcare).

Results

Distribution of phospho-EF2 and OT in the diencephalon. The distribution of phospho-EF2 and OT in the diencephalon was investigated by immunohistochemistry. Total EF2 and EF2 kinase were ubiquitously distributed in the central nervous system including the PVN and SON (data not shown, manuscript in preparation). Interestingly, high levels of phospho-EF2 were detected in the lateral, medial, and periventricular zones of the hypothalamus (Fig. 1). In particular, the highest levels of phospho-EF2 were detected in the neurons of PVN and SON (Fig. 1). Staining of phospho-EF2 was also detected in the inner layer of the median eminence, which is an axonal tract of neurons from the PVN and SON to the hypophysis [14] (Fig. 2). The staining was scattered in the inner layer, and the shape was spherical (arrows in Fig 2A & B). The distribution of phospho-EF2 and total EF2 in the median eminence was further assessed by immunoblotting analysis, and both total EF2 and phospho-EF2 were detected in this region (Fig. 2C). Furthermore, immunoblot analysis revealed that both total EF2 and phospho-EF2 were distributed in the hypophysis (Fig. 2C).

Colocalization of phospho-EF2 and OT in the hypothalamus. Double immunostaining analysis indicated that phospho-EF2 and OT were colocalized in a part of the neurons in the PVN and SON (Fig. 3). OT-positive neurons were a subset of neurons positively stained for phospho-EF2 (Fig. 3). Phospho-EF2 was detected predominantly in the perikarya and was weakly detected in the axons, while OT was strongly detected in both the perikarya and axons of the paraventriculo-hypophysial tract (Fig. 3).

Discussion

The results of the present study showed that the phosphorylated form of elongation factor 2 (phospho-EF2) was distributed in the axons of the neurons of the PVN and SON. Considering the functional role of EF2 in protein or peptide synthesis, these results suggest that the axons may be equipped with components of the translation machinery. Double immunostaining analysis of phospho-EF2 and OT showed that OT-positive neurons were a subset of phospho-EF2-positive neurons, indicating that OT coexists with phospho-EF2 in the neurons of the PVN and SON. Some of the phospho-EF2-positive neurons in the nuclei did not contain OT. OT and vasopressin (VP) and their respective neurophysins are synthesized in different neurons in the 2 nuclei [15, 16]. Moreover, VP mRNA is delivered to axons and dendrites of hypothalamic magnocellular
Fig. 2 Localization of phospho-EF2 in the median eminence and hypophysis. A. Phospho-EF2 was detected within axonal swellings in the internal layer of the median eminence (arrows). 3V indicates the third ventricle. Bar = 200 μm; B. High magnification of internal layer of the median eminence. Arrows, axonal swelling bodies. Bar = 20 μm; C. Western blotting analysis of phospho-EF2 and total EF2 in the median eminence and hypophysis. Phospho-EF2 was detected in both regions. The hypophysis and median eminence were taken from 2 male rats and the homogenized samples from each rat were loaded in different lanes.

Fig. 3 Immuno-staining of phospho-EF2 and oxytocin in PVN and SON. A and D, phospho-EF2; B and E, OT; C and F, double-immunostaining for phospho-EF2 and OT. A-C, PVN; D-E, SON. Phospho-EF2 and oxytocin were detected in the sections from the hypothalamus by immunohistochemistry. Oxytocin-positive neurons (blue) were a subset of phospho-EF2-expressing neurons (brown). Bar = 100 μm.
neurons [5]. Their results suggest that the phospho-
EF2-positive neurons lacking OT may be VP
eurons, and some neurohypophysial hormones may
be secreted from the hypophysis through local pro-
tein translation.

Phosphorylation of EF2 by EF2 kinase inhibits the ability of EF2 to support peptide elongation and
the resultant protein synthesis during translation
[10, 17, 18]. However, recent studies have shown
that the phosphorylation of EF2 increases the syn-
thesis of a specific protein, i.e., alpha Ca\(^{2+}\)/calmodu-
lin dependent kinase II in synaptoneuroses through
synaptic activation [12]. Other proteins specifically
enhanced like this kinase have not been completely
identified, but there must be other proteins whose
synthesis is specifically increased through enhanced
translation mediated by phospho-EF2 in neurons.
The present results suggest that OT may be one of
these proteins.

Subcellular localization of mRNA species is ob-
served in many species of animal and plants [19–
21]. In neurons, some RNAs are transported from
the perikarya to dendrites or axons [5, 8]. Increasing
evidence is being accumulated about the transport
machinery of mRNAs in neurons. A cis-
acting element within the 3' untranslated region of
the mRNAs that binds a trans-acting RNA binding
protein controls dendritic mRNA localization [22–
24]. Hematopoietic zinc finger was identified as a
trans-acting factor [25]. Although the mechanism of
the translocation of OT mRNA in axons remains
unclear, the present results suggest that the trans-
port machinery may exist in the neurons of the PVN
and SON. OT synthesis and release from the pitu-
itary are induced in response to a variety of physio-
logical stimuli, such as suckling, parturition, or cer-
tain kinds of stress [1]. During such physiological
stimuli, EF2 kinase may be activated, resulting in
an increase of phospho-EF2 and OT translation in
axons of the neurons in the PVN and SON.

References

1. Argiolas A and Gessa GL: Central functions of oxytocin. Neurosci
2. Taylor SE, Gonzaga GC Klein LC, Hu P, Greendale GA and
Seeman TE: Relation of oxytocin to psychological stress
responses and hypothalamic-pituitary-adrenergocortical axis activity
3. Tomizawa K, Iga N, Lu YF, Moriwaki A, Matsushita M, Li ST,
Miyamoto O, Itano T and Matsui H: Oxytocin improves long-last-
ing spatial memory during motherhood through MAP kinase cas-
4. Mohr E, Kachele I, Mullin C and Richter D: Rat vasopressin
mRNA: a model system to characterize cis-acting elements and
trans-acting factors involved in dendritic mRNA sorting. Prog
5. Mohr E and Richter D: Subcellular vasopressin mRNA trafficking
339.
7. Tiedge H, Bloom FE and Richter D: RNA, with goest thou? Science
8. Steward O and Worley P: Localization of mRNAs at synaptic sites
on dendrites. In Results and problems in cell differentiation: Cell
polarity and subcellular RNA localization. Richter D ed, Vol 34
9. Scheetz AJ, Nairn AC and Constantine-Paton M: N-methyl-D-
aspartate receptor activation and visual activity induce elongation
factor-2 phosphorylation in amphibian tecta: a role for N-methyl-D-
aspartate receptors in controlling protein synthesis. Proc Nacl
10. Nairn AC and Palfrey HC: Identification of the major Mr 100,000
substrate for calmodulin-dependent protein kinase III in mammalian
17303.
Glowinski J, Nairn AC and Premont J: Glutamate-dependent
phosphorylation of elongation factor-2 and inhibition of protein syn-
12. Scheetz AJ, Nairn AC and Constantine-Paton M: NMDA receptor-
mediated control of protein synthesis at developing synapses.
detection complex (ABC) in immunoperoxidase techniques: A compari-
son between ABC and unlabelled antibody (PAP) procedures. J
rat mediobasal hypothalamus support the regeneration of monoami-
15. Swaab DF, Niijveld F and Pool CW: Distribution of oxytocin and
vasopressin in the rat supraoptic and paraventricular nucleus. J
16. Sofroniew MV, Weindl A, Schinko I and Wetzstein R: The distri-
bution of vasopressin-, oxytocin-, and neurophysin-producing neu-
rons in the guinea pig brain. I. The classical hypothalano-neuro-
17. Redpath NT and Proud CG: The tumourpromotor okadaic acid
inhibits reticulocyte-lysate protein synthesis by increasing the net
75.
18. Ryazanov AG, Shestakova EA and Natapov PG: Phosphorylation
of elongation factor2 by EF-2kinase affects translation. Nature
20. Mohr E and Richter D: Messenger RNA on the move: implica-
21. Okita TW and Choi SB: mRNA localization in plants: targeting to

Oxytocin and Phospho-EF2 in Hypothalamus 165

June 2007

Produced by The Berkeley Electronic Press, 2007

