Kimura’s disease: clinical, histological and immunohistochemical studies.

Makoto Motoi* Syariffudin Wahid†
Yasushi Horie† Tadaatsu Akagi**

*Tottori University,
†Hasanuddin University,
‡Tottori University,
**Okayama University,

Copyright ©1999 OKAYAMA UNIVERSITY MEDICAL SCHOOL. All rights reserved.
Kimura’s disease: clinical, histological and immunohistochemical studies.*

Makoto Motoi, Syariffudin Wahid, Yasushi Horie, and Tadaatsu Akagi

Abstract

In the present study, 14 cases of Kimura’s disease were clinicopathologically studied. The disease occurred at ages ranging from 5 to 75 years. The average age was 37.8 years. Sexes were about equally affected. The most common sites were the subcutis of head and neck, and parotid gland. Simultaneous involvement of lymph nodes occurred in 5 cases. Laboratory findings revealed eosinophilia in almost all the patients, but serum IgE levels were not elevated in 2 patients. Lesions were surgically removed and the clinical course thereafter was favorable for all but one case. Histologically, lesions were characterized by lymphoid follicles, granulation tissue with infiltration by many eosinophils, lymphocytes, plasma cells, mast cells and histiocytes, proliferation of blood vessels and fibrosis. Immunohistochemically, IgE reacted strongly in germinal centers, showing a reticular pattern. IgG-, IgA- and lysozyme-positive cells were scattered mainly in interfollicular granulomatous areas. Pathogenesis of this disease is briefly discussed.

KEYWORDS: Kimura’s disease, clinicopathology, immunohistochemistry

*PMID: 1485539 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Kimura's Disease: Clinical, Histological and Immunohistochemical Studies

Makoto Motoi*, Syarifuddin Wahidc, Yasushi Horieb and Tadaatsu Akagi
c

Department of Pathology, Tottori University School of Medicine, Yonago 683, aDepartment of
Pathology, Faculty of Medicine, Hasanuddin University, Ujung Pandang, Indonesia, bDepartment
of Clinical Laboratory Medicine, Tottori University School of Medicine, Yonago 683 and cDepartment
of Pathology, Okayama University Medical School, Okayama 700, Japan

In the present study, 14 cases of Kimura's disease were clinicopathologically studied. The disease occurred at ages ranging from 5 to 75 years. The average age was 37.8 years. Sexes were about equally affected. The most common sites were the subcutis of head and neck, and parotid gland. Simultaneous involvement of lymph nodes occurred in 5 cases. Laboratory findings revealed eosinophilia in almost all the patients, but serum IgE levels were not elevated in 2 patients. Lesions were surgically removed and the clinical course thereafter was favorable for all but one case. Histologically, lesions were characterized by lymphoid follicles, granulation tissue with infiltration by many eosinophils, lymphocytes, plasma cells, mast cells and histiocytes, proliferation of blood vessels and fibrosis. Immunohistochemically, IgE reacted strongly in germinal centers, showing a reticular pattern. IgG-, IgA- and lysozyme-positive cells were scattered mainly in interfollicular granulomatous areas. Pathogenesis of this disease is briefly discussed.

Key words: Kimura's disease, clinicopathology, immunohistochemistry

In 1948, Kimura et al. first described some peculiar subcutaneous nodules in a paper (1). Since then, what appeared to be nearly identical disease processes were reported mainly in Asian and, rarely, in Western countries under different terminologies, i.e., eosinophilic lymphadenitis and eosinophilic lymphoid granuloma (2), lymphoid hyperplasia with eosinophilia (3), eosinophilic lymphomatosis (4), angiolymphoid hyperplasia with eosinophilia (ALHE) (5-8), pseudo or atypical pyogenic granuloma (9), papular angioplasia (10), angioloblastic lymphoid hyperplasia with eosinophilia (11), eosinophilic lymphofollicular granuloma (12, 13), histiocytoid hemangio ma (14) and eosinophilic lymphofolliculoid granula (15). In 1959, Iizuka (2) advocated that the disease should be named as Kimura's disease in honor of the first reporter of the disease. Thereafter, the disease was widely designated as Kimura's disease in Japan and as ALHE (Kimura's disease) in Western countries.

Patients usually present tumor-like nodules of the subcutis of head and neck or of the salivary gland in young adults, often associated with regional lymphadenopathy (15). Histologically, the nodule is characterized by lymphoid follicles
and by granulation tissue with infiltration of eosinophils, lymphocytes, mast cells, plasma cells and histiocytes, and vascular proliferation (15).

The etiology of Kimura’s disease is not well-understood, although some allergic disorder is suspected. The nature of this disease is supposed to be an inflammatory or a reactive process rather than a neoplastic one. We have examined the cases of 14 patients with typical Kimura’s disease clinically, histologically and immunohistochemically in an attempt to further characterize pathologic features.

Subjects and Methods

The cases examined were of 14 patients whose specimens had been submitted for pathological diagnosis to the Second Department of Pathology, Okayama University Medical School, from 1978 to 1985. All the clinical data were obtained from clinicians who sent the materials to us.

Tumors and involved lymph nodes obtained from biopsy or surgically removed materials were fixed in 10% formalin, embedded in paraffin and stained with hematoxylin-eosin, Giemsa stain and silver impregnation.

The immunohistochemical study was carried out for IgG, IgA, IgM, IgD, IgE, lysozyme and C3 with the peroxidase antiperoxidase (PAP) method on paraffin sections (16). Sections were deparaffinized, and trypsinized by a solution containing 0.1% trypsin and 0.1% CaCl2 (17). Endogenous peroxidase activity was blocked by 3% H2O2-methanol. Sections were then sequentially incubated with a) normal sheep serum (undiluted, 10 min), b) rabbit antiserum (DAKO, Copenhagen, Denmark) for human IgG, IgA, IgM, IgD, IgE, lysozyme and C3 (diluted × 100, 30 min), c) sheep antirabbit IgG serum (DAKO, Copenhagen, Denmark, diluted × 40, 30 min) and d) rabbit PAP (DAKO, Copenhagen, Denmark, diluted × 20, 30 min). Peroxidase activity was demonstrated by a 3,3′-diaminobenzidine reaction. All the reactions were carried out at room temperature.

Results

Clinical and laboratory findings. Details of clinopathological findings in the 14 cases are presented in Table 1. Two patients were children, 5 and 10 years old, and the remaining 12 were adults, ranging from 18 to 75 years old. Eight patients were females and 6 were males. Nodules were located in the subcutis of head and neck (7 cases), chest (2 cases), abdominal wall (1 case) and the extremities (2 cases), and in the parotid gland (2 cases). Either single or multiple nodules were present, and multiple nodules were adherent to one another. One subcutaneous nodule (Case 10) had involved the surrounding muscles. Simultaneous lymph node enlargement occurred in 5 cases. Nodules ranged from 1–5 cm in diameter. Duration of symptoms ranged from 1 week to 10 years. All the cases were surgically extirpated, and recurrence was recorded in only one case.

Laboratory data were obtained in only 7 cases. White blood cell count was normal in 5 and abnormal (> 10,000/μl) in 2. Eosinophilia examined prior to excisions were found in 3 of 4 cases. Elevation of serum immunoglobulin levels was not found in 2 cases examined. A patient (Case 11) had a subcutaneous tumor in the neck associated with proteinuria (10 mg/dl).

Histopathological findings. Nodules were characterized by a proliferation of lymphoid follicles with or without well-developed germinal centers, and granulomatous lesions in the interfollicular area consisting of marked infiltration of eosinophils, varying numbers of plasma cells, lymphocytes, mast cells and histiocytes, proliferation of blood vessels and fibrosis (Figs. 1, 2 and 3). Proliferating blood vessels were comprised of thick-walled, well-developed vessels and thin-walled vessels lined by plump endothelial cells that frequently projected into their irregular lumina. Elastic fibers were absent in the thin-walled blood vessels.

Involved lymph nodes showed generally the same pathological features as subcutaneous nodules. Lymph node structure was well-preserved, marked follicular hyperplasia with large germinal centers and infiltration of eosinophils in interfollicular areas and marginal sinuses were found.
Table 1 Clinical data of 14 patients with Kimura’s disease

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age (yrs)</th>
<th>Sex</th>
<th>Site</th>
<th>Histologic location</th>
<th>Duration of symptoms</th>
<th>Numbers and size of lesions</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>F</td>
<td>Head</td>
<td>Parotid gland</td>
<td>10 yrs</td>
<td>n. i.</td>
<td>Excision</td>
<td>n. i.</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>F</td>
<td>Chest</td>
<td>Skin lymph node</td>
<td>1 yr</td>
<td>Single</td>
<td>Excision</td>
<td>n. i.</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>F</td>
<td>Neck</td>
<td>Subcutis</td>
<td>2 wks</td>
<td>Multiple</td>
<td>Excision, chemotherapy</td>
<td>9mos</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>M</td>
<td>Head</td>
<td>Subcutis</td>
<td>A few wks</td>
<td>Multiple 2.3 × 1.3 × 5 cm</td>
<td>Excision</td>
<td>n. i.</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>F</td>
<td>Neck</td>
<td>Subcutis</td>
<td>1 wk</td>
<td>Single 1.5 × 0.5 × 0.5 cm</td>
<td>Excision</td>
<td>2yrs</td>
</tr>
<tr>
<td>6</td>
<td>52</td>
<td>M</td>
<td>Neck</td>
<td>Subcutis</td>
<td>8 mos</td>
<td>Multiple 1 × 1.5 × 1 cm</td>
<td>Excision</td>
<td>n. i.</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>F</td>
<td>Chest</td>
<td>Subcutis</td>
<td>3 wks</td>
<td>Multiple 1.6 × 0.8 × 1 cm</td>
<td>Excision</td>
<td>10mos</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>M</td>
<td>Abdomen</td>
<td>Skin</td>
<td>4 wks</td>
<td>Single 1 × 0.5 × 0.5 cm</td>
<td>Excision</td>
<td>11mos</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>F</td>
<td>Neck</td>
<td>Parotid gland</td>
<td>Several wks</td>
<td>n. i.</td>
<td>Excision</td>
<td>n. i.</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>M</td>
<td>Neck</td>
<td>Subcutis and muscle</td>
<td>3 yrs</td>
<td>Single 3 × 3 cm</td>
<td>Excision</td>
<td>3yrs</td>
</tr>
<tr>
<td>11</td>
<td>37</td>
<td>M</td>
<td>Head</td>
<td>Skin</td>
<td>2 yrs</td>
<td>Single 0.5 × 0.5 cm</td>
<td>Excision</td>
<td>5yrs</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>M</td>
<td>Neck</td>
<td>Subcutis</td>
<td>n. i.</td>
<td>Single 2.5 × 2 cm</td>
<td>Excision</td>
<td>n. i.</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>F</td>
<td>Groin</td>
<td>Subcutis</td>
<td>1 wk</td>
<td>Single n. i.</td>
<td>Excision</td>
<td>n. i.</td>
</tr>
<tr>
<td>14</td>
<td>41</td>
<td>F</td>
<td>Thigh</td>
<td>Subcutis</td>
<td>3 yrs</td>
<td>Single n. i.</td>
<td>Excision</td>
<td>n. i.</td>
</tr>
</tbody>
</table>

n. i.: no information

Table 2 Immunohistochemical examinations of Kimura’s disease

<table>
<thead>
<tr>
<th>Case No.</th>
<th>IgG<sup>a</sup></th>
<th>IgA</th>
<th>IgM</th>
<th>IgD</th>
<th>IgE</th>
<th>Lysozyme</th>
<th>C<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+ (76)</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>+ (4)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+ (84)</td>
</tr>
<tr>
<td>7</td>
<td>+ (6)</td>
<td>+</td>
<td>+ (10)</td>
<td>#</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>+ (8)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+ (78)</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+ (80)</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>+ (5)</td>
<td>#</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+ (85)</td>
</tr>
</tbody>
</table>

^a: Ig, immunoglobulin; ^b: L.F., intrafollicular; ^c: E.F., extrafollicular. -: negative, +: a few positive cells, #: between + and #, #: many positive cells. Numbers in parentheses show percentages of positive-stained follicles.
Fig. 1 A lymphoid follicle and granulomatous changes with proliferation of blood vessels. Hematoxylin-eosin, $\times 50$.
Fig. 2 Proliferation of capillary vessels and infiltration of eosinophils, lymphocytes and plasma cells. Hematoxylin-eosin, $\times 400$.
Fig. 3 Marked, diffuse infiltration of eosinophils, lymphocytes, plasma cells and mast cells (in the center of figure). Giemsa, $\times 400$.
Fig. 4 Reticular IgE network in a germinal center. PAP method, $\times 200$.
Immunohistochemical findings. Immunohistochemical findings are summarized in Table 2. Positive IgE was detected in the intercellular matrix of follicles in all the cases and formed a reticular network between germinal center cells (Fig. 4). A similar but weaker IgG, IgA and lysozyme positivity was observed in germinal centers in 3, 1 and 1 case, respectively. Reaction for IgE was much stronger and the frequency of IgE-positive follicles was apparently higher than other immunoglobulin heavy chains. IgE-, IgG-, IgA- and lysozyme-positive cells scattered mainly in extrafollicular areas. Few IgM-, IgD- and C3-positive cells were found in all the cases.

Discussion

The majority of subcutaneous tumor-like nodules in our cases were located in the head and neck, and some nodules were found also in the parotid gland. This location corresponds well with other previous reports (5, 6, 13–15, 18–20). However, a nodule involving muscles such as our Case 10 was only rarely reported (6). The sex ratio of Kimura’s disease is generally preponderant in males, but there is greater incidence in females in some reports (18, 19). Our incidence is about equally divided between males and females. Kimura’s disease occurs at any age. The average age in our 14 cases was 37.8 years, although the incidence was relatively high in young adults in the majority of previous reports (15, 18, 19). A 5-year-old patient (Case 8) might be the youngest patient hitherto reported.

Eosinophilia and elevation of serum IgE are other well-known characteristics of Kimura’s disease (1, 21). In our report, eosinophilia was also found in almost all the patients whose laboratory data were obtained. However, serum immunoglobulin levels were not elevated in 2 patients. We hesitate to discuss the laboratory data at length, because our laboratory information is far from satisfactory.

Kimura’s disease is usually a localized process without systemic manifestations, with the exception of a renal disease as the only reported associated condition (22, 23). We identified a patient (Case 11) with proteinuria; unfortunately, we could not confirm the cause of his proteinuria by renal biopsy. Konishi et al. (22) reported a case complicated by a renal disease showing glomerular deposition of IgE, IgG, IgM and complement components. Proteinuria in that case might be related to Kimura’s disease, representing a systemic manifestation.

Histologically, the nodules are characterized by the formation of lymphoid follicles and granulation tissue with marked infiltration of eosinophils and vascular proliferation (1). ALHE resembles Kimura’s disease because of the similar clinical and pathologic findings (5). Especially in the Western literature, Kimura’s disease is often considered identical to ALHE, a variant of ALHE or a different stage of ALHE (5, 11, 24–27). However, some investigators (14, 15, 23, 28, 29) indicate that the above conditions differ in pathologic changes of the blood vessel component. More comprehensive and comparative studies will be required to distinguish Kimura’s disease from ALHE.

Kimura’s original report (1) described only lesions of soft tissue and did not mention similar changes in the lymph nodes. Subsequent reports indicate lymph node involvement in 67–100% of the cases (20, 29, 30). Broad clinicopathological features of Kimura’s disease include a) sole subcutaneous or salivary gland lesions, b) the same lesions with lymph node involvement and c) sole lymph node lesions (23, 27, 28). Regional lymph nodes were enlarged in 5 out of 14 of our cases. Histology showed lymph nodes with hyperplasia; prominent germinal centers, eosinophils infiltrating in interfollicular areas and sinuses, and proliferating blood vessels. Therefore, we consider Kimura’s disease to be essentially subcutaneous or salivary gland lesions with occasional lymph node involvement.

The immunohistochemical study showed that granulomatous lesions with lymphoid follicles had
a characteristic reticular staining for IgE, and that IgG, IgA, IgE- and lysozyme-positive cells scattered in extrafollicular areas, where cells bearing immunological functions, such as eosinophils, lymphocytes, plasma cell, mast cells and histiocytes, were located. The same IgE staining pattern has been reported not only in subcutaneous lesions (15, 19, 31), but also in lymph node lesions (25, 28). It should be noted that a reticular staining-pattern for IgE is not specific to Kimura's disease (15, 32). The percentage of IgE-positive follicles is much higher than that of IgG or IgM positivity, or of positivity in other reactive conditions.

IgE deposition in germinal centers and elevated serum IgE and eosinophilia in Kimura's disease suggest that the disease is atopic in nature (13). Levels of IgE and IgE antibody against Candida albicans in serum in Kimura's disease are elevated; the specific granules of eosinophils in involved tissues show changes in appearance similar to those in atopic diseases (19). Ishikawa et al. (15) pointed out that the absence of degranulation in IgE-coated mast cells could not explain the rarity of Type I hypersensitivity in patients with Kimura's disease.

In conclusion, we have described clinicopathologic findings of Kimura's disease. The disease has distinct clinical characteristics; strong reaction against IgE, and proliferation of mast cells as well as eosinophils, which play an important role in allergic phenomena. However, we were not able to satisfactorily correlate histological and immunological findings. To elucidate the pathogenesis of Kimura's disease, further investigations will be necessary.

References

Received May 14, 1992; accepted June 17, 1992.