Quinone formation as dopaminergic neuron-specific oxidative stress in the pathogenesis of sporadic Parkinson’s disease and neurotoxin-induced parkinsonism.

Masato Asanuma* Ikuko Miyazaki†
Francisco J. Diaz-Corrales‡ Norio Ogawa**
Quinone formation as dopaminergic neuron-specific oxidative stress in the pathogenesis of sporadic Parkinson’s disease and neurotoxin-induced parkinsonism.∗

Masato Asanuma, Ikuko Miyazaki, Francisco J. Diaz-Corrales, and Norio Ogawa

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by dopaminergic neuron-specific degeneration in the substantia nigra. A number of gene mutations and deletions have been reported to play a role in the pathogenesis of familial PD. Moreover, a number of pathological and pharmacological studies on sporadic PD and dopaminergic neurotoxin-induced parkinsonism have hypothesized that mitochondrial dysfunction, inflammation, oxidative stress, and dysfunction of the ubiquitin-proteasome system all play important roles in the pathogenesis and progress of PD. However, these hypotheses do not yet fully explain the mechanisms of dopaminergic neuron-specific cell loss in PD. Recently, the neurotoxicity of dopamine quinone formation by auto-oxidation of dopamine has been shown to cause specific cell death of dopaminergic neurons in the pathogenesis of sporadic PD and dopaminergic neurotoxin-induced parkinsonism. Furthermore, this quinone formation is closely linked to other representative hypotheses in the pathogenesis of PD. In this article, we mainly review recent studies on the neurotoxicity of quinone formation as a dopaminergic neuron-specific oxidative stress and its role in the etiology of PD, in addition to several neuroprotective approaches against dopamine quinone-induced toxicity.

KEYWORDS: dopamine quinone, quinoprotein, Parkinson’s disease, oxidative stress, neurotoxin

∗PMID: 15666991 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Quinone Formation as Dopaminergic Neuron-specific Oxidative Stress in the Pathogenesis of Sporadic Parkinson’s Disease and Neurotoxin-induced Parkinsonism

Masato Asanuma*, Ikuko Miyazaki, Francisco J. Diaz-Corrales, and Norio Ogawa

Department of Brain Science, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8538, Japan

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by dopaminergic neuron-specific degeneration in the substantia nigra. A number of gene mutations and deletions have been reported to play a role in the pathogenesis of familial PD. Moreover, a number of pathological and pharmacological studies on sporadic PD and dopaminergic neurotoxin-induced parkinsonism have hypothesized that mitochondrial dysfunction, inflammation, oxidative stress, and dysfunction of the ubiquitin-proteasome system all play important roles in the pathogenesis and progress of PD. However, these hypotheses do not yet fully explain the mechanisms of dopaminergic neuron-specific cell loss in PD. Recently, the neurotoxicity of dopamine quinone formation by auto-oxidation of dopamine has been shown to cause specific cell death of dopaminergic neurons in the pathogenesis of sporadic PD and dopaminergic neurotoxin-induced parkinsonism. Furthermore, this quinone formation is closely linked to other representative hypotheses in the pathogenesis of PD. In this article, we mainly review recent studies on the neurotoxicity of quinone formation as a dopaminergic neuron-specific oxidative stress and its role in the etiology of PD, in addition to several neuroprotective approaches against dopamine quinone-induced toxicity.

Key words: dopamine quinone, quinoprotein, Parkinson’s disease, oxidative stress, neurotoxin
Dopaminergic Neurotoxin-induced Parkinsonism—Involvement of Mitochondrial Dysfunction, Inflammation, Oxidative Stress, and Proteolytic Stress—

Following the initial reports that a dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), caused irreversible parkinsonism with progressive depletion of DA neurons in the substantia nigra [4, 5], the neurotoxic mechanism of MPTP has been widely investigated and has been used as a representative dopaminergic neurotoxin in animal models of PD. MPTP which across the blood-brain barrier is converted to 1-methyl-4-phenylpyridinium (MPP⁺) by monoamine oxidase-B in the glial cells. MPP⁺ can be selectively up-taken through DA transporters at the nerve endings of nigrostriatal DA neurons, and then inhibit mitochondrial complex I to cause cell death of DA neurons [6, 7]. Furthermore, MPTP-induced parkinsonism is responsive to L-DOPA. It has been reported that an other dopaminergic neurotoxin, 6-hydroxydopamine (6-OHDA), which has been commonly used to make in vivo and in vitro models of PD, also induces mitochondrial impairment by inhibiting mitochondrial complexes I and IV [8–10] and reducing cytochrome c [11], although there have been reported that 6-OHDA does not in fact impair mitochondrial function [12, 13]. Therefore, these findings imply the hypothesis of mitochondrial dysfunction: inhibition of mitochondrial respiratory enzymes by certain environmental neurotoxin which up-taken into DA neurons may cause selective neuronal loss of DA neurons in the substantia nigra. Betarbet et al. revealed that chronic and systemic infusion of the lipophilic pesticide, rotenone, which is an inhibitor of mitochondrial complex I, causes parkinsonism with hypokinesia and rigidity in rats with highly selective nigrostriatal dopaminergic degeneration and fibrillar cytoplasmic inclusions containing ubiquitin and α-synuclein. These results indicate that chronic exposure to a common pesticide can reproduce the anatomical, neurochemical, behavioral and neuropathological features of PD [14]. The dopaminergic neurotoxicity of rotenone strongly supports the possible involvement of mitochondrial dysfunction in the pathogenesis of PD, although it is unclear how rotenone, which inhibits complex I systemically, produces selective degeneration of DA neurons.

Intracerebral injection of bacterial endotoxin lipopolysaccharide (LPS) has been shown to induce the expression of inflammatory cytokines and their related molecules, i.e., interleukin (IL)-1β, IL-6, IL-12, p35, tissue necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) [15]. Furthermore, intranigral injection of inflammmogen LPS has been shown to induce degeneration of nigral DA neurons with accumulation of microglia in rats [16, 17]. These reports showed that the microglial activation and inflammatory reaction induced by chronic exposure to the inflammmogen were capable of inducing selective degeneration of nigral dopaminergic neurons. In animal models treated with MPTP, astroglial and microglial reactions and lymphocytic infiltration were found around impaired neurons in the substantia nigra, suggesting that an immune mechanism contributed to the MPTP-induced neuronal damage [18]. As for the neurotoxicity of rotenone, this may be at least partly due to the inflammatory reaction occurring in conjunction with activation of microglia. Marked microglial activation has been observed in the striatum and substantia nigra of rotenone-treated animals, and was prominent before anatomical evidence of dopaminergic lesions [19]. Rotenone stimulated the release of superoxide from microglia, and this release was attenuated by inhibitors of NADPH oxidase. The rotenone-induced neurotoxicity was also reduced by the inhibition of NADPH oxidase or scavenging of superoxide [20]. In primary mesencephalic neuron-glia cultures, dopaminergic neurons from NADPH oxidase-null mice were more resistant to rotenone neurotoxicity [21]. Furthermore, nontoxic or minimally toxic concentrations of the pesticide rotenone (0.5 nM) and LPS (0.5 ng/ml) synergistically induced dopaminergic neurodegeneration in primary mesencephalic mixed cultures. All these findings indicate that rotenone-induced dopaminergic neurotoxicity may be based not only on mitochondrial dysfunction but also on inflammatory reaction and free radical generation through microglial activation, and that inhibition of inflammation might become a promising therapeutic inter-
vention for PD [22]. In other words, further studies on the selectively toxic mechanisms of rotenone may elucidate the multifactorial etiology of PD. In fact, the dopaminergic neurotoxicity induced by MPTP, MPP⁺ and 6-OHDA was inhibited and ameliorated by treatment with aspirin, salicylate and meloxicam, which are nonsteroidal anti-inflammatory drugs (NSAIDs) inhibiting cyclooxygenase (COX) [23-26], and minocycline, which is a tetracycline derivative that inhibits microglial activation independently of its antimicrobial properties [27-29].

As mentioned above, oxidative stress with generation of reactive oxygen species (ROS) or reactive nitrogen species (RNS) is known to play important roles in the pathogenesis and progress of PD as a common degenerative process. Superoxide generated is leaked from mitochondria in the case of its dysfunction, especially when the activity of mitochondrial respiratory enzymes reduced by neurotoxins, MPTP, 6-OHDA and rotenone. Non-enzymatic and spontaneous auto-oxidation of DA produce superoxide and reactive quinones [30, 31]. In the inflammatory process, superoxide is also generated in activated microglia through NADPH oxidase or xanthine oxidase. The superoxide generated is converted to hydrogen peroxide by superoxide dismutase (SOD), and superoxide also reacts with nitric oxide to consequently generate peroxynitrite, which is a highly RNS that leads protein nitration. Hydrogen peroxide is up-taken into neurons and normally reduced by antioxidants such as glutathione (GSH), glutathione peroxidase (GPx) or catalase. Where transition metals, especially iron, are abundant, however, hydrogen peroxide reacts with metals to form the most cytotoxic ROS, hydroxyl radicals. The generation of ROS [32-34] and compensatory elevation of antioxidant enzymes, SOD, GPx and catalase [35] were reported in the basal ganglia of MPTP-treated animals or MPP⁺-treated cultured cells. Furthermore, dopaminergic neurotoxicity induced by MPTP administration was inhibited in Cu/Zn-SOD transgenic mice [36]. Neurotoxic 6-OHDA is up-taken into striatal nerve endings of dopaminergic neurons through DA transporters, and the toxin produces ROS such as superoxide, hydrogen peroxide and hydroxyl radicals when it is converted to reactive quinones by auto-oxidation [37, 38]. We have previously reported that the intracerebroventricular injection of 6-OHDA produced marked increases in Cu/Zn-SOD activity and lipid peroxides in the striatum [39] and that 6-OHDA-induced reduction of nigral DA neurons was prevented in Cu/Zn-SOD transgenic mice [40]. Rotenone also produces the release of superoxide from microglia through activation of NADPH oxidase [20, 21].

The generated hydrogen peroxide activates NF-κB transcription factor, which is related to inflammation [41, 42], and consequently promotes transcription of iNOS, COX, inflammatory cytokines (IL-1β, IL-6, TNF-α) and apoptosis-promoting molecules (p53, Bel-Xs, Bax) [43]. The inflammatory cytokines activate iNOS expression directly or indirectly through activation of NF-κB and thereby start a vicious cycle. It is known that superoxide and hydrogen peroxide can open mitochondrial permeability transition pores directly or indirectly through the activation of NF-κB and Bax protein [44] to promote the release of cytochrome c and consequent apoptotic cell death. Nitric oxide also inhibits mitochondrial respiratory enzymes to leak superoxide [45]. Thus, mitochondrial dysfunction, inflammation, and oxidative stress by generated ROS or RNS seem to be linked to each other in establishing the pathogenesis of parkinsonism by dopaminergic neurotoxins in nigrostriatal DA neurons and surrounding glial cells (Fig. 1).

Other possible hypothesis, which is proteolytic stress, has been recently focused. Impairment of ubiquitin-proteasome system leading to endoplasmic reticulum (ER) stress, unfolded protein response and consequent aggregation of cytotoxic proteins are involved in the pathogenesis of PD (see reviews [46-48]). This hypothesis of proteolytic stress has arisen from the following evidences: that parkin, mutation of which leads to an autosomal recessive form of PD, is a ubiquitin ligase [49], that α-synuclein, mutation of which causes familial PD, is a major component of inclusion Lewy bodies [50], and that differentiated PC12 cells expressing mutant α-synuclein showed a decrease in proteasome activity [51]. ER stress caused by accumulation of unfolded protein leads to up-regulation of parkin protein to prevent unfolded protein response-induced dopaminergic cell death [52]. Dopaminergic neurotoxins 6-OHDA, MPP⁺ and rotenone induced ER stress and unfolded protein response in catecholaminergic PC12 cells [53]. The involvement of the ER-Golgi system in dopaminergic cell death in PD is also supported by our recent study showing that rotenone induced disassembly of the Golgi apparatus in dopaminergic cells [54]. In dopaminergic neuroblastoma SH-SY5Y cells and PC12 cells, 6-OHDA increases the levels of free ubiquitin and ubiquitinated
proteins, and proteasome inhibition by MG-132 potentiates toxicity of 6-OHDA [55]. Recently, Höglinger et al. reported changes in proteasome activities induced by dopaminergic neurotoxins: rotenone and MPP⁺ reduced proteasome activity via ATP depletion, while 6-OHDA increased the activity in response to oxidative stress in primary cultured mesencephalic dopaminergic neurons [13]. Furthermore, severe inhibition of proteasome activity by the proteasome inhibitor epoximicin or MG-132 synergistically exacerbated dopaminergic neurotoxicity of rotenone, MPP⁺ and 6-OHDA, and antioxidant N-acetylcysteine and glucose supplementation protected against the synergistic neurotoxicity [13]. These reports suggest that proteasome inhibition enhances vulnerability to subtoxic oxidative stress and energy loss by complex I inhibition. Proteasome inhibition reduces mitochondrial complex I and II activities in SH-SY5Y cells [56], and up-regulates COX-2 and its ubiquitin conjugates [57]. Thus, proteolytic stress in the ubiquitin-proteasome system is linked not only to oxidative stress but also to mitochondrial dysfunction and the inflammatory process. It has been reported that proteasome inhibition leads to formation of ubiquitin/α-synuclein-positive inclusions in PC12 cells or mesencephalic cultured cells [58–60]. Furthermore, unilateral infusion of lactacystin, a proteasome inhibitor, into the substantia nigra or infusion of lactacystin/epoximicin into the striatum causes selective degeneration of dopaminergic neurons in the substantia nigra with cytoplasmic accumulation of ubiquitin and α-synuclein to form inclusion bodies [60, 61]. The dopaminergic neurotoxic property of overexpressed α-synuclein has been revealed in ani-

Fig. 1 Neurotoxicity of quinone formation as a dopaminergic neuron-specific oxidative stressor which closely links representative hypotheses, mitochondrial dysfunction, inflammation, oxidative stress, and impairment of the ubiquitin-proteasome system in the pathogenesis and progress of sporadic Parkinson’s disease and dopaminergic neurotoxin-induced parkinsonism.
mals that overexpress wild-type or mutant α-synuclein [48, 62–66]. It has been suggested that the toxicity of α-synuclein is due, in part, to the increase in transient formation of pathogenic oligomerized α-synuclein protofibrils at the conversion of fibrils to form Lewy bodies [67], as will be discussed further below. In contrast to the aggravating effects of severe proteasome inhibition on the neurotoxicity of rotenone, MPP⁺, and 6-OHDA [13] and the neurotoxic property of wild-type or mutant α-synuclein, Sawada et al. recently reported that moderate proteasome inhibition by lactacystin or MG-132 blocked MPP⁺- or rotenone-induced cell death of primary cultured dopaminergic neurons, despite the appearance of α-synuclein-positive inclusions [68], suggesting that impairment of proteasome plays an important role both in α-synuclein-positive inclusion formation and dopaminergic neuronal death on different lines, and that the formation of inclusion bodies actually exerts neuroprotective, rather than neurotoxic, effects. Thus, although it remains uncertain whether proteolytic stress due to impairment of the ubiquitin-proteasome system is involved in dopaminergic cell death in PD, such stress may be a common process downstream of the pathogenesis of PD.

Supporting Evidence of Mitochondrial Dysfunction, Inflammation, Oxidative Stress and Proteolytic Stress in Patients with Sporadic Parkinson’s Disease

The activities of mitochondrial complex III in the striatum and of complex I in the substantia nigra are significantly reduced in the brain of patients with sporadic PD [69–71]. These findings support the mitochondrial dysfunction hypothesis mentioned above. It is well known that the inflammation is involved in the pathogenesis of PD [22, 72–74]. In fact, in the substantia nigra of patients with PD, activated microglia that express iNOS and COX-1 and -2—which are rate-limiting enzymes that catalyze the formation of prostaglandin precursors from arachidonic acid—were found to be accumulated [75, 76]. Furthermore, inflammatory cytokines (IL-1β, IL-6, TNF-α), an NF-κB transcription factor related to gene induction of cytokines, and some growth factors were increased in the striatum and cerebrospinal fluid of patients with PD [74, 77, 78]. Oxidative stress is thought to play an important role in the pathogenesis and progression of PD. This suggested mechanism is supported by evidence in the brain of patients with sporadic PD showing decreases in the levels of GSH, GPx and catalase in the basal ganglia, including the striatum and substantia nigra [79–82], and increases in ferrous ions and iron deposits in the substantia nigra [82, 83]. The most cytotoxic ROS hydroxyl radicals might be generated from hydrogen peroxide through metal-catalyzed Fenton reaction to cause degenerative reactions including lipid or protein peroxidation and DNA fragmentation [84]. Microglia showing up-regulated iNOS and COX expression and protein nitration were found in the substantia nigra of parkinsonian patients [76, 85], suggesting that nitric oxide reacts with superoxide to generate peroxynitrite, which promotes protein nitration. Concerning the ubiquitin-proteasome system, structural and enzymatic defects of 26S/20S proteasome, especially 20S proteasome α-subunits, have been revealed in the substantia nigra of patients with sporadic PD [86–88], and parkin has also been shown to be present in Lewy bodies in the substantia nigra of patients with non-familial PD [89, 90], suggesting that proteolytic stress is also involved in the pathogenesis of non-familial PD or parkinsonism (see reviews [46–48]).

Neurotoxicity of Quinone Formation as Dopaminergic Neuron-specific Oxidative Stress

These representative hypotheses—i.e., that mitochondrial dysfunction, inflammation, and the resulting oxidative stress and impairment of the ubiquitin-proteasome system are common processes in the etiology of PD—can explain the mechanism of neurotoxicity induced by MPTP and 6-OHDA and some parts of pathogenesis in sporadic and familial PD, as mentioned above. However, these hypotheses have not yet fully clarified the mechanisms of dopaminergic neuron-specific cell loss in PD and rotenone-treated parkinsonian animal models. Although rotenone is not up-taken through DA transporters and systemically inhibits mitochondrial complex I, it also causes highly selective nigrostriatal dopaminergic degeneration with fibrillary cytoplasmic inclusions [14]. It has been shown that ROS generation from the mitochondria of damaged neurons and from microglia through the activation of NADPH oxidase [20, 21] induces the selective degeneration of nigral DA neurons that are abundant in iron and vulnerable to oxidative stress [19, 91]. However, this explanation does not fully
clarify the mechanism of dopaminergic neuron-specific cell loss, since ROS distributes diffusely and its toxic effects are not localized. Recently, Sakka et al. reported that depletion of DA attenuated rotenone-induced neurotoxicity, suggesting that the existence of endogenous DA itself is involved in the selective loss of dopaminergic neurons induced by rotenone exposure [92].

In contrast to the general oxidative stress induced by ROS/RNS, neurotoxicity of DA quinones or DOPA quinones have recently received attention as dopaminergic neuron-specific oxidative stress known to play a role in the pathogenesis of PD and neurotoxin-induced parkinsonism [3]. There are 2 major pathways in the DA-related oxidative stress (Fig. 1). When an excess amount of cytosolic DA exists outside of the synaptic vesicle, i.e., after L-DOPA treatment, DA is easily metabolized via monoamine oxidase-B or by auto-oxidation to produce cytotoxic ROS, and then forms neuromelanin [1, 93]. In the oxidation of DA by monoamine oxidase, hydrogen peroxide and dihydroxyphenylacetic acid (DOPAC) are generated. On the other hand, non-enzymatic and spontaneous auto-oxidation of DA and L-DOPA produces superoxide and reactive quinones such as DA quinones or DOPA quinones [30, 31]. These quinones are easily oxidized to the cyclized aminochromes DA-chrome (aminochrome) and DOPA-chrome, and then are finally polymerized to form melanin. Furthermore, other pathways of DA oxidation have been reported, and in these pathways, DA quinones are also generated in the enzymatic oxidation of DA by prostaglandin H synthase (COX), lipooxygenase, tyrosinase, and xanthine oxidase [94–97]. Although the auto-oxidation of DA via quinone formation produces general ROS which shows widespread toxicity not only in DA neurons but also in other regions, highly reactive DA quinone and DOPA quinone themselves have been reported to exert predominant cytotoxicity in DA neurons and surrounding neural cells, since these quinones are generated from free cytosolic DA outside the synaptic vesicle or from L-DOPA [93].

The quinones generated from DA or L-DOPA exert cytotoxicity by interacting with various bioactive molecules in or beside dopaminergic neurons. The functional proteins which possess cysteine residues are thought to be the targets of DA quinone and DOPA quinone. These quinones conjugate with the sulfhydryl group of the amino acid cysteine, resulting predominantly in the formation of 5-cysteinyl-DA and 5-cysteinyl-DOPA, respectively [31, 98, 99]. Since the sulfhydryl group on cysteine is often found at the active site of functional proteins, covalent modification of cysteine residues by DA quinone or DOPA quinone to form 5-cysteinyl-catechols would irreversibly alter or inhibit protein function and consequently cause cytotoxicity. This mechanism of neurotoxicity by the formation of 5-cysteinyl-catechols on protein is supported by evidence showing the generation of DA quinone and DOPA quinone, and consequent formation of 5-cysteinyl-catechols, 5-cysteinyl-DA, 5-cysteinyl-DOPA, and 5-cysteinyl-DOPAC, in the cell loss of dopaminergic neuronal cultured cells treated with DA and L-DOPA [100–102]. In particular, it is of interest that tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is one of the proteins that may be targeted by the DA quinone generated in the brain, since DA quinones covalently modify and inactivate the DA-synthesizing enzyme to subsequently form redox-cycling quinoprotein [103, 104] (Fig. 1).

The formation of catechol-quinones in vitro and in vivo has been dramatically blocked by treatment with GSH, cysteine, or ascorbate [100, 101, 103, 105], since the reduced sulfhydryl group of cysteine in GSH and free cysteine compete with the sulfhydryl group of cysteine on proteins conjugating with DA or DOPA quinones. We recently revealed the neurotoxic properties of DA- and L-DOPA-related compounds in human neuroblastoma SH-SY5Y cells by generating DA- or DOPA-semiquinone radicals, which were subsequently converted to toxic quinones [106]. DA or L-DOPA possessing 2 hydroxyl groups on the benzene ring showed marked cell toxicity and generation of DA- or DOPA-semiquinone radicals, as detected by in vitro ESR spectrometry. The cell death and the formation of these semiquinone radicals induced by DA or L-DOPA were markedly prevented by the addition of Cu/Zn-SOD or GSH, but not by the addition of catalase [106]. SOD can act as a superoxide: semiquinone oxidoreductase to prevent quinone formation [107]. Furthermore, by conjugating with DA quinone, GSH prevents the binding of DA quinone to the sulfhydryl groups of cysteine on proteins as described above. Therefore, the protective effects of SOD and GSH against DA- or L-DOPA-induced cytotoxicity may be the result of the quinone-quenching activities of these antioxidants (Fig. 1). The involvement of quinone formation in DA- or DOPA-induced cytotoxicity is also supported by our recent study that overexpression of Cu/Zn-SOD protects SH-SY5Y cells against DA-induced cytotoxicity accompanied by an increase in their GSH level [108]. If

http://escholarship.lib.okayama-u.ac.jp/amo/vol58/iss5/1

Acta Medica Okayama, Vol. 58 [2004], Iss. 5, Art. 1
DA-related neuronal death is caused by the generation of general ROS or RNS, the cytotoxicity of DA would be prevented by antioxidants such as ascorbic acid and α-tocopherol. However, ascorbic acid and α-tocopherol have lesser or no effects against DA-induced cell death in PC12 cells, while the cell death is markedly inhibited by the thiol-containing compounds GSH, N-acetylcysteine, and dithiothreitol [109]. Furthermore, these thiol reagents prevent auto-oxidation of DA and consequent melanin formation. Taken together, these findings indicate that quinone formation may play an important role in the neuronal damage induced by dopaminergic neuron-specific oxidative stress.

One of the target proteins for DA quinone is thought to be α-synuclein, which is a major component of the insoluble fibrils of Lewy bodies in patients with PD [2]. The soluble state of α-synuclein is converted to aggregated fibrils via transient formation of pathogenic protofibrils by its oligomerization [67]. Mutant α-synuclein (A30P), which is linked to familial autosomal dominant PD, enhances the rate of protofibril formation but inhibits the conversion of protofibrils to fibrils, thereby increasing the level of toxic protofibrils [110], which lead to the destruction of synaptic vesicular membranes [111]. Conway et al. screened 169 compounds that inhibited the conversion of protofibrils to fibrils, and found that all but one of 15 fibril inhibitors were catecholamines related to DA and L-DOPA. Furthermore, DA quinone reacts with α-synuclein to form the DA quinone-α-synuclein adduct, which inhibits fibril formation at oligomerization by stabilizing the protofibrils [2]. Since α-synuclein does not contain cysteine residues, the DA quinone-α-synuclein adduct may be one of the quinoproteins formed by coupling DA quinone to tyrosine residues of α-synuclein and/or by nucleophilic attack of quinone to lysine residues forming a Schiff base [103, 112] (Fig. 1).

In addition to neurotoxic DA quinones, cyclized o-semiquinones derived from DA-chromes are involved in the cytotoxicity induced by auto-oxidation of DA [113–117]. In the pathway of melanin formation, the cyclized aminochrome DA-chrome (aminochrome) is generated from DA quinone via leukoaminochrome, and is converted to 5,6-dihydroxyindole and then indole-5,6-quinone, which is consequently polymerized to form melanin. It has been proposed that reduction of DA-chrome catalyzed by NADPH cytochrome P450 reductase produces cyclized o-DA semiquinone (leukoaminochrome o-semiquinone) radicals which are highly reactive molecules [116, 118]. This cytotoxic effect of cyclized o-DA semiquinone derived from DA-chrome is supported by a report showing that unilateral injection of cyclized amino-chrome, DA-chrome into the substantia nigra resulted in apomorphine-induced rotation behavior with a significant reduction of nigral DA neurons [119].

The cytotoxicity of quinone formation is closely linked not only to general oxidative stress but also to mitochondrial dysfunction, inflammation, and proteasome impairment (Fig. 1). Quinone formation by DA oxidation reduces mitochondrial function and opens the mitochondrial permeability transition pores in the brain [120]. DHBT-1 (7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid), a further oxidation product of 5-cysteiny1-DA, irreversibly inhibits the activity of mitochondrial complex I [121]. As described above, several NSAIDs protected against dopaminergic cell loss in MPTP-treated parkinsonian models [23, 24, 26]. Furthermore, reduction of nigral DA neurons by MPTP injection was prevented in COX-2 knockout mice or by treatment with a COX-2 inhibitor [122]. One possible dopaminergic neuron-specific target molecule of NSAIDs is thought to be prostaglandin H synthase, which is abundant in the brain [96]. This enzyme, which exerts both COX activity and peroxidase activity on the arachidonic acid cascade, catalyzes the production of prostaglandin G2 from arachidonic acid by its COX activity, and then converts prostaglandin G2 to prostaglandin H2/E2 by its peroxidase activity. In the presence of DA, oxidative reaction of DA to form DA quinone is coupled with the latter step. In other words, the DA quinone is generated not only in auto-oxidation of DA, but also by the enzymatic oxidation of DA by prostaglandin H synthase in a reaction mediated by hydrogen peroxide [96]. The NSAIDs indomethacin and aspirin inhibit this prostaglandin H synthase-mediated oxidation of DA [123]. These findings suggest that the induction of COX and resulting formation of DA quinone play an important role in the degeneration of DA neurons by dopaminergic neurotoxins or excess DA. In fact, prostaglandin E2, which is generated by prostaglandin H synthase, is increased in the substantia nigra of patients with PD [123]. Furthermore, the 5-cysteiny1-DA/homovanillic acid concentration ratio has been shown to be significantly higher in the cerebrospinal fluid of the patients with PD who received L-DOPA therapy [124]. In another study, the 5-cysteiny1-catechols were
significantly higher in the substantia nigra of PD patients than in that of controls [125]. Apoptotic and selective dopaminergic cell death with formation of ubiquitin and α-synuclein-positive inclusion in vitro or in vivo induced by the proteasome inhibitor lactacystin or epoxomicin was suppressed by reducing endogenous DA, and enhanced by treatment with L-DOPA or the monoamine oxidase inhibitor pargyline [60]. In a related work, DA induced proteasome inhibition in PC12 cells, and this inhibition was attenuated by GSH, monoamine oxidase inhibitors, or a DA uptake inhibitor [126]. These findings suggest a possible role of proteasome inhibition in the toxicity induced by high levels of DA or its quinone in the cytosol. Thus, DA quinone- or DOPA quinone-induced cytotoxicity is thought to be involved not only in the pathogenesis of PD but also in the adverse reactions induced by long-term L-DOPA therapy.

Neuroprotective Approaches against DA Quinone Cytotoxicity

As mentioned above, various studies have introduced neuroprotective approaches against DA quinone toxicity. The DA- or L-DOPA-induced formation of catecholquinones such as 5-cysteynil-DA and 5-cysteynil-DOPA and consequent dopaminergic cell damage in vitro and in vivo were dramatically prevented by treatment with SOD, GSH, N-acetylcysteine, or dithiothreitol, but not by treatment with catalase or α-tocopherol [100, 101, 103, 105, 106, 108, 109]. These protective effects of SOD, GSH, and some thiol reagents against DA- or L-DOPA-induced cytotoxicity may be due to their quinone-quenching activities. SOD exerts protective effects by acting as a superoxide: semiquinone oxidoreductase to prevent quinone formation [106-108]. The sulfhydryl group of free cysteine in GSH and thiol reagents compete with the sulfhydryl group of cysteine on functional proteins conjugating with DA or DOPA quinones [3, 96, 106, 109]. These quinone-quenching reagents, especially N-acetylcysteine, which can cross the blood-brain barrier, may be therapeutically useful against the neurotoxicity of quinone formation that causes oxidative stress specifically in the dopaminergic neurons.

Against the DA-chrome-induced neurotoxicity, 2 enzymes, NAD(P)H: quinone oxidoreductase (NQO: DT-diaphorase) and GSH transferase (GST) M2-2, exert neuroprotective effects to prevent the formation of cyclized o-DA semiquinone (Fig. 1). NQO: DT-diaphorase (so-called quinone reductase), which is present in the dopaminergic neurons in the substantia nigra [127], catalyzes the two-electron reduction of quinones, reduces DA-chrome to leukoaminochrome by competing with NADPH cytochrome P450 reductase, and consequently inhibits the formation of o-semiquinone radicals [113, 115, 128]. Treatment with butylated hydroxyanisole, dimethyl fumarate (DMF), or tert-butylhydroquinone, which up-regulates the activity of NQO: DT-diaphorase, protects against cell death related to quinone formation [129-132]. GST M2-2 also prevents the formation of cyclized o-semiquinone from DA-chrome by catalyzing the conjugation of DA-chrome with GSH to form 4-glutathionyl-5,6-dihydroxyindole [133, 134]. In particular, DMF increases not only the activity of NQO: DT-diaphorase but also total intracellular GSH and the activities of GST and GSH reductase [130] to reduce the cytotoxicity associated with DA quinone formation.

The neurotoxicity induced by the dopaminergic neurotoxins MPTP, MPP+, and 6-OHDA was blocked by treatment with the NSAIDs, aspirin, salicylate and meloxicam, which inhibit COX activity [23-26]. The NSAIDs indomethacin and aspirin inhibited prostaglandin H synthase-mediated oxidation of DA [123]. The final product, prostaglandin E2, which is catalyzed by prostaglandin H synthase, was increased in the substantia nigra of patients with PD [123]. The NSAIDs can also inhibit the induction of inflammatory cytokines and apoptosis-promoting molecules by suppressing of INOS expression or NF-κB induction. Therefore, NSAIDs could be neuroprotective agents in the treatment of parkinsonian patients, and especially for treating adverse reactions caused by long-term L-DOPA therapy, through their anti-inflammatory action and their reduction of catechol quinone-induced cytotoxicity [3, 135].

Furthermore, the melanin-synthesizing enzyme tyrosinase, which catalyzes both the hydroxylation of tyrosine to L-DOPA and the subsequent oxidation of L-DOPA or DA to form melanin, might be useful for reducing the neurotoxicity induced by DA quinone [3] (Fig. 1), since tyrosinase can rapidly oxidize DA or DA quinone to form melanin [136]. We previously reported that inhibition of tyrosinase dramatically reduced the viability of dopaminergic neuronal cells by increasing the intracellular DA contents, and significantly enhanced DA-induced cell death [137]. Tyrosinase also oxidizes 5,6-dihydroxyindole derived from DA- or DOPA-chrome to indole-5,6-quinone. Furthermore, the replacement of
DA synthesis by tyrosinase has been reported in tyrosine hydroxylase-null mice [138]. Neuramelin exerts antioxidative properties to inhibit lipid peroxidation, quenches free radicals, and has a strong chelating ability as regards transition metals, preventing metal-induced neurotoxicity [3, 139]. Therefore, enhancing the activity of tyrosinase in the brain may prevent or ameliorate the DA quinone or DA-chrome-induced slow progression of cell damage by rapid oxidation of excess amounts of cytosolic DA and L-DOPA to form neuroprotective melanin, and by its DA-synthesizing property.

Concluding Remarks

In conclusion, it is of interest that the cytotoxicity of quinone formation is closely related not only to general oxidative stress but also to mitochondrial dysfunction and inflammation. In other words, quinone formation by auto-oxidation of DA may play an important role as a DA neuron-specific common degenerative factor that closely links representative hypotheses, mitochondrial dysfunction, the inflammatory process, oxidative stress, and impairment of the ubiquitin-proteasome system in the pathogenesis and progress of PD. Further studies will be required to clarify the role of quinone formation in patients with PD.

References

25. Mohanakumar KP, Murakrishnan D and Thomas B: Neuroprotection
by sodium salicylate against 1-methyl-4-phenyl-1,2,3,6-
281–290.
26. Teismann P and Ferger B: Inhibition of the cyclooxygenase isoen-
yzmes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse
Chernet E, Perry RK, Nelson DL, Luecke S, Phebus LA, Bymaster
FP and Paul SM: Minocycline prevents nigrostriatal dopaminergic
neurodegeneration in the MPTP model of Parkinson’s disease. Proc
28. He Y, Appel S and Le W: Minocycline inhibits microglial activation
and protects nigral cells after 6-hydroxydopamine injection into
29. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C,
Choi DK, Ischiropoulos H and Przedborski S: Blockade of microglial
activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci
30. Tse TC, McCrey RL and Adams RN: Potential oxidative pathways
31. Graham DG: Oxidative pathways for catecholamines in the genesis
of neuropeplalin and cytotoxic quinones. Mol Pharmacol (1978) 14:
633–643.
32. Sinha BK, Singh Y and Krishna G: Formation of superoxide and
hydroxyl radicals from 1-methyl-4-phenylpyridinium ion (MPP+):
reductive activation by NADPH cytochrome P450 reductase. Biochem
33. Chacon JN, Chechedek MR, Land EJ and Truscott TG: Chemically
induced Parkinson’s disease: intermediates in the oxidation of 1-
methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun
34. Smith TS and Bennett JJ: Mitochondrial toxins in models of neuro-
degenerative diseases. I: In vivo brain hydroxyl radical production
during systemic MPTP treatment or following microdialysis infusion of
35. Cassarino DS, Fall CP, Swerdlov RH, Smith TS, Halvorsen EM,
Miller SW, Parks JP, Parker WJ and Bennett JJ: Elevated reactive
oxygen species and antioxidant enzyme activities in animal and
1362: 77–86.
36. Przedborski S, Kostic V, Jackson-Lewis V, Naini AB, Simonetti S,
Fahs S, Carlson E, Epstein CJ and Cadet JL: Transgenic mice with
increased Cu/Zn-superoxide dismutase activity are resistant to
N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J
37. Heikilla RE and Cohen G: 6-Hydroxydopamine: evidence for super-
xide radical as an oxidative intermediate. Science (1973) 181: 456–
457.
38. Cohen G and Heikilla RE: The generation of hydrogen peroxide,
superoxide radical, and hydroxyl radical by 6-hydroxydopamine,
2447–2452.
A: Changes in lipid peroxidation, Cu/Zn-superoxide dismutase and its
mRNA following an intracerebroventricular injection of 6-
40. Asanuma M, Hirata H and Cadet JL: Attenuation of 6-
hydroxydopamine-induced dopaminergic nigrostriatal lesions in
superoxide dismutase transgenic mice. Neuroscience (1998) 85:
907–917.
41. Meyer M, Schreck R and Baeuerle PA: H2O2 and antioxidants have
opposite effects on activation of NF-xB and AP-I in intact cells: AP-I
as secondary antioxidant-responsive factor. EMBO J (1993) 12:
42. Simpson CS and Morris BJ: Activation of nuclear factor xB by nitric
oxide in rat striatal neurons: differential inhibition of the p50 and
43. O’Neill LAJ and Klautschmidt C: NF-xB: a crucial transcription factor
258.
44. Zoratti M and Szabo I: The mitochondrial permeability transition.
45. Lizzio-an I, Moro MA, Knowles RG, Darley UV and Moncada S: Nitric
oxide and peroxynitrite exert distinct effects on mitochondrial
respiration which are differentially blocked by glutathione or glucose.
46. McNaught KS, Olano CW, Halliwell B, Isacson O and Jenner P:
Failure of the ubiquitin-proteasome system in Parkinson’s disease.
47. Chung KK, Dawson VL and Dawson TM: The role of the ubiquitin-
proteasomal pathway in Parkinson’s disease and other neurodegen-
53: 573–84; discussion 584–76.
49. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima
Parkinson disease gene product, parkin, is a ubiquitin-protein ligase.
S, Athanasiadou A, Papapetropoulos T, Johnson WG, Lazzarin AM, Duvois
RC, Di Iorio G, Golbe LI, Nussbaum RL and Heffand SL: Mutation in the a-
synuclein gene identified in families with Parkinson’s disease. Science
51. Tanaka Y, Engelender S, Igarashi S, Rao PK, Wanner T, Tanzi RE,
Sawa A, Dawson VL, Dawson TM and Ross CA: Inducible expression of
mutant a-synuclein decreases protease activity and increases
sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet
52. Imai Y, Soda M and Takahashi R: Parkin suppresses unfolded
protein stress-induced cell death through its E3 ubiquitin-protein
53. Ryu EJ, Harding HP, Angelastro JM, Vitolio OV, Ron D and Greene
LA: Endoplasmic reticulum stress and the unfolded protein response
10690–10698.
54. Diaz-Correales FJ, Asanuma M, Miyazaki I and Ogawa N: Rotenone
disassembly of the Golgi apparatus in the rat dopaminergic
55. Elkon H, Melamed E and Offen D: 6-Hydroxydopamine increases
ubiquitin-conjugates and protein degradation: implications for the
771–781.
56. Sullivan PG, Dragecic NB, Deng JH, Bai Y, Dimayuga E, Ding Q,
Chen Q, Bruce-Keller AJ and Keller JN: Proteasome inhibition alters
neural mitochondrial homeostasis and mitochondria turnover. J Biol
57. Rockwell P, Yuan H, Magnusson R and Figueiredo-Pereira ME:
Proteasome inhibition in neuronal cells induces a proinflammatory
response manifested by upregulation of cyclooxygenase-2, its accu-

http://escholarship.lib.okayama-u.ac.jp/amo/vol58/iss5/1

Acta Medica Okayama, Vol. 58 [2004], Iss. 5, Art. 1

Acta Med. Okayama Vol. 58, No. 5
Asanuma et al.: Quinone formation as dopaminergic neuron-specific oxidative

Quinone Formation in Parkinson’s Disease 231

October 2004

92. Sakka N, Sawada H, Izumi Y, Kume T, Katsuki H, Kaneko S,
Acta Medica Okayama, Vol. 58 [2004], Iss. 5, Art. 1

232 Asanuma et al.
100. Lai CT and Yu PH: Dopamine- and L-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuronal stem cell SH-SYSY cells. Effects of oxidative stress and antioxidative factors. Biochim Pharmacol (1997) 53: 363-372.
122. Teissmann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, Vila M, Jackson-Lewis V and Przedborski S: Cyclooxygenase-2 is instrumen-
124. Cheng FC, Kuo JS, Chia LG and Dryhurst G: Elevated 5-S-cysteinyl dopamine/homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: possible markers for and potential in-

http://escholarship.lib.okayama-u.ac.jp/amo/vol58/iss5/1
Asanuma et al.: Quinone formation as dopaminergic neuron-specific oxidative

October 2004

