Effect of cisplatin on cell death and DNA crosslinking in rat mammary Adenocarcinoma in vitro.

Junko Yamamoto∗ Yasunari Miyagi† Kunihiro Kawanishi‡ Shinako Yamada** Yuji Miyagi†† Junichi Kodama‡‡ Mitsuo Yoshinouchi§ Takafumi Kudo¶

∗Okayama University, †Okayama University, ‡Okayama University, **Okayama University, ††Okayama University, ‡‡Okayama University, §Okayama University, ¶Okayama University,

Copyright ©1999 OKAYAMA UNIVERSITY MEDICAL SCHOOL. All rights reserved.
Effect of cisplatin on cell death and DNA crosslinking in rat mammary. Adenocarcinoma in vitro.*

Junko Yamamoto, Yasunari Miyagi, Kunihiro Kawanishi, Shinako Yamada, Yuji Miyagi, Junichi Kodama, Mitsuo Yoshinouchi, and Takafumi Kudo

Abstract

The pharmacodynamic effects of cisdimaminedichloroplatinum(II) (CDDP) in vitro have been reported, but the dosage and exposure time in vitro have not been based on clinical observations of the drug’s actions in vivo. In this study, the authors attempted to evaluate the pharmacodynamic effects of CDDP in vitro in terms of cell survival and DNA crosslinking by simulating unbound CDDP administration at varying concentrations to a rat mammary adenocarcinoma line (known as line 66). CDDP exposure was conducted by both constant concentration procedures and a simulated in vivo procedure. Colony formation assay for the surviving fraction and alkaline elution assay for DNA crosslink measurement were performed in order to evaluate the pharmacodynamics of CDDP. Cell survival was a function of the area under the drug concentration time curve (AUC) of unbound CDDP (R² = 0.77, P < 0.002) for all drug exposure procedures as analyzed by the analysis of covariance test. There was a strong correlation between the surviving fraction and the crosslink index of the total amount of DNA crosslinks (R² = 0.85, P < 0.0005). Both the total amount of DNA-DNA crosslinks and the DNA-protein crosslinks, of which the latter were dominant, were affected not by the exposure procedures, but by the AUC value (P < 0.002). The thresholds of cytocidal effect were 1.59 mg.h/l for the AUC and 0.008 for the crosslink index. The pharmacodynamic effects in vitro by simulated in vivo exposure were identical to those of constant.

KEYWORDS: pharmacodynamics, pharmacokinetics, simulation, cisplatin, crosslink

*PMID: 10561728 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Effect of Cisplatin on Cell Death and DNA Crosslinking in Rat Mammary Adenocarcinoma in vitro

Junko Yamamoto, Yasunari Miyagi*, Kunihiro Kawanishi, Shinako Yamada, Yuji Miyagi, Junichi Kodama, Mitsuo Yoshinouchi and Takafumi Kudo

Department of Obstetrics and Gynecology, Okayama University Medical School, Okayama 700-8558, Japan

The pharmacodynamic effects of cis-diaminedichloroplatinum(II) (CDDP) in vitro have been reported, but the dosage and exposure time in vitro have not been based on clinical observations of the drug's actions in vivo. In this study, the authors attempted to evaluate the pharmacodynamic effects of CDDP in vitro in terms of cell survival and DNA crosslinking by simulating unbound CDDP administration at varying concentrations to a rat mammary adenocarcinoma line (known as line 66). CDDP exposure was conducted by both constant concentration procedures and a simulated in vivo procedure. Colony formation assay for the surviving fraction and alkaline elution assay for DNA crosslink measurement were performed in order to evaluate the pharmacodynamics of CDDP. Cell survival was a function of the area under the drug concentration time curve (AUC) of unbound CDDP ($R^2 = 0.77, P < 0.002$) for all drug exposure procedures as analyzed by the analysis of covariance test. There was a strong correlation between the surviving fraction and the crosslink index of the total amount of DNA crosslinks ($R^2 = 0.85, P < 0.0005$). Both the total amount of DNA-DNA crosslinks and the DNA-protein crosslinks, of which the latter were dominant, were affected not by the exposure procedures, but by the AUC value ($P < 0.002$). The thresholds of cytotoxic effect were 1.59 mg·h/l for the AUC and 0.008 for the crosslink index. The pharmacodynamic effects in vitro by simulated in vivo exposure were identical to those of constant.

Key words: pharmacodynamics, pharmacokinetics, simulation, cisplatin, crosslink

Many kinds of anti-cancer agents are in wide clinical use and there have been many papers published on the in vitro cytotoxicity of these anti-cancer agents. However, the dosages of drugs in some of these studies are different from those used in actual clinical practice (usually the in vitro dosages are artificially high). In general, the higher the drug concentration, the clearer the experimental outcome will be. However, in clinical practice, such high dosages cannot be given to patients because of severe toxicity. Thus, we felt that the experimental parameters of in vitro studies, such as drug concentration and exposure time, should approximate the in vivo pharmacokinetic parameters as closely as possible. In other words, it is of value to simulate in vivo conditions in experiments in vitro so that the results of in vitro experiments can be applied to patients as efficiently as possible in order to improve existing clinical drug regimens.

In gynecologic oncology, cis-diaminedichloroplatinum(II) (CDDP) is one of the most important drugs for chemotherapy. The pharmacodynamics of platinum analogues are said to be dependent on the area under the drug concentration time curve (AUC) value. This is based on both experimental data in vitro and a mathematical model (1). On the other hand, clinical observations suggest that the anti-tumor effect of CDDP is not influenced by the dosage (2), which theoretically is proportional to the AUC value if the drug shows pharmacological linearity. This suggests that there is some discrepancy between the experimental data supported by the model and actual clinical data. CDDP binds irreversibly to plasma and cellular components and protein-bound CDDP is not able to form CDDP-DNA adducts (3). Moreover, cell kill is determined not by the rate of input of CDDP, but by the magnitude of exposure to unbound

*To whom correspondence should be addressed.
CDDP (3). Therefore, it is of importance to investigate that the in vitro pharmacodynamic effects of unbound CDDP (in simulated in vivo exposure conditions) are identical to those of constant concentration.

To simulate the pharmacodynamics of CDDP in vitro, it is important that the drug concentration in vitro be simulated with the active form of the drug in a time-dependent manner, namely, $Ae^{-\alpha t} + Be^{-\beta t}$ as in the case of the two-compartment model. Ma et al. demonstrated in a simulated in vivo experiment (by adding albumin to the medium to eliminate unbound CDDP in vitro) that there was a log-linear relationship between the AUC of unbound CDDP and cell survival (3). Their study, however, did not evaluate protein-bound CDDP within cells. In the present study, the authors investigated cell survival and DNA crosslinks of unbound CDDP in vitro using a rat adenocarcinoma cell line by in vivo pharmacokinetic simulation, in which the CDDP concentration varied relative to the constant concentration exposure.

Materials and Methods

Cell growth and maintenance. Cells derived from a rat mammary adenocarcinoma (designated cell line 66) were grown in modified McCoy's 5 A medium (GIBCO, Grand Island, NY, USA) supplemented with 0.05 % L-glutamine (GIBCO), 100 U/ml penicillin G and 100 μg/ml streptomycin sulfate (GIBCO) (4) and 10 % v/v heat-inactivated fetal calf serum (GIBCO) in humidified air enriched with 5 % CO₂ at 37°C. Exponentially proliferating cells grown for 3-4 days were used.

Drug exposure. CDDP was kindly provided by Bristol-Myers-Squibb K.K. (Tokyo, Japan). Since 97 % of CDDP binds to protein in sera after 24 h (3) and the active form is unbound CDDP, CDDP was dissolved at 37°C in modified McCoy's 5 A medium without sera prior to CDDP exposure so that all of the dissolved CDDP would be unbound in the medium. The solution was warmed at 37°C so that all of the exposures could be performed at 37°C. Four T75 flasks (Becton-Dickinson, Franklin Lakes, NJ, USA) containing approximately 6×10^6 cells in 15 ml of medium per flask were used in each experiment.

Simulated exposure. Simulated exposure was based on clinical pharmacokinetic parameters. The AUC value with the ordinal CDDP dose (120 mg/m²) was 4.8 mg·h/1 in continuous 5-day infusion and 9.6 mg·h/1 in 30-min infusion of the AUC value of unbound CDDP, respectively (5). Vermorken et al. reported that the level of unbound CDDP was relatively low 12 h after the end of less than 3-h infusion (2). The simulated in vivo exposure mimics 1-h administration of CDDP. All CDDP exposure times were set at 12 h. The AUC value of unbound CDDP was set at 2, 4 and 8 mg·h/1. The time-course of change in the unbound CDDP concentration after the first hour was simulated in vitro so that the $T_{0.5}$ (0.60 h⁻¹) and $T_{t/2}$ (2.50 h⁻¹), settings were the same as those in vivo (Fig. 1). The concentration of the first hour unbound CDDP exposure was set to mimic the predicted concentration in vivo to achieve the target AUC value. Other parameters such as maximum concentration were calculated, based on the AUC value and half-lives, using an original program by Mathematica (Wolfram Research, Inc., Champaign, IL, USA) on a Macintosh computer (Apple Computer, Inc., Cupertino, CA, USA). In the case of 8 mg·h/1 of the AUC value of unbound CDDP, the CDDP concentrations were 1.389, 4.000, 1.259, 0.397, 0.227, 0.131, 0.075, 0.043 mg/1 during 0-1, 1-2, 2-3, 3-4, 4-6, 6-8, 8-10, 10-12 h, respectively. The maximum unbound CDDP concentration, 4 mg/1, was identical to that of short-term infusion in vivo (5). To obtain other concentration/time lists for 2 and 4 mg·h/1 of the AUC values, the list of 8 mg·h/1 was divided by 4 and 2, respectively.

![Fig. 1 Simulated in vivo cis-diamminedichloroplatinum(II) (CDDP) exposure. The in vivo CDDP concentration is simulated in vitro, based on a clinical study (1). Data for the 8 mg·h/1 of the area under the drug concentration time curve (AUC) value is shown. In experiments with other AUC values, the exposure time and half-life times of both the α and β phases were kept constant.](http://escholarship.lib.okayama-u.ac.jp/amo/vol53/iss5/1)
Constant concentration exposure. The maximum unbound CDDP concentration obtained by short-time infusion in vivo was 4 mg/l (5), which was defined as high-dose exposure in this study. Since the AUC values investigated should be 2, 4 and 8 mg·h/l, an exposure time at 4 mg/l as the high dose was set at 0.5, 1.0 and 2.0 h, respectively. Since unbound CDDP is eliminated and is too low to detect after 12 h in vivo, the low-dose concentration was set at 0.67 mg/l, which achieved 8 mg·h/l of the AUC in 12 h. Therefore, the exposure time at 0.67 mg/l was set at 3, 6 and 12 h, resulting in 2, 4 and 8 mg·h/l of the AUC value, respectively.

With both methods of CDDP exposure, after exposure, the cells were rinsed three times with CDDP-free modified McCoy’s 5 A medium with 10% v/v fetal calf serum at 37°C. The cells were then trypsinized and resuspended in the medium at 37°C.

Colony formation. Colony formation assay was used as a survival assay in this study. Briefly, 100–5000 of the cells suspended in modified McCoy’s medium with 10% v/v fetal calf serum were seeded into culture dishes 5 cm in diameter. Surviving colonies were counted after 12–14 days.

DNA analysis. DNA crosslinking was measured by the alkaline elution assay described by Miyagi et al. (4) with modifications. Briefly, the treated cells were incubated at 37°C for 4 h after the rinse followed by the trypsinization. Cell suspensions at 37°C were irradiated with 7.5 Gy of X-rays with an irradiator, MBR-1520 (Hitachi-Medico, Tokyo, Japan), then cooled immediately in ice. After 3 × 10⁵ of the cells for each channel were loaded onto polycarbonate filters (Costar Scientific Corp., Cambridge, MA, USA) in Swinnex filter holders, the cells were lysed with or without proteinase K (Merk, Darmstadt, Germany) in the lysis solution. Next, 33 ml of a solution of tetrapropylammonium hydroxide, pH 12.3, was layered over and pumped through the filter at a rate of 0.0389 ml/min. At least 3 channels were used for each cell suspension specimen and all of the DNA analyses were repeated 3 times.

Analysis of alkaline elution data. The amounts of DNA from cells on the filters were calculated as the percentage of the amount retained after the elution. The frequency of CDDP-induced DNA crosslinking in this study was calculated using the following formula (6):

\[\text{CLI}_{\text{total}} = \left[\frac{(1 - R_0)}{1 - \text{CLI}_{\text{CDDP}}} \right]^{1/2} - 1, \]

\[\text{CLI}_{\text{DPC}} = \left[\frac{(1 - R_0)}{1 - \text{CLI}_{\text{CDDP}}} \right]^{1/2} - 1, \]

\[\text{CLI}_{\text{SC}} = \text{CLI}_{\text{total}} - \text{CLI}_{\text{DPC}}, \]

in which CLI_{total} is the crosslink index of DNA crosslinking of CDDP-treated cells; CLI_{DPC} is the crosslink index of DNA-protein crosslinking; CLI_{SC} is the crosslink index of DNA-interstrand crosslinking; R_0 is the relative retention of irradiated cells without CDDP exposure; R_{CDDP} is that of CDDP-treated cells without proteinase K after 7.5 Gy irradiation; R_{CDDPK} is that of CDDP-treated cells with proteinase K after 7.5 Gy irradiation.

Statistical analysis. The values were analyzed using the analysis of variance test with a subsequent post hoc test and the analysis of covariance test.

Results

Cell survival and DNA crosslink formation were not affected by serum-free incubation for 12 h (data not shown). Cell survival was a function of time in the constant concentration exposure experiments and was a function of the AUC value irrespective of the various drug exposure methods (Fig. 2). Colony-forming efficiency of untreated cells was 72.6 ± 3.9% (mean ± S.E.). Strong correlation was observed between the logarithm of the colony formation efficiency values and the AUC values (R² = 0.77, P < 0.002) and the estimated threshold of the AUC value for cell kill was 1.59 mg·h/l.

The maximum value of DNA crosslink formation was observed around 4–6 h after the removal of CDDP (Fig. 3). Therefore, the alkaline elution assay was performed 4 h after the removal of CDDP in this study. There was a strong correlation between colony formation efficiency and crosslink index (R² = 0.85, P < 0.0005) shown in Fig. 4. The calculated threshold of the crosslink index for cell killing was 0.008. These findings strongly suggested that the cell killing effect is dependent on the amount of DNA crosslinks and is not affected by drug exposure methods.

Fig. 5 shows the kinetics of DNA crosslink formation as a function of the AUC value. DNA-protein crosslinks involved 68.3 ± 13.1% (mean ± S.D.) of the total amount of DNA crosslinks (data not shown). The greater the AUC, the higher the total crosslink index became, though a significant increase was not observed at lower AUC values in the 2–4 mg·h/l range, which is less than the amounts usually used in clinical practice. It is likely that crosslink formation under 4 mg·h/l of the AUC value is under the detection threshold of the alkaline elution assay. The crosslink indices of both the total number of DNA crosslinks and DNA-protein crosslinks at 2 mg·h/l were not statistically different from those of 4 mg·h/l,
irrespective of the drug exposure method used. The one-way analysis of variance test revealed that the drug exposure procedures did not affect the amount of DNA crosslink formation. The test also revealed that both the total amount of DNA crosslink formation and DNA-protein crosslink formation were not affected at all by the drug exposure methods but were affected by the AUC value ($P < 0.002$ each for both crosslink formation rates). The subsequent post hoc test revealed that there were statistically significant differences between the crosslink index value at 8 mg·h/l and those of both 2 and 4 mg·h/l ($P < 0.005$). The AUC value appears to affect inter-strand crosslink formation almost as significantly as DNA-protein crosslink formation ($P = 0.0639$).
Yamamoto et al.: Effect of cisplatin on cell death and DNA crosslinking in rat

Fig. 4 Correlation between DNA crosslinking and cell survival. The logarithm of colony formation efficiency is a function of the DNA crosslink index (CLI), irrespective of exposure method. \(\ln(Y) = 0.185(\pm 0.343) - 23.16(\pm 3.71)x \), \(R^2 = 0.848 \), \(P = 0.0004 \). The amount of DNA crosslinking assayed by the alkaline elution technique allows one to predict cell survival.

Fig. 5 The kinetics of crosslink formation. The crosslink index (CLI) of total DNA crosslinking (left), of DNA-protein crosslinking (center), and of DNA-DNA crosslinking (right) as a function of the AUC value is plotted. There were no differences in terms of drug exposure procedures as analyzed by the one-way analysis of variance test. This same test showed that AUC value is positively correlated with crosslink formation. The maximum AUC value in the clinical regimen, 8 mg·h/l, shows significantly more crosslink formation in the total number of DNA crosslinks and DNA-protein crosslinks by post hoc tests. (■: 4 mg/l; ●: 0.67 mg/l; ▲: Simulated in vivo)
Discussion

We measured and evaluated cell survival and DNA crosslink formation in a rat adenocarcinoma line in response to different concentrations of CDDP administered with varying exposure times. In doing so, we hoped to simulate the in vivo pharmacodynamics of CDDP in an in vitro setting. Since the simplest model of pharmacodynamics in vitro is considered to be a function of both drug concentration and drug exposure time, the simulated in vivo exposure method in vitro is considered to be an adequate experimental procedure to mimic in vivo phenomena in vitro. Moreover, because of the time-dependent nature of the cell membrane to various drugs and travel time from the membrane to the drug’s target, it is possible that the drug exposure methods employing either a constant concentration or varying concentrations may not have the same pharmacodynamic effects even though the AUC values are identical. Ozawa et al. made a mathematical model of pharmacokinetic-pharmacodynamics for cell-cycle non-specific anti-cancer agents such as CDDP (1). The only pharmacodynamic aspect of the drug evaluated in their study was the surviving fraction of cells. Moreover, this model can only be used for drugs that can permeate the cell membrane and react with targets very quickly. Moreover, no study has attempted to mimic the in vivo pharmacokinetics of unbound CDDP. Therefore, it is useful to test the predictive accuracy of this model by simulating the in vivo CDDP concentration in vitro and to compare the results with the results of constant concentration exposure.

As for cell survival (evaluated by colony formation assay), the two kinds of constant drug concentration exposure yielded almost the same results statistically as the simulated exposure on the AUC bases as shown in Fig 2. Therefore, no matter how the CDDP exposure methods differ, cell survival is likely to be a function of the AUC value within the clinical dosage range. This result is identical to published data (3), despite the fact that our study took into account the CDDP reaction. This outcome supported the mathematical model. Because CDDP can kill cells by causing the formation of DNA crosslinks, the formation of DNA crosslinks was investigated as one of the important pharmacodynamic effects of CDDP. All of the alkaline elution assays in this study were performed at 4 h after the rinsing of CDDP as shown in Fig. 3, because the highest number of crosslinks were formed at this time as previously reported (7–9). Cell survival showed a strong correlation with the crosslink index of total DNA crosslinks. The logarithm of the cell survival was a linear function of the crosslink index ($R^2 = 0.85$). Therefore, the crosslink index of total DNA crosslinking is a good parameter to predict cell survival statistically.

DNA crosslinks caused by CDDP are classified as DNA-DNA crosslinks and DNA-protein crosslinks. In this study, the crosslink index, including both DNA-protein crosslinks and DNA interstrand crosslinks, showed a strong correlation with the survival of cells (Fig. 4) and with the AUC values statistically. The majority of the crosslinks were derived from DNA-protein crosslinks as shown in Fig. 5. Therefore, the results of this study indicate that DNA-protein crosslinking plays an important role in cytotoxicity within the clinical dosage range of CDDP. However, because we did not perform functional or metabolic analyses of the involved proteins in this study, the qualitative significance of DNA-protein crosslinking remains unclear. At the present time, we are performing a qualitative analysis of the role of DNA-protein crosslinking in cell survival. Zwelling et al. reported that since CDDP and trans-diammine-dichloro platinum(II) (which induces about twice the amount of DNA-protein crosslinking as CDDP) yielded similar effects in terms of cell survival and interstrand DNA crosslink formation (6), it is thought that DNA-protein crosslinks are less important as lethal lesions. The high-mobility group (HMG) proteins that bind specifically to DNA crosslinks have been investigated recently. However, Cryer et al. reported that the HMG proteins 1 and 2, which display high affinity binding to CDDP-DNA crosslinks, can be removed from the CDDP-DNA crosslinks leaving the crosslink intact and capable of rebinding to HMG proteins (10). On the other hand, DNA-DNA crosslinks are classified as interstrand and intrastrand crosslinks. It is believed that cytotoxicity results from the formation of DNA interstrand crosslinks (11–16). Lemaire et al. reported that DNA interstrand crosslinks may be involved in the inhibition of transcription (17). Lawley and Phillips (18) reported that the mean lethal dose on the order of 100 interstrand crosslinks (19) (formed between CDDP and the N7 of two guanine residues at d (GC/GC) sites (17, 20)) were clearly the same magnitude as one found in cells cultured with mustard gas (21) which causes interstrand crosslinks. Hopiers et al. reported that the amount of interstrand
crosslinks caused by CDDP showed a reverse correlation with CDDP resistance using cell lines (22). The general conclusion with regard to DNA crosslinks is that the platinum drugs broadly resemble mustard gas, with interstrand crosslinking being implicated as the most effective lethal lesion reported by Kohn et al. (11). Plooy et al. demonstrated that interstrand crosslinks and DNA-protein crosslinks required a longer time to repair (12), unlike intrastrand crosslinks. On the other hand, Pérez et al. reported that interstrand crosslinks caused by CDDP could be rearranged into intrastrand crosslinks on oligodeoxyribonucleotides (23). Therefore, the amount of CDDP-induced interstrand crosslinks might provide a crude estimate of total number of DNA-DNA crosslinks. Therefore, because the amount of DNA-protein crosslinks might be proportional to the amount of DNA-DNA crosslinks, it is likely that the strong correlation between cytotoxicity and the crosslink index of both DNA-protein crosslinks and interstrand crosslinks observed in this study can be explained.

Because cell survival was dependent on the AUC value of CDDP and because the crosslink index of DNA-protein crosslinks and the crosslink index of DNA interstrand crosslinks were strongly correlated with the AUC values, the method of drug administration in clinical practice is of great importance. The AUC value differed depending on the drug exposure time despite constant dose administration in a clinical study (5), which indicates that CDDP acts as a non-linear agent. Therefore, the results of this study indicate that not only dose intensity (mg/m²/day), but also the AUC intensity (the AUC value per week: mg·h/l/m²/week), should be considered when planning future chemotherapy regimens. To obtain higher AUC values, it is thought that consecutive low-dose administration yields the best outcome (24-27). When the AUC value is the same, low-dose consecutive CDDP administration might be superior to high-dose bolus administration because low-dose administration produces fewer side effects on patients. The threshold of DNA crosslinking and the AUC value should also be considered when planning chemotherapy regimens. In order to investigate the anti-tumor effects of unbound CDDP, we simulated in vitro the in vivo pharmacokinetics of CDDP with special attention to cell survival and DNA damage. The crosslink index of both DNA-protein crosslinks and interstrand crosslinks gave a quantitative indication of the degree of cytotoxicity. Our findings suggest that the optimum results of CDDP administration can be gained by aiming for a higher AUC intensity.

Acknowledgements. The authors thank Prof. Tatsuki Yasuda (Department of Cellular Chemistry, Okayama University Medical School) for providing laboratory facilities. This study was supported in part by a Grant-in-Aid (No. 08771332) for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References

13. Roberts JJ, Knox RJ, Pera MF, Friedlos F and Lydall PA: Platinum...

Received February 10, 1999; accepted May 21, 1999.

http://escholarship.lib.okayama-u.ac.jp/amo/vol53/iss5/1