Overexpression of c-Met/hepatocyte growth factor receptors in human prostatic adenocarcinoma.

Keiji Inoue* Masakazu Chikazawa† Takashi Karashima‡
Tatsuo Liyama** Masayuki Kamada†† Taro Shuin‡‡
Mutsuo Furihata§ Yuji Ohtsuki¶

*Kochi Medical School,
†Kochi Medical School,
‡Kochi Medical School,
**Kochi Medical School,
††Kochi Medical School,
‡‡Kochi Medical School,
§Kochi Medical School,
¶Kochi Medical School,

Copyright ©1999 OKAYAMA UNIVERSITY MEDICAL SCHOOL. All rights reserved.
Overexpression of c-Met/hepatocyte growth factor receptors in human prostatic adenocarcinoma.*

Keiji Inoue, Masakazu Chikazawa, Takashi Karashima, Tatsuo Liyama, Masayuki Kamada, Taro Shuin, Mutsuo Furihata, and Yuji Ohtsuki

Abstract

Hepatocyte growth factor (HGF) and c-met proto-oncogene product (c-Met) have varied biological functions in different tissues and have been implicated in mitogenic, motogenic and morphogenic responses in both organ regeneration and carcinogenesis. Some studies have suggested that the overexpression of c-Met and epidermal growth factor receptor (EGFR) are associated with growth advantage, while transforming growth factor-beta receptor II (TGF beta R II) is associated with growth disadvantage of human prostatic adenocarcinoma. However, it is unclear if the expression of c-Met correlates with the expression of EGFR and TGF beta R II, and with the proliferative status of human prostatic adenocarcinoma. Using immunohistochemical staining with anti-c-Met (C-12), anti-EGFR (NCL-EGFR) and anti-TGF beta R II (L-21) antibodies, we determined the frequency of expression of c-MET, EGFR, and TGF beta R II respectively in a series of 134 radical prostatectomy specimens. We evaluated the relationship between the expression of these receptors and clinicopathological characteristics. Overall, c-Met immunostaining was detected in 54 of 134 (40.3%) cases, EGFR in 45 (33.6%) and TGF beta R II in 64 (48.4%). The overexpression of c-Met was significantly more common in poorly differentiated (P < 0.0001) and in the diffusely infiltrated specimens (P < 0.0005). In contrast, TGF beta R II was significantly overexpressed in the well differentiated specimens (P < 0.0001) and associated negatively with c-Met (P < 0.0001). Overall, these data suggest that c-Met/HGF receptor and TGF beta R II overexpression may be involved in the differentiation of human prostatic adenocarcinoma, c-Met with de-differentiation and TGF beta R II with differentiation.

KEYWORDS: c-met proto-oncogene product, epidermal growth factor receptor, transforming growth factor-? receptor ?, prostatic adenocarcinoma, immunohisrt chemistry

*PMID: 9876767 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
Overexpression of c-Met/Hepatocyte Growth Factor Receptors in Human Prostatic Adenocarcinoma

Keiji INOUEa, Masakazu CHIKAZAWAa, Takashi KARASHIMAa, Tatsuo IYAMAb, Masayuki KAMADAa, Taro SHUINa, Mutsumi FURIHATAb* and Yuji OHTSUKib

Departments of aUrology and bPathology II, Kochi Medical School, Nankoku, Kochi 783-8505, Japan

Hepatocyte growth factor (HGF) and c-met proto-oncogene product (c-Met) have varied biological functions in different tissues and have been implicated in mitogenic, motogenic and morphogenic responses in both organ regeneration and carcinogenesis.

Some studies have suggested that the overexpression of c-Met and epidermal growth factor receptor (EGFR) are associated with growth advantage, while transforming growth factor-β receptor II (TGFβR II) is associated with growth disadvantage of human prostatic adenocarcinoma. However, it is unclear if the expression of c-Met correlates with the expression of EGFR and TGFβR II, and with the proliferative status of human prostatic adenocarcinoma. Using immunohistochemical staining with anti-c-Met (C-12), anti-EGFR (NCL-EGFR) and anti-TGFβR II (L-21) antibodies, we determined the frequency of expression of c-MET, EGFR, and TGFβR II respectively in a series of 134 radical prostatectomy specimens. We evaluated the relationship between the expression of these receptors and clinicopathological characteristics. Overall, c-Met immunostaining was detected in 54 of 134 (40.3%) cases, EGFR in 45 (33.6%) and TGFβR II in 64 (48.4%). The overexpression of c-Met was significantly more common in poorly differentiated (P < 0.0001) and in the diffusely infiltrated specimens (P < 0.0005). In contrast, TGFβR II was significantly overexpressed in the well differentiated specimens (P < 0.0001) and associated negatively with c-Met (P < 0.0001). Overall, these data suggest that c-Met/HGF receptor and TGFβR II overexpression may be involved in the differentiation of human prostatic adenocarcinoma, c-Met with de-differentiation and TGFβR II with differentiation.

Key words: c-met proto-oncogene product, epidermal growth factor receptor, transforming growth factor-β receptor II, prostatic adenocarcinoma, immunohistochemistry

In human cancers, activation and amplification of endogenous proto-oncogenes have been shown to play important roles in biological mechanisms.

Hepatocyte growth factor (HGF) and its receptor, the c-met proto-oncogene product (c-Met), have varied biological functions. They have been implicated in mitogenic (1-3), motogenic (2-4), and morphogenic (5) responses during organ regeneration. Hepatocyte growth factor and c-Met have also been implicated in tumor growth suppression (6, 7) and carcinogenesis (8). c-Met was found to be overexpressed in normal and neoplastic human tissues such as stomach, colon, pancreas and thyroid (8-10) and shown to correlate with cancer differentiation and proliferation (9-10). In human prostatic cancer, a significant correlation between c-Met expression and grade has previously been reported (11, 12). However, it is unclear if C-Met expression correlates with the expression of any other growth factor receptor such as epidermal growth factor receptor (EGFR) and transforming growth factor-β receptor II (TGFβR II). In addition, the relation of these receptors with the proliferative index has yet to be determined in prostatic carcinoma.

The incorporation of EGF and EGFR promotes proliferation and development of ectodermal, mesodermal and endodermal cells (13), and is also involved in embryogenesis, cellular differentiation and angiogenesis (14).

*To whom correspondence should be addressed.
EGF and transforming growth factor-α (TGF-α) share 35 percent sequence homology, and they are both ligands for EGFR. They have been reported to have very similar biological properties (13, 14) in human breast (15, 16), gastric (17), and colon (17) carcinomas.

TGF-β is involved in a several biological processes such as mitogenesis, morphogenesis and inhibition of tissue differentiation (18). It has also been demonstrated that TGF/βII expression in gastric (19) and colon cancer (20) correlates with the degree of sensitivity of these cancers to growth inhibition by TGF-β.

A few studies have demonstrated that growth advantage or disadvantage in the development of human prostatic adenocarcinoma is associated with the expression of c-Met (12, 21) and EGFR (22, 23), or TGF/βII (19-20). The purpose of this study is to determine whether c-Met expression is associated with the expression of EGFR or TGF/βII and clinicopathological characteristics in human prostatic carcinoma.

Materials and Methods

Tumor samples. Samples were drawn from a total of 134 cases of human prostatic adenocarcinomas (median patient age 68.3; range 48-80 years) between 1984 and 1996 at the Department of Urology, Kochi Medical School, Division of Urology, Kochi-Takasu Hospital and Chikamori Hospital, Kochi, Japan, were

Table I

<table>
<thead>
<tr>
<th>Clinico-pathological factors</th>
<th>c-Met</th>
<th>EGFR</th>
<th>TGF/βII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) 70 ></td>
<td>Neg.</td>
<td>Pos.</td>
<td>Neg.</td>
</tr>
<tr>
<td>70 ≤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT 1</td>
<td>44</td>
<td>32</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>27</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DIF well</td>
<td>44</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>moderate</td>
<td>34</td>
<td>28</td>
<td>38</td>
</tr>
<tr>
<td>poor</td>
<td>2</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>INF a</td>
<td>21</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>β</td>
<td>40</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>γ</td>
<td>19</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>int 1</td>
<td>17</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
<td>23</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>54</td>
<td>89</td>
</tr>
</tbody>
</table>

| Statistical significance: | c-Met × DIF, TGF/βII × DIF; P < 0.0001 |
| | c-Met × INF; P < 0.0005 |

Clinopathological factors:
- **pT**: Depth of cancer cell penetration
 - 1: Microscopical cancer foci; 2: Localized within prostate; 3: Penetration over prostatic capsule; 4: Invasion to adjacent organs
- **DIF**: Type of cancer cell differentiation
 - Well: Well-differentiated; moderate: Moderately-differentiated; poor: Poorly-differentiated
- **INF**: Type of cancer cell infiltration
 - α: Expansive, well-defined pattern; β: Intermediate, moderately-defined pattern; γ: Diffusely invasive, ill-defined pattern
- **int**: Amount of interstitium in cancer foci
 - 1: Small amount of interstitium; 2: Intermediate amount of interstitium; 3: Large amount of interstitium

Categories of immunostaining:
- **Neg.**: the case of cancer cells with negative or less than 75% positive staining
- **Pos.**: the case of cancer cells with more than 75% positive staining
Inoue et al.: Overexpression of c-Met/hepatocyte growth factor receptors in Prostatic Adenocarcinoma

December 1998

3

Prostatic glands, weak immunoreactivity for c-Met and EGFR was restricted to the basal cells, and immunoreactivity for TGF/βR II was detected at the luminal surface of the epithelium (data not shown).

Table 1 shows the relationships between the expression of c-Met, EGFR, or TGF/βR II and each clinicopathological factor.

The overexpression of c-Met was detected in 89.5% (17/19) of the poorly differentiated cases and in 60.4% (29/48) of diffusely infiltrating cases, which were statistically significant at $P < 0.0001$ and $P < 0.0005$ respectively. In contrast, overexpression of TGF/βR II was detected in 79.2% (42/53) of the well differentiated cases. Only one poorly differentiated case stained positive for TGF/βR II. The correlation between TGF/βR II expression and the level of differentiation was statistically significant ($P < 0.0001$). There was no statistical correlation between the expression of EGFR and any of the clinicopathological factors. Although no significant correlation was found between the expression of c-Met and EGFR, the overexpression of c-Met was significantly associated with the overexpression of TGF/βR II in inverse proportion in prostatic adenocarcinoma (Table 2).

Discussion

In the present study, we used immunohistochemical techniques to demonstrate the correlation between the expression of c-Met, EGFR, and TGF/βR II and clinicopathological factors in radical prostatectomy specimens.

We found that c-Met was overexpressed in 54 (40.3%) of 134 cases. This result confirms recent studies reporting that c-Met was overexpressed in 33% (2/6 cases) (21) or 84% (36/43 cases) (12) of prostatic cancer. This overexpression of c-Met is thought to be secondary to gene amplification (8, 26). In this study we did not find any correlation between c-Met expression and tumor stage as previously reported (12, 21). However we did find that overexpression of c-Met statistically correlated with cancer differentiation ($P < 0.0001$) and diffuse infiltration ($P < 0.0005$). Eighty-nine percent of the poorly differentiated tumors showed overexpression of c-Met. Similar results were reported in pancreatic (9) and thyroid (10) carcinomas. Although it is not elevated in thyroid adenoma and anaplastic adenocarcinoma, the expression of c-Met was increased 100-fold increased in thyroid papillary carcinoma (10). In that study, the authors suggested that overexpression of c-Met may confer to thyroid
Fig. 1 The overexpression of c-Met is confined to the cytoplasm of the cancer cells in a cases of poorly-differentiated (a) and diffusely infiltrating human prostatic adenocarcinoma (b). (Streptavidin-biotin complex method, a: ×250, b: ×500).
carcinomas the ability to progress towards more advanced disease through the acquisition of a more aggressive phenotype (10). In our study, we found that the overexpression of c-Met is strongly associated with poorly differentiated prostatic adenocarcinoma and may play a significant role in the growth and progression of human prostatic adenocarcinoma.

Although EGFR was detected in 45 of 134 (33.6%) cases, including only 9 in which c-Met was also positive, there were no statistically significant relationships between EGFR expression and any of the clinicopathological factors studied. These results confirm recent studies in which it was reported that 17% (5/19 cases) (22) or 40% (41/102 cases) (23) of prostatic cancer expressed EGFR, with no significant correlation to clinicopathological factors. However, we observed that all the cases in which c-Met and EGFR were expressed were poorly differentiated, suggesting that expression of both growth factor receptors may contribute to the poorly differentiated phenotype.

Furthermore, the overexpression of TGFβR II was clearly associated with well differentiated tumors ($P < 0.0001$) and that this expression was inversely proportional to that of c-Met. It is possible that a balance between these growth factor receptors may play a role in tumor progression.

In summary, although the biological significance of c-Met remains in question, our report demonstrates that c-Met overexpression correlates with the poorly differentiated phenotype and is inversely proportional to TGFβR II expression in a large series of patients with prostatic adenocarcinoma. An imbalance between c-Met and

Table 2 The relationships between the expression of c-Met, EGFR and TGFβR II

<table>
<thead>
<tr>
<th></th>
<th>c-Met</th>
<th></th>
<th>TGFβR II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Neg.</td>
<td>Pos.</td>
<td>Neg.</td>
</tr>
<tr>
<td>c-Met</td>
<td>Neg.</td>
<td>—</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>—</td>
<td>—</td>
<td>51</td>
</tr>
<tr>
<td>EGFR</td>
<td>Neg.</td>
<td>44</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>36</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>54</td>
<td>70</td>
<td>64</td>
</tr>
</tbody>
</table>

Statistical significance: c-Met × TGFβR II; $P < 0.0001$. Neg.: Pos.: See legend to Table 1.
TGFβR II expression may play a role in early differentiation toward a more malignant phenotype and early progression of human prostatic cancer. Further studies are needed to determine if the expression of these molecular markers correlate with prognosis and could be used to identify high risk patients.

Acknowledgments. We thank Dr. N. Terao (Kochi Takasu Hospital) and Dr. Y. Yamamoto (Chikamont Hospital) for providing clinical data and materials, and Ms. C. Yoshikawa for her excellent technical assistance.

References