Assessment of Myocardial Function During Mechanical Left Ventricular Support Using Serial Echocardiography: A Case Report

Kozo ishino* Taiji Murakami† Koji Takata‡
Koichi Kino** Yoshimasa Senoo†† Shigeru Teramoto‡‡

*Okayama University, †Okayama University, ‡Okayama University,
**Okayama University, ††Okayama University, ‡‡Okayama University,
Assessment of Myocardial Function During Mechanical Left Ventricular Support Using Serial Echocardiography: A Case Report

Kozo Ishino, Taiji Murakami, Koji Takata, Koichi Kino, Yoshimasa Senoo, and Shigeru Teramoto

Abstract

A 40-year-old man with valvular heart disease was successfully treated using a left ventricular assist device (LVAD) after open heart surgery. Echocardiography revealed left ventricular ejection fraction (LV-EF) at LVAD on/off: 23.4%/14.6% on the 4th, 23.8%/23.8% on the 5th, and 23.8%/26.8% on the 6th postoperative day (POD), respectively. The patient was weaned from LVAD on the 8th POD and discharged from the hospital on the 58th POD. The LV-EF improved to 54% 6 months after surgery and increased from 57% to 64% in response to exercise stress testing 1 year after surgery.

KEYWORDS: ventricular assist device, echocardiography
Assessment of Myocardial Function During Mechanical Left Ventricular Support Using Serial Echocardiography: A Case Report

KOZO ISHINO*, TAIJI MURAKAMI, KOJI TAKATA, KOICHI KINO, YOSHIMASA SENNO
AND SHIGERU TERAMOTO

Second Department of Surgery, Okayama University Medical School, Okayama 700, Japan.

A 40-year-old man with valvular heart disease was successfully treated using a left ventricular assist device (LVAD) after open heart surgery. Echocardiography revealed left ventricular ejection fraction (LV-EF) at LVAD on/off: 23.4% / 14.6% on the 4th, 23.8% / 23.8% on the 5th, and 23.8% / 26.8% on the 6th postoperative day (POD), respectively. The patient was weaned from LVAD on the 8th POD and discharged from the hospital on the 58th POD. The LV-EF improved to 54% 6 months after surgery and increased from 57% to 64% in response to exercise stress testing 1 year after surgery.

Key words: ventricular assist device, echocardiography

Despite an increase in the use of ventricular assist devices (VADs) after open heart surgery, the results recently reported are less encouraging. As of 1990, 965 patients were supported by VADs world-wide; of these, 45% were weaned and 25% survived (1). Although the VAD weaning criteria based on hemodynamic data established by Pierce et al. (2) are generally followed, the analysis of Termuhlen et al. indicated that more accurate assessment of ventricular function during VAD support is necessary to increase the salvage rate of critically ill patients (3).

We present our experience with a VAD in a patient in whom echocardiography was the only reliable method to evaluate the recovery of the failing heart.

Case Presentation

A 40-year-old man who received two mitral valve replacements at 25 and 33 years of age, was admitted to Okayama University Hospital for further surgery. On admission, the echocardiogram demonstrated severe aortic regurgitation (Grade 3/4), perivalvular mitral regurgitation (3/4), and tricuspid regurgitation (4/4) with a left ventricular ejection fraction (LV-EF) of 42%. The patient required mechanical ventilation for 7 days prior to operation. He also had liver dysfunction secondary to congestive heart failure with a total bilirubin level of 2.7 mg/dl, glutamic oxaloacetic transaminase of 771U/l and gamma glutamyl transpeptidase of 1001U/l. A preoperative chest roentgenogram showed cardiomegaly with a cardiothoracic ratio of 0.92 and severe pulmonary venous congestion (Fig. 1).

Aortic and mitral valve replacement using St. Jude Medical valves and tricuspid annuloplasty were performed under standard cardiopulmonary bypass (CPB) technique and moderate hypothermia (28°C). Cold crystalloid cardioplegic solution (St. Thomas Hospital) was administered every 30 min during the ischemic period, and topical cooling with ice slush was added. The aortic clamp time was 225 min. After declamping, left ventricular contraction did not occur despite ventricular pacing. In consideration of the preoperative liver and respiratory dysfunction in addition to ischemic myocardial failure, we decided to apply a left VAD (LVAD) without trying intra-aortic balloon pumping (IABP).

The LVAD was an air-driven, diaphragm-type blood pump with an effective stroke volume of 70 ml (National Cardiovascular Center, Osaka, Japan) (4). The inflow cannula was inserted into the left atrium through the atrial septum under aortic cross-clamping. After declamping, the Dacron graft of the outflow cannula was anastomosed.

* To whom correspondence should be addressed.
end-to-side to the ascending aorta. The VAD was connected to the cannulae and driven in the non-synchronous fixed rate mode at 60 beats/min. CPB could be finally discontinued after 391 min. At the end of the operation, the LV-EF measured directly on the right ventricular surface by echocardiography was 10% with an arterial pressure of 113/60 mmHg, a mean pulmonary artery pressure (mPAP) of 37 mmHg, and a mean right atrial pressure (mRAP) of 17 mmHg under LVAD support.

Our weaning method from the pulsatile LVAD was as follows. During maximal left ventricular unloading by the LVAD, at first, the doses of inotropic agents such as dopamine and dobutamine were decreased as much as possible down to 5 μg/kg/min. When systolic arterial pressure by the native heart had been stabilized above 100 mmHg for 24 h, the pumping rate was reduced daily by 5 beats/min to a minimum of 40 beats/min. When the pump-on/pump-off data obtained during a planned interruption for up to 1 min were satisfactory and also when mRAP was lower than 15 mmHg, the VAD support was terminated.

The postoperative course is illustrated in Fig. 2. Fig. 3 depicts serial determinations in the LV-EF by transthi-
Echocardiography During LVAD Support

Discussion

This patient with severe valvular heart disease was salvaged using an LVAD after double valve replacement. When the cardiac dysfunction is secondary to myocardial stunning, VAD can provide the heart valuable time to restore high-energy substrates, reduce myocardial edema and regain adequate ventricular function (4, 5). Thus, recovery of a failing myocardium with non-ischemic valvular heart disease seems more likely than that with ischemic heart disease.

The main causes of unsuccessful VAD support are mostly delay of the application of VAD and include irreversible heart failure and multiple organ failure (6-8). Therefore, deciding earlier whether to use a VAD is important to avoid such fatal complications. In this case, we used the LVAD without trying an IABP not only because of poor ventricular function after aortic declamping but also because of preoperative lung and liver dysfunctions. It is, however, open to discussion whether direct use of VAD is the best means of mechanical circulatory support in patients with severe heart failure. We believe that, in selected patients, especially those who develop other organ dysfunction preoperatively, direct application of VAD should be considered.

According to the report of Takano et al., in 92 VAD patients, major causes of death after removal of VAD are multiple organ failure (16.3%) and recurrent heart failure (10.4%) (7). To prevent such complications, we continued the LVAD support not only until the failing ventricle had recovered but also until disturbed fluid balance such as high mRAP was improved.

The utility of echocardiography as a concomitant diagnostic tool in patients with VAD has been reported by some investigators (9-11). Nakatani et al. found that left ventricular function during LVAD support can be evaluated by changes in the left end-diastolic dimension, percent fractional shortening and prejection period/ejection time determined by echocardiography (12). In their report, however, it is unclear when left ventricular function recovered enough to be weaned from LVAD. Verani et
al. reported that the response of LV-EF to stepwise decreases in LVAD flow determined by radionuclide angiography was a good indicator of weaning a patient from LVAD and of long-term survival (13). In our case, the serial evaluation of the LV-EF by echocardiography was useful in predicting to what extent myocardial function recovered, and positive change in the LV-EF after turning off the pump was the key to weaning the patient from the LVAD. Although the weaning process should be performed based on hemodynamic data, our experience indicates that serial measurement of LV-EF coupled with hemodynamic assessment can provide more accurate information about left ventricular function during LVAD support.

References

Received January 27, 1993; accepted January 10, 1994.