The effect of somatostatin analogue on glucose homeostasis in conscious dogs

Ichiro Nakanishi* Toshihiko Ishida† Hitoshi Hosokawa†
Koichi Kawanishi** Craig J. Hartley†† Jiro Takahara‡‡
The effect of somatostatin analogue on glucose homeostasis in conscious dogs

Ichiro Nakanishi, Toshihiko Ishida, Hitoshi Hosokawa, Koichi Kawanishi, Craig J. Hartley, and Jiro Takahara

Abstract

Our aim was to clarify the effect of a somatostatin analogue (octreotide) on glucose flux in conscious dogs. We monitored the effects with catheters in the portal vein, hepatic vein and femoral artery and Doppler flow probes on the portal vein and hepatic artery before and after oral glucose administration. A significant increase of portal vein plasma flow after oral glucose was completely suppressed by both 4 and 1 µg/kg octreotide. All doses of octreotide (4, 1 and 0.1 µg/kg) suppressed the glucose-induced increment of arterial glucose by dose response. Only 4 µg/kg of octreotide slightly but significantly suppressed hepatic glucose output. Marked suppression and delayed glucose absorption by the intestine was observed after 4 µg/kg of octreotide. One and 0.1 µg/kg octreotide also suppressed glucose absorption without delayed absorption. Total amounts of absorbed glucose during 3h after oral glucose were 24 ± 11% with 4 µg/kg of octreotide, 37 ± 16% with 1 µg/kg of octreotide, and 48 ± 8% with 0.1 µg/kg of octreotide, all of which were significantly less than that of the control (73 ± 8%). Using 4 µg/kg of octreotide treatment, the liver took up only 5 ± 4% of the absorbed glucose, while the liver took up 35 ± 6% and 43 ± 9% of the absorbed glucose with 1 and 0.1 µg/kg of octreotide. These latter values were similar to that of the control value of 34 ± 4%. In conclusion, we found that octreotide administered before oral glucose had a remarkable stabilizing effect on postprandial glycemic surges. Both the direct inhibitory effect of octreotide on portal vein plasma flow and impaired glucose absorption would contribute to this decreased postprandial hyperglycemia, while its suppressive effect on other hormones, such as insulin and glucagon, did not seem to influence the reduction of hyperglycemia.

KEYWORDS: octreotide, portal venous flow, glucose absorption, hepatic glucose uptake

*PMID: 9057928 [PubMed - indexed for MEDLINE]
Copyright (C) OKAYAMA UNIVERSITY MEDICAL SCHOOL
The Effect of Somatostatin Analogue on Glucose Homeostasis in Conscious Dogs

Ichiro Nakanishi, Toshihiko Ishida, Hitoshi Hosokawa, Koichi Kawanishi, Craig J. Hartley and Jiro Takahara

Department of Medicine and Department of Central Laboratory, Kagawa Medical University, Kagawa 761-07, Japan and Section of Cardiovascular Science, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA

Our aim was to clarify the effect of a somatostatin analogue (octreotide) on glucose flux in conscious dogs. We monitored the effects with catheters in the portal vein, hepatic vein and femoral artery and Doppler flow probes on the portal vein and hepatic artery before and after oral glucose administration. A significant increase of portal vein plasma flow after oral glucose was completely suppressed by both 4 and 1 µg/kg octreotide. All doses of octreotide (4, 1 and 0.1 µg/kg) suppressed the glucose-induced increment of arterial glucose by dose response. Only 4 µg/kg of octreotide slightly but significantly suppressed hepatic glucose output. Marked suppression and delayed glucose absorption by the intestine was observed after 4 µg/kg of octreotide. One and 0.1 µg/kg octreotide also suppressed glucose absorption without delayed absorption. Total amounts of absorbed glucose during 3 h after oral glucose were 24 ± 11% with 4 µg/kg of octreotide, 37 ± 16% with 1 µg/kg of octreotide, and 48 ± 8% with 0.1 µg/kg of octreotide, all of which were significantly less than that of the control (73 ± 8%). Using 4 µg/kg of octreotide treatment, the liver took up only 5 ± 4% of the absorbed glucose, while the liver took up 35 ± 6% and 43 ± 9% of the absorbed glucose with 1 and 0.1 µg/kg of octreotide. These latter values were similar to that of the control value of 34 ± 4%. In conclusion, we found that octreotide administered before oral glucose had a remarkable stabilizing effect on postprandial glycemic surges. Both the direct inhibitory effect of octreotide on portal vein plasma flow and impaired glucose absorption would contribute to this decreased postprandial hyperglycemia, while its suppressive effect on other hormones, such as insulin and glucagon, did not seem to influence the reduction of hyperglycemia.

Key words: octreotide, portal venous flow, glucose absorption, hepatic glucose uptake

Continuous infusion of somatostatin has been reported to decrease fasting (1-2) and postprandial hyperglycemia (3) in insulin-dependent patients with diabetes mellitus. Despite these potential benefits of somatostatin as a therapeutic agent in diabetic patients, the need for continuous infusion, due to its short half-life of a few minutes (4), its relative inactivity after subcutaneous injection (5) and its multiple hormone suppressive effects (6) render the native peptide impractical for clinical use. However, a somatostatin analogue (octreotide) has a 10 to 60 times higher inhibitory effect on insulin and growth hormone secretion than somatostatin and has a biological half-life longer than somatostatin (7-9). Octreotide has been used for the treatment of acromegaly (10), VIPoma (11) and gastrinoma (12).

Improvement in postprandial blood glucose profiles after administration of octreotide has been reported in insulin-dependent diabetes (13, 14), but not in patients with non-insulin dependent diabetes mellitus (15). The precise mechanisms of the effects of octreotide on glucose metabolism after oral glucose are not clearly understood. We studied the effects of octreotide on glucose flux in conscious dogs with catheters in the portal vein, hepatic vein and femoral artery and Doppler flow probes on the...
portal vein and hepatic artery before and after oral glucose administration.

Materials and Methods

Animals and surgery. Forty healthy adult male and female mongrel dogs, weighing 8–18 kg, were anesthetized with pentobarbital sodium (25 mg/kg body weight) after an overnight fast. Doppler flow probes designed by Hartley et al. (16) were placed around the portal vein and hepatic artery as described in detail previously (16). Polyvinyl catheters (Tygon Co., New York, NY, USA) were also inserted into the portal vein, left common hepatic vein and femoral artery for blood sampling as previously reported (16).

Experimental procedure. Experiments were done with conscious unrestrained dogs after an overnight fast and at least 2 weeks after surgery. Only animals whose hematocrits were over 30%, appeared in healthy condition, and had a good appetite and normal stools were used. Phasic and mean control aortic blood pressure was measured using a Statham p 23 db pressure transducer (Nihon Koden Co., Tokyo, Japan) connected to the arterial catheter. Blood samples for glucose, insulin and glucagon were obtained simultaneously from the portal vein, hepatic vein and femoral artery with continuous measurements of the portal vein and hepatic artery blood flow (16). The blood flow measurements were corrected to plasma flow based on hematocrits obtained every 30 min, since glucose, insulin and glucagon levels in each vessel were determined by multiplying plasma flow by plasma concentrations as previously reported (16).

After a 30 min control period, octreotide (0.1, 1.0 or 4.0 μg/kg) was administered subcutaneously and again one hour later just before glucose administration. An interval of at least 7 days separated each experiment. Glucose (1.0 g/kg) was administered orally and was consumed within 2 min. Blood samples were collected in chilled tubes containing 500 μl aprotinin (TrasyloL; Sigma Chemical Co., St. Louis, MO, USA) and 1.2 mg EDTA/ml of blood at −30, 0, 30, 45, 60, 70, 80, 90, 105, 120, 135, 150, 180, 210 and 240 min.

Analysis. Plasma glucose was measured using a Beckman glucose automanalyzer (Beckman Co., New York, NY, USA) and a glucose oxidase method. Plasma insulin and glucagon were assayed as previously reported (16, 17). Net hepatic glucose output (HGO), splanchnic glucose output (SGO), hepatic glucose uptake (HGU) after glucose load and glucose absorption rate by the intestine were calculated as described in detail elsewhere (18). The data are presented as means ± SEM. The basal value was the mean ± SEM of the four values obtained from −30 to 0 min. Significant changes from the basal value were determined by two-way analysis of variance, followed by Duncan’s new multiple range test. Comparison of two means was by paired Student’s t-test (19). After oral glucose administration, differences between the data sets from control and octreotide treated groups were evaluated by calculations of the area under the curve in each dog followed by the Fisher’s PLSD test using the Statview software package. P < 0.05 was considered to indicate a significant difference.

Results

The effect of octreotide on basal and glucose-induced plasma flow. Blood pressure did not change significantly throughout each experiment.

Both 4 and 1 μg/kg octreotide suppressed the basal portal vein plasma flow to 82 ± 4% and 87 ± 8%, respectively, although these were not statistically significant. Hepatic arterial plasma flow did not change significantly after octreotide injection (data not shown). A significant increase of portal vein plasma flow after oral glucose was completely suppressed by both 4 and 1 μg/kg octreotide (Fig. 1).

The effect of octreotide on basal and glucose-induced plasma arterial glucose level. Basal arterial plasma glucose tended to decrease after octreotide injection, but not significantly. With 4 μg/kg of octreotide treatment, arterial glucose increased gradually and continuously, but not significantly to 125 ± 15% of the basal level. Even 0.1 μg/kg of octreotide suppressed the glucose-induced increment of arterial glucose (136 ± 13% vs 162 ± 25% for the controls, P < 0.05, respectively) (Fig. 2).

The effect of octreotide on basal hepatic glucose output. Only 4 μg/kg of octreotide slightly but significantly suppressed HGO from the basal value of 2.6 ± 0.3 mg/kg/min to 2.2 ± 0.2 mg/kg/min. Both 1 and 0.1 μg/kg of octreotide did not alter basal HGO.

The effect of octreotide on glucose absorption rate by intestine after oral glucose administration. Glucose absorption by the intestine was markedly suppressed and delayed after 4 μg/kg
of octreotide, but not after the other two doses. Total amounts of glucose absorbed during the 3 h after oral glucose were 24 ± 11% of the administered dose with 4 μg/kg of octreotide, 37 ± 16% with 1 μg/kg of octreotide, and 46 ± 8% with 0.1 μg/kg of octreotide. These amounts were all significantly less than that of the control (73 ± 8%) (Fig. 3).

The effect of octreotide on hepatic glucose uptake after oral glucose administration.
The liver of the dogs receiving 4 μg/kg of octreotide took up only 5 ± 4% of the absorbed glucose. The values for the dogs receiving 1 and 0.1 μg/kg of octreotide were 35 ± 6% and 43 ± 9% of the absorbed glucose, respectively, which were similar to the control value of 34 ± 4%

(Fig. 4).

The effect of octreotide on basal and glucose-induced plasma insulin levels. After octreotide administration, the portal venous insulin levels in the three groups decreased to 45 ± 12% of the basal level. A dose-related suppression of insulin was not observed. With octreotide, the increments of portal insulin after glucose were significantly less than those of the control, concomitant to the suppressed glucose absorption (Fig. 5).

The effect of octreotide on basal and glucose-induced plasma glucagon levels. Octreotide did not alter the basal portal venous glucagon levels with the exception of a 4 μg/kg dosage of
octreotide. The suppression of portal glucagon after oral glucose was significantly less than that of the control. Using all doses of octreotide, this was associated with suppressed glucose absorption with octreotide (Fig. 6).

Discussion

Glucose homeostasis is regulated by several factors. In the postabsorptive state, plasma glucose is regulated both by hepatic glucose output and peripheral glucose utilization. After glucose ingestion, many factors regulate arterial plasma glucose concentration. The first of these is gastric emptying time, the second is the rate of glucose absorption by the intestine, the third is the rate of hepatic uptake of glucose which is delivered to that organ by both the portal vein and the hepatic artery, and the fourth is the rate of peripheral utilization of glucose which is released into systemic circulation by the liver. The liver can minimize postprandial hyperglycemia both by increas-

Fig. 3 Absorption rate by the intestine (portal vein glucose appearance rate) of glucose administered orally in control and octreotide treated dogs. Control (○) (N = 22); somatostatin analogue (SMS) 4 μg/kg (●) (N = 8); SMS 1 μg/kg (△) (N = 7); and SMS 0.1 μg/kg (▲) (N = 7). Mean ± SEM. ○●▲△ P < 0.05 vs. Basal Value and * P < 0.05 vs. Control.

Fig. 4 Fate of orally administered glucose in control and octreotide (4 μg/kg, 1 μg/kg, and 0.1 μg/kg) treated dogs. Total amount of absorbed glucose, SGO (splanchnic glucose output) and HGU (hepatic glucose uptake) during 3h after oral glucose administration. The data were presented as the rate of total amount of administered glucose. Mean ± SEM, * P < 0.05 vs. Control.
ing hepatic glucose uptake and by suppressing endogenous hepatic glucose production (19, 20).

The present study demonstrates that a single subcutaneous injection of 0.1, 1 and 4 μg/kg octreotide diminished postprandial hyperglycemia in comparison to normal control dogs. This effect was associated with both inhibition of gastric emptying time and a reduction of intestinal glucose absorption. Similar effects of octreotide have been reported by several authors (21-24). However, del Pozo et al. (25) reported that the pattern of the absorption curve was not modified despite a retardation of glucose absorption. The present study also showed a similar absorption pattern in comparison to the control group with 1 and 0.1 μg/kg octreotide, although the absolute amounts of glucose absorption was markedly suppressed. Jenkins et al. (28) showed a suppression of portal venous and hepatic arterial blood flows at the basal state after infusion of a somatostatin analogue, though we did not obtain a significant suppression of the basal portal venous plasma flow. Although octreotide did not change blood pressure and heart rate, splanchic plasma blood flow after oral glucose was suppressed. Many factors from intestine during oral glucose ingestion affect the portal blood flow. The suppression of the postprandial increment of splanchic blood flow by atropine (26), epinephrine (20), phentolamin (20), propranolol (20), and guanabenz (27) treatments was demonstrated in our previous studies.
Since octreotide has many inhibitory effects on gastrointestinal hormone secretion (22–24), such effects could cause a reduction in net glucose absorption as well as the inhibition of postprandial increased blood flow. Other mechanisms for reduced postprandial hyperglycemia have also been suggested (13, 29). Spinas et al. (13) showed a rapid and sustained decrease of pancreatic glucagon concentrations by a single injection of a somatostatin analogue, and suggested that the early decrease and the absent postprandial increase in blood glucose resulted in part from glucagon suppression. We also showed a rapid decrease of glucagon by a single injection of octreotide 4 μg/kg. However, we could not obtain a sustained decrease of glucagon after oral glucose under octreotide treatment. This suggests that octreotide inhibited hyperglycemia-induced glucagon suppression. The reason for this discrepancy is not known, but we demonstrated that glucagon did not modify hepatic glucose uptake after oral glucose ingestion (30). Since a somatostatin analogue also suppressed growth hormone (7, 10, 31), this would contribute to reduce postprandial hyperglycemia. Bratusch Marrain et al. (32) demonstrated that growth hormone decreased hepatic glucose uptake after oral glucose compatible with higher peripheral glucose levels. Although increased hepatic uptake of orally administered glucose might be responsible for reduced postprandial hyperglycemia, we did not find that octreotide increased hepatic uptake of glucose. Although a markedly lower rate of hepatic glucose uptake was observed after 4 μg/kg octreotide, this value may be misleading, since much less glucose was reaching the liver.

All dosage of octreotide inhibited the basal portal venous insulin level and reduced the increment of that hormone after glucose in the present study. Despite the suppression of insulin and no change of glucagon, fasting blood glucose level tended to decline concomitantly with the decreased hepatic glucose output using 4 μg/kg octreotide. Such a suppressive effect of octreotide on the hepatic glucose output might be the direct effect of somatostatin (33, 34). The inhibitory effect of octreotide on glucose-induced insulin secretion probably reflects markedly diminished postprandial hyperglycemia as well as a direct effect on insulin secretion. The effect of inhibiting insulin without inhibition of glucagon might be expected to raise glucose concentration.

In conclusion, we found that octreotide administered before oral glucose had a remarkable stabilizing effect on postprandial glycemic surges. Both the direct inhibitory effect of octreotide on the portal vein plasma flow and impaired glucose absorption would contribute to this decreased postprandial hyperglycemia, while its suppressive effect on other hormones, such as insulin or glucagon, did not seem to influence hyperglycemia.

Acknowledgement. The authors thank Dr. James B. Field for constructive comments.

References

Received August 7, 1996; accepted November 5, 1996.